
Parallelisation Techniques for Random

Number Generators

Thomas Bradley∗ Jacques du Toit† Mike Giles‡

Robert Tong† Paul Woodhams†

In this chapter, we discuss the parallelisation of three very popular ran-
dom number generators. In each case, the random number sequence which is
generated is identical to that produced on a CPU by the standard sequential
algorithm. The key to the parallelisation is that each CUDA thread block
generates a particular block of numbers within the original sequence, and to
do this it needs an efficient skip-ahead algorithm to jump to the start of its
block.

Although the general approach is the same in the three cases, there are
significant differences in the details of the implementation due to differences
in the size of the state information required by each generator. This is
perhaps the point of most general interest, the way in which consideration of
the number of registers required, the details of data dependency in advancing
the state, and the desire for memory coalescence in storing the output lead
to different implementations in the three cases.

1 Introduction

Random number generation [3] is a key component of many forms of
simulation, and fast parallel generation is particularly important for the
naturally parallel Monte Carlo simulations which are used extensively in
computational finance and many areas of computational science and engi-
neering.

This article presents CUDA implementations of three of the most popular
generators which appear in major commercial software libraries: L’Ecuyer’s

∗NVIDIA, 2/F 1310 Arlington Business Park, Theale, Berkshire RG7 4SA
†Numerical Algorithms Group, Wilkinson House, Jordan Hill Road, Oxford OX2 8DR
‡Oxford-Man Institute of Quantitative Finance, Eagle House, Walton Well Road, Ox-

ford OX2 6ED

1

multiple recursive generator MRG32k3a, the Mersenne Twister MT19937
and the Sobol quasi-random generator. Although there is much in common
in the underlying mathematical formulation of these three generators, there
are also very significant differences and one of the aims of this article for
a more general audience is to explain why these differences lead to quite
different implementations.

In all three cases, there is a state Yn , consisting of one or more variables,
which can be advanced, step-by-step, by some algorithm

Yn+1 = f1(Yn)

from an initial value Y0 . In addition, there is an output process

xn = g(Yn)

which generates an approximately uniformly distributed random number
xn .

The parallel implementations are made possible by the fact that each
generator can efficiently “skip ahead” a given number of points using a
state advance algorithm of the form

Yn+p = fp(Yn),

with a cost which is O(log p) in general. The question then becomes how
such a skip ahead should be used. Broadly speaking, there are three possible
strategies:

• Simple skip ahead: each thread in each CUDA thread block performs
a skip ahead to a specified point in the generator sequence, and then
generates a contiguous segment of points. The skip aheads are chosen
so that the segments are adjacent and do not overlap.

• Strided (or “leap frog”) skip ahead: the n -th thread (out of N)
generates points n , n+N , n+2N , etc.

• Hybrid: a large skip ahead is performed at the thread block level, and
then within a block each thread does strided generation.

In outline, the approaches used in the three cases are as follows:

• MRG32k3a has a very small state and a very efficient skip ahead, so
the simple skip ahead approach is used. However, care must be taken
to achieve memory coalescence in writing the random outputs to device
memory.

2

• The Sobol generator has a very small state and very efficient skip
ahead. It could be implemented efficiently using the simple skip ahead
approach, but it is slightly more efficient to use the hybrid approach
to achieve simple memory coalescence when writing the output data.

• MT19937 has a very large state and a very slow skip ahead. However,
special features of the state advance algorithm make it possible for the
threads within a block to work together to advance a shared state.
Hence the hybrid approach is adopted.

The next three sections examine each generator in detail and explain the
CUDA implementation. We then present some benchmark figures comparing
our implementations against the equivalent parallel generators in the Intel
MKL/VSL libraries.

The software described in this chapter is available from The Numeri-
cal Algorithms Group (NAG); please see www.nag.co.uk/numeric/gpus/

or contact support@nag.co.uk. In addition, the CUDA SDK example
“SobolQRNG” has the source code for an implementation of the Sobol gen-
erator.

2 L’Ecuyer’s Multiple Recursive Generator MRG32k3a

2.1 Formulation

L’Ecuyer studied Combined Multiple Recursive Generators (CMRG) in or-
der to produce a generator that had good randomness properties with a long
period, while at the same time being fairly straightforward to implement.
The best known CMRG is MRG32k3a [4] which is defined by the set of
equations

y1,n =
(
a12 y1,n−2 + a13 y1,n−3

)
mod m1,

y2,n =
(
a21 y2,n−1 + a23 y2,n−3

)
mod m2, (1)

xn =
(
y1,n + y2,n

)
mod m1,

for all n ≥ 3 where

a12 = 1403580 a13 = −810728 m1 = 232 − 209,

a21 = 527612 a23 = −1370589 m2 = 232 − 22853 .

The sequence of integers x3, x4, x5 . . . are the output of this generator.
When divided by m1 they give pseudo-random outputs with a uniform

3

distribution on the unit interval [0, 1) . These may then be transformed
into various other distributions.

At any point in the sequence the state can be represented by the pair of
vectors

Yi,n =

yi,n

yi,n−1

yi,n−2

for i = 1, 2 . It follows that the two recurrences in (1) above can be repre-
sented as

Yi,n+1 = Ai Yi,n mod mi

for i = 1, 2 where each Ai is a 3×3 matrix, and therefore

Yi,n+p = Ap
i Yi,n mod mi (2)

for any p ≥ 0 .

2.2 Parallelisation

The parallel MRG generator has a small state (only six 32-bit integers)
and requires few registers. The simple skip ahead strategy whereby each
thread has its own copy of state and produces a contiguous segment of the
MRG32k3a sequence (as specified in [4]) independently of all other threads
works well, provided we have a very efficient way to skip ahead an arbitrary
number of points. To efficiently compute Ap

i for large values of p , one
can use the classic “divide and conquer” strategy of iteratively squaring the
matrix Ai [8, 5] . It begins by writing

p =
k∑

j=0

gj 2j ,

where gj ∈ {0, 1} and then computing the sequence

Ai, A
2
i , A

4
i , A

8
i , A

16
i , . . . , A2k

i , mod mi

by successively squaring the previous term found. It is then a simple matter
to compute

Ap
i Yi =

k∏

j=0

Agj 2j

Yi mod mi

4

for i = 1, 2 and the entire process can be completed in approximately
O(log2 p) steps.

We can improve the speed of this procedure at the cost of more memory
by expanding the exponent p in a base higher than 2 so that

p =
k∑

j=0

gj bj ,

for some b > 2 and gj ∈ {0, 1, . . . , b − 1} . This improves the “granular-
ity” of the expansion. To illustrate, suppose b = 10 and p = 7 . Then
computing Ap Y requires only a single lookup from memory, namely the
pre-computed value A7 , and a single matrix-vector product. However if
b=2 then A7 Y = A4(A2(A Y)) requiring three lookups and three matrix-
vector products.

2.3 Implementation

We take b = 8 and pre-compute the set of matrices A
gjbk

i for gj = 1, . . . , 7
and k = 0, . . . , 20 , namely

Ai A2
i · · · A7

i

A8
i A2·8

i · · · A7·8
i

A82

i A2·82

i · · · A7·82

i
...

... · · ·
...

A820

i A2·820

i · · · A7·820

i A821

i

for i = 1, 2 on the host. Since the state is so small only 10,656 bytes
of memory are used and both sets of matrix powers are copied to constant
memory on the GPU. Selecting from this large store of pre-computed matrix
powers allows us to compute Ap

i Yi roughly three times faster than using
b=2 .

To generate a total of N random numbers, a kernel can be launched
with any configuration of threads and blocks. Using T threads in total, the
i -th thread for 1 ≤ i ≤ T will advance its state by (i − 1)N/T and will
then generate N/T numbers.

The most efficient way to use the numbers generated in this manner
is to consume them as they are produced, without writing them to global
memory. Since any configuration of threads and blocks can be used, and
since the MRG generator is so light on resources, it can be embedded directly
in an application’s kernel. If this is not desired, output can be stored in

5

global memory for subsequent use. Note that since each thread generates a
contiguous segment of random numbers, writes to global memory will not be
coalesced if they are stored to correspond to the sequence produced by the
serial algorithm described in [4], in other words if the j -th value (counting
from zero) produced by a given thread is stored at

storage[j+p*threadIdx.x+p*blockIdx.x*blockDim.x]

where p = N/T and blocks and grids are one dimensional. Coalesced access
can be regained either by re-ordering output through shared memory, or by
simply writing the j -th number from each thread to

storage[threadIdx.x+j*blockDim.x+p*blockIdx.x*blockDim.x].

This will result in a sequence in global memory which has a different ordering
to the MRG32k3a sequence described in [4].

3 Sobol Generator

Sobol [12] proposed his sequence as an alternative method of perform-
ing numerical integration in a unit hypercube. The idea is to construct a
sequence which fills the cube in a regular manner. The integral is then ap-
proximated by a simple average of the function values at these points. This
approach is very successful in higher dimensions where classical quadrature
techniques are very expensive.

Sobol’s method for constructing his sequence was improved by Antonov
and Saleev [1]. Using Gray code, they showed that if the order of the points
in the sequence is permuted, a recurrence relation can be found whereby
the i+1 -th point can be generated directly from the i -th point in a simple
manner. Using this technique, Bratley and Fox [2] give an efficient C algo-
rithm for generating Sobol sequences, and this algorithm was used as the
starting point for our GPU implementation.

3.1 Formulation

We will briefly discuss how to generate Sobol sequences in the unit cube. For
more details and further discussion we refer to [2]. A D -dimensional Sobol
sequence is composed of D different one dimensional Sobol sequences. We
therefore examine a one dimensional sequence.

When generating at most 232 points, a Sobol sequence is defined by a
set of 32-bit integers mi, 1 ≤ i ≤ 32 known as direction numbers. Using

6

these direction numbers the sequence y1, y2, . . . is computed from

yn = g1m1 ⊕ g2m2 ⊕ g3m3 ⊕ · · · (3)

= yn−1 ⊕ mf(n−1)

starting from y0 = 0 . Here ⊕ denotes the binary exclusive-or operator,
and the gi ’s are the bits in the binary expansion of the Gray code rep-
resentation of n . The Gray code of n is given by n ⊕ (n/2) , and so
n ⊕ (n/2) = . . . g3g2g1 . The function f(n) above returns the index of
the rightmost zero bit in the binary expansion of n . Finally, to obtain our
Sobol sequence x1, x2, . . . we set xn = 2−32yn .

To obtain multidimensional Sobol sequences, different direction numbers
are used for each dimension. Care must be taken in choosing these, since
poor choices can easily destroy the multidimensional uniformity properties
of the sequence. For more details we refer to [10].

3.2 Parallelisation

The first expression in (3) gives a formula for directly computing yn whereas
the second expression gives an efficient algorithm for computing yn from
the value of yn−1 . The first formula therefore allows us to skip ahead to the
point yn . This skip ahead is quite fast as it requires a loop with at most
32 iterations, and each iteration performs a bit shift and (possibly) an xor.
We could therefore have parallelized this generator along the same lines as
the MRG32k3a generator above, with threads performing a skip ahead and
then generating a block of points. However, there is another option.

Recall the second expression in (3) above, fix n ≥ 1 and consider what
happens as n increases to n+8 . If n = . . . b3b2b1 denotes the bit pattern
of n , clearly the last three bits b3b2b1 remain unchanged when we add
8 to n : adding 1 to n eight times results in flipping b1 eight times,
flipping b2 four times and flipping b3 twice. It follows that b3b2b1 will
enumerate all permutations of 3 bits as n increases to n+8 . Consider
now what happens to f(n+i) for 1 ≤ i ≤ 8 : since we are enumerating all
permutations of b3b2b1 we will have f(n + i) = 1 four times, f(n+i) = 2
twice, f(n+ i) = 3 once, and f(n+ i) > 3 once. Returning to (3) and
recalling that two exclusive-ors cancel (i.e. yn ⊕ mi ⊕ mi = yn), we see
that

yn+8 = yn ⊕

four times
︷ ︸︸ ︷
m1 · · ·m1 ⊕

twice
︷ ︸︸ ︷
m2 · · ·m2 ⊕ m3 ⊕ mqn

= yn ⊕ m3 ⊕ mqn

7

for some qn > 3 . This analysis can be repeated for any power of 2: in
general,

yn+2p = yn ⊕ mp ⊕ mqn (4)

for some qn > p given by qn = f(n|(2p − 1)) where | denotes the bitwise
or operator. This gives an extremely efficient algorithm for strided (or “leap
frog”) generation, which in turn is good for memory coalescing (see below).

3.3 Implementation

Our algorithm works as follows. The mi values are precomputed on the
host and copied to the device. In a 32 bit Sobol sequence, each dimension
requires at most 32 of the mi values. Since individual dimensions of the D
dimensional Sobol sequence are independent, it makes sense to use one block
to compute the points of each dimension (more than one block can be used,
but suppose for now there is only one). For each Sobol dimension then, a
block is launched with 2p threads for some p ≥ 6 and the 32 mi values
for that dimension are copied to shared memory. Within the block, the i -th
thread skips ahead to the value yi using the first expression in (3) above.
Since p is typically small (around 6 or 7), the skip ahead loop will have few
iterations (around 6 or 7) since the bit pattern of i⊕ i/2 will contain mostly
zeros. The thread then iteratively generates points yi, yi+2p , yi+2·2p , . . . us-
ing (4). Note that mp is fixed throughout this iteration: all that is needed
at each step is the previous y value and the new value of qn . Writes to
global memory are easily coalesced since successive threads in a warp gen-
erate successive values in the Sobol sequence. In global memory we store
all the numbers for the first Sobol dimension first, then all the numbers
for the second Sobol dimension, and so on. Therefore if N points were
generated from a D dimensional Sobol sequence and stored in an array x,
the i -th value of the d -th dimension would be located at x[d*N+i] where
0 ≤ i < N and 0 ≤ d < D .

As a final tuning of the algorithm, additional blocks can be launched
for each dimension as long as the number of blocks cooperating on a given
dimension is a power of 2. In this case if 2b blocks cooperate, the i -th
thread in a block simply generates the points yi, yi+2p+b , yi+2·2p+b , . . .

8

4 Mersenne Twister MT19937

The Mersenne Twister (MT19937) is a pseudo-random number generator
proposed by Matsumoto and Nishumira [11]. It is a twisted generalized
feedback shift register (TGFSR) generator featuring state bit reflection and
tempering. The generator has a very long period of 219937 − 1 and good
multidimensional uniformity and statistical properties. Since the generator
is also relatively fast compared to similar quality algorithms, it is widely
used in simulations where huge quantities of high quality random numbers
are required.

We start by discussing the rather complex-looking mathematical formu-
lation. We then present the relatively simple sequential implementation,
which some readers may prefer to take as the specification of the algorithm,
before proceeding to the parallel implementation.

4.1 Formulation

A twisted generalized feedback shift register (TGFSR) generator is based
on the linear recurrence

Xk+N = Xk+M ⊕ XkD

for all k ≥ 0 where M < N ∈ N are given and fixed. Each value Xi

has a word length of w , i.e. is represented by w 0-1 bits. The value
D is a w × w matrix with 0-1 entries, the matrix multiplication in the
last term is performed modulo 2, and ⊕ is again bitwise exclusive-or
which corresponds to bitwise addition modulo 2. These types of generators
have several advantages: they are easy to initialise (note that we need N
seed values), they have very long periods, and they have good statistical
properties.

The Mersenne Twister defines a family of TGFSR generators with a
separate output function for converting state elements into random numbers.
The output function applies a tempering transform to each generated value
Xk before returning it (see [11] for further details) where the transform is
chosen to improve the statistical properties of the generator. The family of
generators is based on the recurrence

Xk+N = Xk+M ⊕ (Xu
k |X

ℓ
k+1)D (5)

for all k ≥ 0 where M < N ∈ N are fixed values and each Xi has a word
length of w . The expression (Xu

k |X
ℓ
k+1) denotes the concatenation of the

9

w− r most significant bits of Xk and the r least significant bits of Xk+1

for some 0 ≤ r ≤ w , and the w × w bit-matrix D is given by

D =

0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
0 0 0 1 · · · 0 0
...

...
...

... · · ·
...

...
0 0 0 0 · · · 0 1

dw−1 dw−2 dw−3 dw−4 · · · d1 d0

where all the entries di are either zero or one. The matrix multiplication
in (5) is performed bitwise modulo 2.

The popular Mersenne Twister MT19937 [11] is based on this scheme
with w = 32, N = 624, M = 397, r = 31, d31d30 . . . d1d0 = 2567483615,
and has a period equal to the Mersenne prime 219937 − 1 . The state vector
of MT19937 consists of 19,937 bits — 623 unsigned 32-bit words plus one
bit — and is stored as 624 32-bit words. We denote this state vector by

Yk =

XN−1+k

XN−2+k

...
Xk

for all k ≥ 0 where Y0 denotes the initial seed. Reading from top to
bottom the first 19,937 bits are used and the bottom 31 bits (the 31 least
significant bits of Xk) are ignored. If the generator is considered as an
operation on individual bits, it can be recast in the form

Yk+1 = A Yk and Yk = Ak Y0 (6)

where A is a matrix of dimension 19,937 with elements having value 0
or 1 and the multiplication is performed mod 2. For the explicit form of
this matrix, see [11].

Matsumoto and Nishimura give a simple C implementation of their al-
gorithm which is shown in Listing 1. Their implementation updates all 624
elements of state at once so that the state variable contains A624n Y0 for
n ≥ 0 . The subsequent 624 function calls each produce a single random
number without updating any state, and the 625 -th call will again update
the state.

10

1 #define N 624

#define M 397

3 #define UPPER_MASK 0x80000000UL /* most significant w-r

bits */

#define LOWER_MASK 0x7fffffffUL /* least significant r bits

*/

5 static unsigned long state[N]; /* the array for the state

vector */

static int stateIdx = N+1; /* stateIdx ==N+1 means state[N

] uninitialized */

7

/* Generates a random number in [0, 0xffffffff] */

9 unsigned int genrand_int32(void) {

static unsigned long constants [2]={0 x0UL , 0x9908b0dfUL };

11 unsigned long y;

/* UPDATING STATE */

13 if (stateIdx >= N) { /* generate N words at one time */

int k;

15 for (k=0; k<N-M; k++) {

y = (state[k]& UPPER_MASK) | (state[k+1]&

LOWER_MASK);

17 state[k] = state[k+M] ^ (y >> 1) ^ constants[y&0

x1UL];

}

19 for (; k<N-1; k++) {

y = (state[k]& UPPER_MASK) | (state[k+1]&

LOWER_MASK);

21 state[k] = state[k+(M-N)] ^ (y >> 1) ^ constants

[y&0x1UL];

}

23 y = (state[N-1]& UPPER_MASK) | (state [0]& LOWER_MASK);

state[N-1] = state[M-1] ^ (y >> 1) ^ constants[y&0

x1UL];

25 stateIdx = 0;

}

27 /* GENERATING */

y = state[stateIdx ++];

29 /* Tempering */

y ^= (y >> 11);

31 y ^= (y << 7) & 0x9d2c5680UL;

y ^= (y << 15) & 0xefc60000UL;

33 y ^= (y >> 18);

return y;

35 }

Listing 1: Serial implementation of MT19937.

11

4.2 Parallelisation

The state size of the Mersenne Twister is too big for each thread to have
its own copy. Therefore the per-thread parallelisation strategy used for
the MRG32k3a is ruled out, as is the strided generation strategy used for
the Sobol generator. Instead, threads within a block have to cooperate
to update state and generate numbers, and the level to which this can be
achieved determines the performance of the generator. Note from (5) that
the process of advancing state is quite cheap, involving 3 state elements and
7 bit operations.

We follow a hybrid strategy. Each block will skip the state ahead to
a given offset, and the threads will then generate a contiguous segment of
points from the MT19937 sequence by striding (or leap-frogging). There are
three main procedures: skipping ahead to a given point, advancing the state,
and generating points from the state. We will examine how to parallelise
the latter two procedures first, and then return to the question of skipping
ahead.

4.3 Updating State and Generating Points

Generating Xk+N for any k ≥ 0 requires the values of Xk, Xk+1, Xk+M

where N = 624 and M = 397 . In particular, X(N−M)+N requires
X(N−M)+M = XN . If there are T threads in a block and the i -th thread
generates XN+i, XN+i+T , XN+i+2T , . . . for 0 ≤ i < T , then we see that
we must have T ≤ N − M = 227 since otherwise thread N − M would
require XN , a value which will be generated by thread 0. To avoid depen-
dence between threads, we are limited to fewer than 227 threads per block.
We will use 1D blocks with 224 threads, since this is a multiple of 32.

We implement state as a circular buffer in shared memory of length
N + 224 , and we update 224 elements at a time. We begin by generating
224 random numbers from the initial seed, and then updating 224 elements
of state and storing them at locations state[N...N+223]. This process
repeats as often as needed, with the writing indices wrapping around the
buffer. All indices except writes to global memory are computed modulo
N +224 . The code is illustrated in Listing 2. As was the case with the Sobol
generator, writes to global memory are easily coalesced since the threads
cooperate in a leap-frog manner.

12

1 #define N2 (N+224)

/* ... kernel function signature , etc ... */

3 __shared__ unsigned int state[N2];

/* ... copy values into state from global memory ... */

5 output_start = ... // determine where block starts

generating points

7 int k1 = threadIdx.x;

int k2 = k1 + 1;

9 int k3 = k1 + M;

int k4 = k1 + N;

11 int k5 = output_start + k1;

int num_loops = ... // Number of 224- updates of state

13 for(; num_loops >0; num_loops --) {

/* GENERATING */

15 y = state[k1];

y ^= (y >> 11);

17 y ^= (y << 7) & 0x9d2c5680UL;

y ^= (y << 15) & 0xefc60000UL;

19 y ^= (y >> 18);

global_mem_storage[k5] = y; // Modify to change

output distributions

21

/* UPDATING STATE */

23 y = (state[k1]& UPPER_MASK) | (state[k2]& LOWER_MASK);

state[k4] = state[k3] ^ (y >> 1) ^ constants[y&0x1UL

];

25

k1 += 224; k2 += 224; k3 += 224; k4 += 224; k5

+= 224;

27 if (k1 >=N2) k1 -= N2;

if (k2 >=N2) k2 -= N2;

29 if (k3 >=N2) k3 -= N2;

if (k4 >=N2) k4 -= N2;

31 __syncthreads ();

}

33 // Tidy up the last few points ...

Listing 2: CUDA code for generating points and updating state for
MT19937. The code follows the general notation of Listing 1.

13

4.4 Skipping Ahead

We now consider how blocks can skip ahead to the correct point in the
sequence. Given a certain number of Mersenne points to generate, we wish
to determine how many points each block should produce, and then skip that
block ahead by the number of points all the preceding blocks will generate.
For this we need a method to skip a single block ahead by a given number
of points in the Mersenne sequence.

Such a skip ahead algorithm was presented by Haramoto et al. [9]. Recall
that Yn = AnY0 for n ≥ 0 where A is a 19,937×19,937 matrix. However
computing An even through a repeated squaring (or “divide-and-conquer”)
strategy is prohibitively expensive and would require a lot of memory. In-
stead, a different approach is followed in [9] based on polynomials in the field
F2 (the field with elements {0, 1} and where all operations are performed
modulo 2). Briefly, they show that for any v ∈ N we have

Av Y0 = gv(A)Y0 (7)

=
(

akA
k−1 + ak−1Ak−2 + · · · + a2A + a1I

)

Y0

= akYk−1 + ak−1Yk−2 + · · · + a2Y1 + a1 Y0

where k = 19937 and gv(x) = akx
k−1 + . . . + a2x + a1 is a polynomial

over F2 which depends on v . A formula is given for determining gv for
any v ≥ 1 given and fixed. Note that each of the coefficients ai of gv are
either zero or one.

Figure 1 shows the time taken for a single block to perform the var-
ious tasks in the MT19937 algorithm: calculate gv on the host; com-
pute gv(A)Y0 ; perform v updates of state (not generating points from
state); and generating v values with all updates of state. While evaluat-
ing gv(A)Y0 is fairly expensive (equivalent to generating about 2,000,000
points and advancing state about 2,300,000 times), computing the polyno-
mial gv is is much more so: one could generate almost 13,000,000 points
in the same time, and advance state almost 20,000,000 times. Updating
state and generating points scale linearly with v .

Clearly we would prefer not to calculate gv on the fly. We would also
prefer not to perform the calculation gv(A)Y0 in a separate kernel since the
first block never has to skip ahead and this would prevent it from generating
points until the calculation was finished. However there is the question of
load balance: the first block can generate around 2,000,000 points in the
time it takes the second block to skip ahead. Since the total runtime is
equal to the runtime of the slowest block, if the number of blocks equals

14

Figure 1: Time (in ms) for one block of 224 threads to: (a) advance state v
times (without generating points); (b) advance state v times and generate points;
(c) apply the skip ahead algorithm in equation (7); (d) compute the skip ahead
polynomial gv(x) on the CPU (Xeon E5502). Number of points v ranges from
1000 to 30 million and GPU code was run on a Quadro FX5800.

the number of streaming multiprocessors in the GPU, it is clear that blocks
should not all generate the same number of points. A mathematical analysis
of the runtimes of each block, coupled with experimental measurements, can
be done and this yields formulae for the optimal number of points each block
should generate as well as how far the block should skip ahead. This depends
on the sample size and so requires us to calculate gv on the fly.

There are a number of options when choosing a skip ahead strategy for
the Mersenne Twister, and it is not completely clear which approach is best:

• When a huge number of points are to be generated the only option
may be to generate the necessary polynomials on the fly and perform

15

(7) on the device. In this case the generator will typically be embedded
in a larger application so that the cost of computing the polynomials
is small compared to the total runtime.

• When a small number of points are to be generated it may be more ef-
ficient to have a producer-consumer model where one (or a few) blocks
advance state and write the values to global memory, while other
blocks read these values in and generate points from the necessary
distributions. This requires rather sophisticated inter-block communi-
cation using global memory locks and relies on the update of state (5)
being much cheaper than converting state into a given distribution. It
is not clear how useful this would be, and indeed for smaller samples
it will probably be faster (and simpler) to compute the numbers on
the host.

• When a medium number of points are to be generated it is possible to
pre-compute and store a selection of polynomials {gv}v∈V for some
V ⊂ N . At runtime a suitable subset of these can be chosen and
copied to the device where the skip ahead is then performed. This is
the approach we have adopted. The difficulty here is deciding on V
and on which subset to choose at runtime. Formulae can be developed
to help with this, but it is still a rather tricky problem.

• Lastly we can always calculate gvi
and gvi

(A)Y0 for all necessary skip
points vi on the host and then copy the advanced states to the device
to generate random numbers. This is currently impractical, but the
upcoming Westmere family of Intel CPUs contains a new instruction
PCLMULQDQ – a bitwise carry-less multiply – which is ideally suited to
this task; see [7] for further details.

5 Performance Benchmarks

We compared our CUDA implementations to the Intel MKL/VSL li-
brary’s random number generators. Benchmarks were done in both single
and double precision on a Tesla C1060 and a Tesla C2050 (which uses the
new Fermi micro architecture). The test system configuration is detailed in
Table 1 below.

The Intel random number generators are contained in the Vector Statis-
tical Library (VSL). This library is not multithreaded, but is thread safe and
contains all the necessary skip ahead functions to advance the generators’
states. We used OpenMP to parallelise the VSL generators and obtained

16

Hardware
Intel Xeon E5410 2.33GHz with 8GB RAM for Tesla C1060
Intel Core i7 860 2.80GHz with 8GB RAM for Tesla C2050

Operating System
Windows XP 64bit SP2 for Tesla C1060
Windows 7 Professional for Tesla C2050

C++ Compiler Intel C++ Compiler Pro v11.1

C++ Options

/O2 /Og /Ot /Qipo /D "WIN32" /D "NDEBUG" /EHsc /MD

/D " CONSOLE" /D " UNICODE" /D "UNICODE" /nologo

/GS- /fp:strict /Qfp-speculation:off /W3 /Wp64 /Zi

/Qopenmp /QxHost /Quse-intel-optimized-headers

NVIDIA Toolkit
CUDA 2.3 for Tesla C1060
CUDA 3.0 for Tesla C2050

NVIDIA GPU
Tesla C1060 using NVIDIA Driver v190.38
Tesla C2050 using NVIDIA Driver v197.68

NVCC Options
-O2 -D CONSOLE -arch compute 13 -code sm 13

--host-compilation C++ -Xcompiler /MT -m 64

Table 1: Test systems used for benchmarking. Tesla C2050 uses the new Fermi
micro architecture.

figures when running 1, 2, 3 and 4 CPU threads. Timing of the CPU code
was done using hardware high-resolution performance counters; the GPU
code was timed using CUDA events and cudaEventElapsedTime. Ideally
an application would consume the random numbers on the GPU, however if
the random numbers were required by CPU code then there may be an addi-
tional cost to copy the data back from the GPU to the host. A fixed problem
size of 225 was chosen so that each generator produced 33, 554, 432 floating
point numbers. This corresponds to 134MB of data in single precision and
268MB in double precision. For the Sobol generators we chose 27 = 128 di-
mensions and generated 218 = 262, 144 multidimensional points. Note that
the VSL does not have skip ahead functions for the MT19937 generator so
that it was not possible to parallelise this generator.

We produced uniform, exponential and Normal random numbers. For
the MRG the Normal random numbers were obtained through a Box-Muller
transform, while for the Sobol and Mersenne generators the Normal random
numbers were obtained by inverting the cumulative Normal distribution
function using an efficient implementation of the inverse error function [6].
Exponential numbers were obtained by inverting the cumulative exponential
distribution function. The results are given in Tables 2 and 3.

All benchmarks were performed after a clean reboot of the workstation,
with only a command prompt open. There does seem to be some variability

17

Generators
Tesla GPU Intel MKL on Xeon E5410

GPU pts/ms 1 Thread 2 Threads 3 Threads 4 Threads

MRG

Unif
3.6151E+06 41.161x 24.774x 19.639x 16.247x
3.1202E+06 45.528x 31.094x 30.887x 29.889x

Exp
2.8280E+06 39.545x 23.222x 17.882x 14.964x
6.8651E+05 12.329x 7.634x 6.724x 6.468x

Norm
2.6647E+06 47.043x 25.619x 18.498x 15.188x
6.5853E+05 18.012x 10.257x 7.463x 6.215x

Sobol

Unif
1.5790E+07 100.51x 93.976x 94.179x 64.556x
9.2006E+06 97.591x 90.396x 84.130x 88.832x

Exp
6.8723E+06 52.591x 41.702x 33.784x 32.251x
7.8709E+05 10.622x 8.683x 7.398x 7.432x

Norm
7.4239E+06 57.079x 45.129x 35.896x 34.820x
4.0799E+05 5.516x 4.578x 3.915x 3.856x

Mersenne

Unif
2.6721E+06 25.051x
2.5762E+06 40.320x

Exp
2.0741E+06 24.758x
5.9492E+05 19.728x

Norm
2.0657E+06 24.856x
3.1229E+05 5.8127x

Table 2: Benchmark figures for Tesla C1060 vs. Intel Xeon E5410. Values in bold

type are double precision, other values are single precision. Columns “1 Thread”
through “4 Threads” show speedup of GPU vs. CPU, i.e. (GPU pts/ms) ÷ (CPU
pts/ms). Generators produced 225 points: Sobol generators produced 218 points
of 27 dimensions each. Test system is as detailed in Table 1.

in the figures across different runs, depending on system load, but this is
small enough to be ignored. For the Mersenne Twister we pre-computed the
skip ahead polynomials gv for v = 1× 106, 2× 106, . . . , 32× 106 and then
used a combination of redundant state advance (without generating points)
and runtime equations to find a good work load for each thread block.

The Fermi card is roughly twice as fast as the Tesla in single precision,
and roughly four times as fast in double precision. The exception to this is
the Sobol single precision figures, which are very similar between the two
cards. It may be that the Sobol generator is bandwidth limited since Sobol
values (in single precision) are so cheap to compute.

18

Generators
Fermi GPU Intel MKL on Xeon E5410
GPU pts/ms 1 Thread 2 Threads 3 Threads 4 Threads

MRG

Unif
7.7127E+06 88.108x 52.854x 41.900x 34.622x
7.4453E+06 108.64x 74.197x 73.703x 71.321x

Exp
5.4368E+06 76.024x 44.643x 34.378x 28.767x
2.6696E+06 47.935x 29.682x 26.143x 25.148x

Norm
4.6129E+06 81.436x 44.348x 32.022x 26.291x
2.4418E+06 66.789x 38.034x 27.673x 23.044x

Sobol

Unif
1.7434E+07 110.97x 103.76x 103.98x 71.724x
1.3452E+07 142.68x 132.16x 123.00x 129.88x

Exp
7.9361E+06 60.732x 48.157x 39.014x 37.243x
3.2094E+06 43.312x 35.404x 30.168x 30.304x

Norm
8.6020E+06 66.137x 52.291x 41.593x 40.346x
1.6202E+06 21.904x 18.179x 15.547x 15.314x

Mersenne

Unif
2.9077E+06 27.260x
2.8728E+06 44.961x

Exp
2.2352E+06 26.680x
1.2465E+06 23.097x

Norm
2.1965E+06 26.430x
8.8145E+05 16.407x

Table 3: Benchmark figures for Tesla C2050 vs. Intel Xeon E5410. Values in bold

type are double precision, other values are single precision. Columns “1 Thread”
through “4 Threads” show speedup of GPU vs. CPU, i.e. (GPU pts/ms) ÷ (CPU
pts/ms). Generators produced 225 points: Sobol generators produced 218 points
of 27 dimensions each. Test system is as detailed in Table 1.

Acknowledgements

Jacques du Toit thanks the UK Technology Strategy Board for funding
his KTP Associate position with the Smith Institute, and Mike Giles thanks
the Oxford-Man Institute of Quantitative Finance for their support.

References

[1] Antonov, I. A. and Saleev, V. M. (1979). An economic method
of computing LPτ sequences. USSR Journal of Computational Math-

ematics and Mathematical Physics, 19 (252-256)

[2] Bratley, P. and Fox, B. (1988). Algorithm 659: implementing
Sobol’s quasirandom sequence generator. ACM Transactions on Mod-

19

eling and Computer Simulation, 14:1 (88-100)

[3] L’Ecuyer, P. (2006). Uniform Random Number Generation. In: Hen-
derson, S.G, Nelson, B.L. (eds.) Simulation Handbooks in Oper.

Res. and Manag. Sci., pp. 55–81. Elsevier, Amsterdam.

[4] L’Ecuyer, P. (1999). Good parameter sets for combined multiple re-
cursive random number generators. Operations Research, 47:1 (159-164)

[5] L’Ecuyer, P, Simar, R, Chen, E. J, and Kelton, W. D. (2002).
An object oriented random number package with many long streams
and substreams. Operations Research, 50:6 (1073-1075)

[6] Giles, M (2010). Approximating the erfinv function. GPU Gems 4,

volume 2

[7] Gueron, S. and Kounavis, M. E. (2010). Intel carry-
less multiplication instruction and its usage for comput-
ing the GCM mode. Intel White Paper, available at
http://software.intel.com/en-us/articles/intel-carry-less-multiplication
-instruction-and-its-usage-for-computing-the-gcm-mode/.

[8] Knuth, D. (1997). The Art of Computer Programming, Volume 2, 3rd

Edition. Addison-Wesley Professional.

[9] Haromoto, H, Matsumoto, M, Nishumira, T, Panneton, F.
and L’Ecuyer, P (2008). Efficient jump ahead for F2 -linear random
number generators. INFORMS Journal on Computing, 20:3 (385-390)

[10] Joe, S. and Kuo, F. Y. (2008). Constructing Sobol sequences with
better two dimensional projects. SIAM Journal of Scientific Comput-

ing, 30 (2635-2654)

[11] Matsumoto, M. and Nishumira, T. (1998). Mersenne Twister: a
623-dimensionally equidistributed uniform pseudo-random number gen-
erator. ACM Transactions on Modelling and Computer Simulation, 8:1
(3-30)

[12] Sobol’, I. M. (1967). On the distribution of points in a cube and the
approximate evaluation of integrals. USSR Journal of Computational

Mathematics and Mathematical Physics, 16 (1332-1337)

20

