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Nearest Correlation Matrix 

 
 

The NAG Library has a range of functionality in the area of computing the nearest correlation 
matrix.  In this article we take a look at nearest correlation matrix problems, giving some 
background and introducing the routines that solve them. 
 
Introduction 
 
A correlation matrix is a real, square matrix that 

 is symmetric  

 has 1’s on the diagonal 

 has non-negative eigenvalues, it is positive semidefinite.  
 

If a matrix C  is a correlation matrix then its elements, cij, represent the pair-wise correlation of 
entity i with entity j, that is, the strength and direction of a linear relationship between the 
two. 

 
In the literature there are numerous examples illustrating the use of correlation matrices but 
the one we have encountered the most arises in finance where the correlation between various 
stocks is used to construct sensible portfolios. Unfortunately, for a variety of reasons, an input 
matrix which is supposed to be a correlation matrix may fail to be semidefinite. The correlations 
may be between stocks measured over a period of time and some data may be missing, for 
example. If individual correlations are computed using observation data the two variables have 
in common, and the particular observations vary over all the variables, it will give rise to a 
matrix that is not positive semidefinite. Still drawing from finance, a practitioner may wish to 
explore the effect on a portfolio of assigning correlations between certain assets different from 
those computed from historical values. This can also result in negative eigenvalues in the 
computed matrix. 
 
In such situations, the user has a matrix which is an approximates correlation matrix and this 
must be fixed for subsequent analysis that relies upon having a true correlation matrix for the 
results to be valid. It is thus natural to seek a neighbouring true matrix which differs least, in 
some measure of nearness, from the input matrix to act in its stead. This is our basic nearest 
correlation matrix problem.  
  



2 
 

 

The Basic Nearest Correlation Matrix Problem 
 
The NAG routine g02aa implements a Newton algorithm to solve our basic problem. It finds a 
true correlation matrix X  that is closest to the approximate input matrix, G, in the Frobenius 
norm; that is, we find the minimum of 
 

||𝐺 − 𝑋||𝐹 

  

The algorithm, described in a paper by Qi and Sun [6], has a superior rate of convergence  

compared to previously suggested approaches. Borsdorf and Higham [2], at the University of 

Manchester, looked at this in greater detail and offered further improvements. These include a 

different iterative solver (MINRES was preferred to Conjugate Gradient) and a means of pre-

conditioning the linear equations. We have incorporated this enhanced algorithm into our 

library releases. 

 

Weighted Problems and Forcing a Positive Definite Correlation Matrix 
 
In NAG routine g02ab we extend the functionality provided by g02aa.  If we have an 
approximate correlation matrix it is reasonable to suppose that part of it may actually be true. 
Similarly, we may trust some correlations more than others and wish for these to stay closer to 
their input value in the final matrix.  
 
In this routine we apply the original work of Qi and Sun to now use a weighted norm. Thus, we 
find the minimum of 

‖𝑊
1
2(𝐺 − 𝑋)𝑊

1
2‖
𝐹
 

 

Here W  is a diagonal matrix of weights. This means that we are seeking to minimize the 
elements √wii(gij-xij)√wjj.  Thus, by choosing elements in W  appropriately we can favour some 
elements in G, forcing the corresponding elements in X  to be closer to them. 
 
This method means that whole rows and columns of G  are weighted. However, g02aj allows 
element-wise weighting and in this routine we find the minimum of 
 

‖𝐻 ∘ (𝐺 − 𝑋)‖𝐹 
 

where 𝐶 = 𝐴 ∘ 𝐵 denotes the matrix C  with elements cij= aijbij. Thus by choosing appropriate 
values in H  we can emphasize individual elements in G  and leave the others unweighted. The 
algorithm employed here is one by Jiang, Sun and Toh [5], and has the Newton algorithm at its 
core.  
 
Both g02ab and g02aj allow the user to specify that the computed correlation matrix is positive 
definite; that is, that its eigenvalues are greater than zero. This is required for further analysis in 
some applications.  
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Fixing Correlations with a Shrinking Method 
 
We now turn our attention to fixing some of the elements that are known to be true 
correlations. Instead of using a Newton method like the previous three algorithms, here we use 
a shrinking method. 
 
One common example where this is needed is where the correlations between a subset of our 
variables are trusted and on their own would form a valid correlation matrix. We could thus 
arrange these into the leading block of our input matrix and seek to fix them while we correct 
the remainder. We call this the fixed block problem. The routine g02an preserves such a leading 
block of correlations in our approximate matrix. Using the shrinking method of Higham, Strabić 
and Šego [4], the routine finds a true correlation matrix of the following form 
 

𝛼 (
𝐴 0
0 𝐼

) + (1 − 𝛼)𝐺. 

 

G is again our input matrix and we find the smallest 𝛼 in the interval [0,1] that gives a positive 
semidefinite result. The smaller the 𝛼, the closer we stay to our original matrix, but any 𝛼 
preserves the leading submatrix A, which needs to be positive definite. The algorithm uses a 
bisection method which converges quickly in a finite number of steps. 
 
The routine g02ap generalizes the shrinking idea and allows users to supply their own target 
matrix. The target matrix, T, is defined by specifying a matrix of weights, H, and 𝑇 = 𝐻 ∘ 𝐺. We 
then find a solution of the form 

𝛼𝑇 + (1 − 𝛼)𝐺 
 

computing 𝛼 as before. A bound on the smallest eigenvalue can also be specified. Specifying a 
value of 1 in H  essentially fixes an element in G  so it is unchanged in X.  
 
For example, it is sometimes required to fix two diagonal blocks, so we could choose H to be 
 

𝐻 =

(

  
 
[
1 ⋯ 1
⋮ ⋱ ⋮
1 ⋯ 1

] 0

0 [
1 ⋯ 1
⋮ ⋱ ⋮
1 ⋯ 1

]
)

  
 
. 

 

The algorithm then finds the smallest 𝛼 that gives a positive semidefinite matrix of the 
following form 

𝛼 (
𝐺11 0
0 𝐺22

) + (1 − 𝛼)𝐺 

 

and we perturb only the two off-diagonal blocks of the input. 
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Choosing a Nearest Correlation Matrix Routine 
 
When choosing a routine, the trade-off is between computation time and the distance of the 
solution from the original matrix. The Newton algorithm based routines (g02aa, g02ab and 
g02aj) will, in general, find a solution nearer to the input than the shrinking routines (g02an and 
g02ap). However, the shrinking routines will be much quicker.  
 
For the basic problem g02aa will always find the nearest matrix. Using g02ap with an identity 
matrix as the target will produce a matrix further away than this, which is understandable given 
the form of the solution, but with a shorter computation time. 
 
If you wish to solve the fixed block problem the specialist routine g02an will be the fastest. Of 
the Newton routines g02ab will find a solution in reasonable time but, as we weight whole rows 
and columns, some elements will be over-emphasized outside of the correct block. A more 
accurate weighting can be achieved with g02aj and a close solution will be found. However, the 
routine will take considerably more time.  
 
For fixing two diagonal blocks, or for arbitrary fixing and weighting, the choice is between g02aj 
and g02ap with the same speed and nearness trade-off. Recall, though, that the shrinking 
algorithm is strictly fixing elements and the target matrix is required to be positive definite and 
form part of a valid correlation matrix. This means that g02aj may offer more flexibility here. 
 
If we seek to fix the minimum eigenvalue, and no weighting is required, g02ab or g02ap can be 
used. In this case the latter should use an identity target, as for the basic problem. If weighting 
or fixing is also required, then similar results are found for the problems described above. 
However, in combination with weighting g02ap can return a large value of 𝛼, which means that 
much of the input matrix has been lost and a result far from it is returned. 
 
The tolerance used in all the algorithms, which defines convergence, can obviously affect the 
number of iterations undertaken and thus the speed and the nearness. We recommend some 
experimentation using data that represents your typical problem. The routine g02aj can be 
sensitive to the weights used, so different values should be tried to tune both the nearness and 
the computation time. 
 
The Nearest Correlation Matrix with Factor Structure  
 
A correlation matrix with factor structure is one where the off-diagonal elements agree with 
some matrix of rank k.  That is, a correlation matrix C  can be written as 
 

𝐶 = diag(𝐼 − 𝑋𝑋𝑇) + 𝑋𝑋𝑇 
 

where 𝑋 is an 𝑛 × 𝑘 matrix, often referred to as the factor loading matrix, and k  is generally 
much smaller than n. These correlation matrices arise in factor models of asset returns, 
collateralized debit obligations and multivariate time series. 
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The routine g02ae computes the nearest factor loading matrix, X, that gives the nearest 
correlation matrix for an approximate one, G, by finding the minimum of 
 

‖𝐺 − 𝑋𝑋𝑇 + diag(𝑋𝑋𝑇 − 𝐼 )‖𝐹 
 

We have implemented the spectral projected gradient method of Birgin, Martinez and  
Raydan [1] as suggested by Borsdorf, Higham and Raydan [3]. 
 
 
Table of Functionality 
 
This table lists all our nearest correlation matrix routines and indicates which use Frobenius 
norm as the measure of nearness and which use a shrinking algorithm. We also show what 
weighting and fixing can be used in each and whether a minimum eigenvalue can be requested. 
 

Routine Nearness 
measured in the 
Frobenius Norm 

Shrinking 
Algorithm 

Nearest Matrix 
with Factor 
Structure 

Elements 
can be 

weighted 

Elements 
can be 
fixed 

Minimum 
eigenvalue can 
be requested 

g02aa       

g02ab       

g02ae       

g02aj       

g02an       

g02ap       
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