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Abstract

Optimization, or Operational Research in general, nowadays plays an im-
portant role in our lives. No matter if you are a respected finance house or
a student of mathematics, you have probably used some sort of optimization
routines. The field itself has changed rapidly since linear programming was
introduced in the mid 1940s. More powerful computers allowed us to con-
sider much more realistic and complex models using sophisticated algorithms.
Whereas the input for linear programming problems is relatively simple, it
is a much more delicate task in the case of general nonlinear programming.
One way to tackle it is to introduce a specialised language for the problem
description. In this tutorial we will focus on a particular one called AMPL
which we have equipped with two of our NAG solvers, namely E04UFF and
E04UGF.

AMPL, A Mathematical Programming Language [3, 8], comes with sev-
eral nice features packed together and it has earned considerable popularity.
The language uses a common mathematical notation so it is easy to under-
stand. Moreover, it includes an automatic differentiation package (a method
to compute exact derivatives) therefore coding any derivatives can be com-
pletely avoided. This makes it ideal whenever you need to solve the problem
fast. It is great for demonstrating or teaching as well as for rapid prototyping
of mathematical models. Thus you can focus on optimization itself and not
coding. It also unifies the interface for both setting the problems and solvers
so you can test your solver on several problems or solve the same problem
with several solvers without much effort. Thus a connection of AMPL and
NAG software seems to be natural as it offers you the power of a modelling
language together with NAG well-tuned solvers.

The tutorial is organised as follows. In the first two sections we introduce
AMPL and a simple example written in the AMPL language. The 3rd section
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focuses on the technicalitites of how to get the platform ready for compu-
tations. Invoking the solvers and setting optional parameters is the subject
of sections 4 and 5. The next section covers more advanced elements of the
language which are used in section 7 where a fictitious problem and its model
development is presented. The rest of the document overviews building of an
AMPL solver from source codes and concluding remarks.

Note: you can download all the files which will be discussed from the NAG
website [14] so you can really get your hands into it and test it by yourself.

1 Introducing AMPL

As mentioned earlier, AMPL is a modelling language, a special computer language
which allows you to describe various types of optimization problems, such as linear
programming, integer programming or nonlinear programming to name a few. The
syntax of the language is quite intuitive. The problem is written in algebraic notation
based on common mathematical constructions which makes it easy to use even for
a non-programmer.

AMPL is also a piece of software, effectively a platform, to load models in the
AMPL language, translate them and send them to a compatible solver. The solver
in return sends the results back to AMPL where you can display or further analyse
them. In this way you can unify inputs for several optimization problems and for
various solvers.

Note that AMPL is not the only environment for describing such problems. You
can find several formats for linear or quadratic programming, however, noticably
less for general mathematical programming problems. Probably the best known
competitor to AMPL is the GAMS language [9].

AMPL started off at Bell Laboratories in the early 1990s and has been exten-
sively developed since then. Nowadays AMPL offers even database access to feed
data, definitions of multiple objective functions or create general user functions to
expand the elements of the language. We will focus only on the basics of nonlinear
programming (NLP) (possibly large-scale), however, if there is any interest, we can
describe also how to incorporate black box functions from the NAG S chapter (e.g.,
Bessel functions) into AMPL or other topics.

2 Writing our first AMPL model

The language is very similar to natural “mathematical” language so there is no extra
need to study anything and one can start writing AMPL models straight away. Let’s
imagine we would like to solve Rosenbrock’s banana function [15]. The problem can
be written as follows:

min
x,y∈R

(1− x)2 + 100(y − x2)2.
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The global minimum is located at the point (1, 1) as indicated on the picture. To
solve the problem in AMPL we need first to create an AMPL model. It is a pure
text file, here called rosenbrock.mod, with the following content:

rosenbrock.mod
var x;

var y;

minimize ros_func:

100*(y - x^2)^2 + (1-x)^2;

let x:=-1.2;

let y:=1;

The notation is straightforward and self explanatory. The first two statements
declare variable names, minimize defines our optimization task and objective func-
tion (here called ros func). The last two lines are optional and suggest a starting
point. Please notice that each statement has to be terminated by a semicolon.

Later on in other models we will define constraints, arrays of variables as well as
parameters and data files but now let’s solve Rosenbrock’s problem.

3 Preparations – getting the AMPL platform ready

We will need two things to get the AMPL environment ready for our computations.
The first bit is an AMPL executable, the platform to load models and invoke

solvers. This program is a commercial product. Unless you already have it you will
need to download either a testing limited version (for models with up to 300 variables
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and 300 constraints), called AMPL Student Edition, or obtain an unrestricted trial
version. For our testing purposes the first one will be sufficient. You can download
it from [1] for several architectures, e.g., MS Windows, Linux, MacOS, Solaris. It
comes as one gzipped executable file, for example, a direct link for MS Windows
version is [2]. Please unzip it to your working directory using the command gzip -d

ampl.exe.gz or similar. MS Windows users can download the gzip program from
[11] or use products with GUI’s like 7-zip [17].

The second thing is a solver compiled with an interface for AMPL input. We
prepared two NAG routines with such support, E04UF [6] and E04UG [7]. E04UF
is suitable for dense nonlinear optimization problems, E04UG for large-scale sparse
ones.

Both can be downloaded from the NAG website [14]. They come as executables
for MS Windows and Linux, already compiled for your convenience and ready to
use. Note: These are intended only for demonstration purposes, not for commercial
use. They have the same restrictions as the AMPL Student Edition, i.e., they will
not solve models bigger then 300 variables or 300 constraints. In case you prefer a
different architecture or an unrestricted version, we have included the source codes
so that you could compile such a version with your Fortran or C NAG Library.
Alternatively, you can write to us saying which NAG Library you have and we will
do our best to help you. For building your own NAG-AMPL solver, see details in
Section 9 focused on AMPL interfaces.

Please copy both solvers when you have them ready to your current working
directory together with the AMPL executable. You can test them simply by running
them without any arguments from your command prompt. You should see a message
similar to the following one:

C:\honza\math\nag\ampl>e04uf

E04UF, NAG Fortran Library Mark 22

********************************************************

*** This routine is intended for demonstration only. ***

*** Commercial use is not permited. ***

*** A limited version to problems with up to ***

*** 300 variables and 300 constraints. ***

********************************************************

Licence: valid (demonstration only)

Based on library:

*** Start of NAG Library implementation details ***

Implementation title: NAG Fortran Library for Win32 Applications (DLL)

Precision: FORTRAN double precision

Product Code: FLDLL224ML

Mark: 22.2 (self-contained)

*** End of NAG Library implementation details ***
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No test problem set, terminating.

Call ‘e04uf -?‘ for help.

4 Loading models, invoking solvers and checking

results in AMPL

Now we are ready to solve our first AMPL model, rosenbrock.mod. For simplicity,
copy it to the same directory as everything else and call ampl from your command
line to start the AMPL interpreter. You should see the AMPL command prompt

ampl:

AMPL is now ready for your input but don’t forget to add semicolons at the end of
each statement. If you forget the prompt will change into

ampl?

expecting further input (i.e., continuation of the previous line). It is OK just to
type ’;’ and AMPL will continue.

A typical AMPL session might look like this:

ampl: model "rosenbrock.mod";

ampl: option solver e04uf;

ampl: solve;

ampl: display x, y;

ampl: display ros_func;

This causes the model to be loaded into memory, and to instruct the solver e04uf

to solve the problem. The variables and the final objective are then displayed.
If AMPL cannot find the file rosenbrock.mod in the current directory an error

will be reported, for example:

ampl: model "missing_model.mod";

Can’t find file "missing_model.mod"

context: >>> model "missing_model.mod" <<< ;

If this happens, please check the content of the current directory by using commands

ampl: shell ’dir’;

ampl: shell ’ls’;

for Windows and Linux/Unix users, respectively.
The consistency and syntax of the file is checked and any error reported. Typical

problems might be undefined variables, incorrect spelling of function names or key-
words, missing semicolons, brackets, parentheses, and other common programming
mistakes. AMPL is also case sensitive, so users of FORTRAN are advised to be
extra careful!
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The second command chooses the solver, in this case e04uf. It means that when
the time comes, AMPL will invoke any executable file of that name in the current
working directory or in the PATH variable. As long as you keep the solver in the
working directory and you tested it as suggested in Section 3, it should work fine.
Note that Linux users might need to set the full name of the solver including the
relative path, for example:

ampl: option solver ’./e04uf.exe’;

When you hit solve; several things will happen. The model currently stored
in the memory is translated to a binary file and your solver is invoked and fetched
with the file. All the output of the solver is transferred back to the AMPL window
so you can typically see the progress of the computation. When the solver computes
the results, it generates a result file which is loaded back to AMPL.

To see the results, use the display command. It accepts as a parameter any
variable names, function names or even mathematical expressions.

Please note that AMPL may shuffle the variables in the model or even eliminate
some for efficiency reasons (see AMPL help for presolve phase, which can be deac-
tivated). Thus if the solver prints the final values of the variables to the screen, they
might be in a different order than the order you specified in the model file! That’s
why you should always use the display command and not rely on the automatic
output from the solver.

At this stage you might need to delete the current model from the memory in
order to load a new one. Failing to do so can cause the definitions of variables and
functions to be combined and probably clash. The command is:

ampl: reset;

or you may finish the session and return to the command prompt by

ampl: quit;

If it is necessary to recall how the model loaded into memory looks, use the show;

command

ampl: show;

to list all the elements of the model and use the same even to see how each bit is
defined, for example:

ampl: show ros_func;

To resolve the model simply type

ampl: solve;

but note that the current values of the decision variables serve as a starting point
so you may want to change them

ampl: let x:=10;

ampl: let y:=-5;
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5 Optional solver settings

Many optimization solvers come with optional setting parameters to allow a user
to fine tune an algorithm. The provided NAG solvers E04UF and E04UG certainly
exploit this ability. Fortunately, AMPL offers a convenient way how to deal with
them. A general option setting command is as follows,

ampl: option solver_options ’keyword1=option keyword2=option ...’;

where solver options is the name of the option setting string for the specific solver.
For solver e04uf such a string is called e04uf options, for e04ug it is e04ug options.
The string name is followed by a list of keywords and their values enclosed in apos-
trophes.

Solver E04UF has the following options implemented (ε stands for the machine
precision, see [6]):

feasibility Feasibility Tolerance (default
√

ε)
maxit Major Iteration Limit (default 0, automatic)
optimality Optimality Tolerance (default ε0.8)
precision Function Precision (default ε0.9)
print Print Level (default 10)

Such a list is shown whenever you call the solver with ’-=’ as the only argument.
Thus from AMPL environment:

ampl: shell ’e04uf -=’;

A full explanation of the settings is presented in the official documentation of the
routines [6, 7].

Let’s say that we want to solve the previous model with looser precision tolerance
and restricted output to the screen. Then call

ampl: option e04uf_options ’print=0 precision=1e-3’;

before you call the solve command.
In this way you can easily adjust optional settings and recompute the model

without recompiling anything. It is very useful for testing, particularly if you are
checking the sensitivity of some parameters from the solver.

You can find below a full listing of the previous AMPL session.

ampl: model "rosenbrock.mod";

ampl: option solver e04uf;

ampl: option e04uf_options ’print=0 precision=1e-3’;

ampl: solve;

E04UF, NAG Fortran Library Mark 22:

********************************************************

*** This routine is intended for demonstration only. ***

*** Commercial use is not permited. ***

7



*** A limited version to problems with up to ***

*** 300 variables and 300 constraints. ***

********************************************************

print=0

precision=1e-3

Calls to E04UEF

---------------

Verify Level = -1

Function Precision = 1.000000e-03

Print Level = 0

Result OK

converged: optimal solution found

ampl: display x, y;

x = 1.00015

y = 1.00028

ampl: display ros_func;

ros_func = 4.79927e-08

ampl: quit

6 Enhancing AMPL models

In this section, we would like to introduce other elements of the AMPL language
to allow users to create more realistic models. Later on we will also use a fictitious
problem to demonstrate the biggest strength of AMPL – development of a new
model.

Instead of a long theoretical introduction to the AMPL Language, let’s jump
straight into it and show everything important on an example. We choose a test
problem number 72 from the Hock-Schittkowski test suite [12]. Please have a look
below at the following constrained optimization problem and its AMPL model

min
x∈R4

1 +
4∑

j=1

xj

subject to
4∑

j=1

ai,j

xj

≤ bi, i = 1, 2

xj >= 0.001, j = 1, . . . , 4

x1 ≤ 400000

x2 ≤ 300000

x3 ≤ 200000

x4 ≤ 100000

(1)
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where

A =

(
4 2.25 1 0.25

0.16 0.36 0.64 0.64

)
, b =

(
0.0401

0.010085

)
.

hs072.mod
# Hock-Schittkowski test problem #72

#

# W. Hock, K. Schittkowski, Test Examples for Nonlinear Programming

# Codes, Lecture Notes in Economics and Mathematical Systems,

# Springer, Vol. 187, 1981

var x {1..4} >= 0.001;

param a {1..2, 1..4};

param b {1..2};

minimize obj: 1 + sum {j in 1..4} x[j];

subject to constr {i in 1..2}: sum {j in 1..4} a[i,j]/x[j]<=b[i];

subject to upperb {j in 1..4}: x[j] <= (5-j)*1e5;

let x[1] := 1;

let x[2] := 1;

let x[3] := 1;

let x[4] := 1;

data;

param a: 1 2 3 4 :=

1 4 2.25 1 0.25

2 0.16 0.36 0.64 0.64 ;

param b :=

1 0.0401

2 0.010085 ;

Although there are many features of the language introduced at once (arrays,
constants, constraints, etc.), it should be still intuitively understandable. We will
look closer at them now.

Comments might be particularly useful if you work with more complicated mod-
els. Any line anywhere in the model starting with character # is considered as a
comment and thus is ignored.

Scalar (decision) variables have been already introduced in rosenbrock.mod.
Recall that they are declared via keyword var followed by a variable name, such as

var my_var;

If you wish you can add curly brackets defining a set of indices to transform a scalar
variable into a (possibly multi-dimensional) array of variables. For example,

var my_var{1..2, -1..1};
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declares a 2D array of 6 variables which can be referred as my var[1,-1], my var[1,0],
my var[1,1], my var[2,-1] and so on. We will see more than once that curly brack-
ets in AMPL define a set of indices whereas square brackets refer to one particular
element in the array. In our case line

var x {1..4} >= 0.001;

declares variables x[1] to x[4] with an additional bound below. It is a simple way
to imply a box constraint to all variables at once. Such bounds can be included also
later among other constraints; it is up to user preference.

Arrays and indexing of variables help substantially to simplify some of the ex-
pressions. Imagine that we want to sum all our variables. We can write either
x[1]+x[2]+x[3]+x[4] or just:

sum {j in 1..4} x[j]

Note that there is a statement for multiplication as well:

prod {j in 1..4} x[j]

In addition to decision variables, one can also declare constants (parameters of
the model). The syntax is the same as with variables, just use keyword param

in place of var and the rest is unchanged. Parameters help in particular in two
ways. Firstly, they simplify some of the mathematical expressions such as sums
or products. Secondly, it is sometimes desirable to reuse the model for the same
problem types. If numbers are kept outside the formulae and parameters are used
instead, it is simple to swap the numerical part of the model (in AMPL called data
block) and the rest will serve well.

Parameters must be initialized before the model can be solved. They are asso-
ciated either immediately in the declaration or later in the data block. The first is
useful if the parameters can be computed directly, for example, based on its indices
or other parameters. The following example shows how a Hilbert matrix can be
created:

param n;

param H {i in 1..n, j in 1..n} := 1/(i+j-1);

Whenever n is specified in the data block, matrix H will be updated automatically
to the desired size. It is demonstrated in the following AMPL session:

ampl: param n;

ampl: param H {i in 1..n, j in 1..n} := 1/(i+j-1);

ampl: data;

ampl data: param n:=2;

ampl data: display H;

ampl: update data n;

ampl: data;

ampl data: param n:=4;

ampl data: display H;
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In all other cases you can assign parameters in the data block by listing all their
elements. There are various formats how to do it, see reference [8] for details. The
two following examples define the same matrix. The first uses tabular data record as
it is coded in hs072.mod, the other names all nonzero elements, each value preceded
by its indices:

data;

param a: 1 2 3 4 :=

1 4 2.25 1 0.25

2 0.16 0.36 0.64 0.64

;

data;

param a:=

1 1 4

1 2 2.25

1 3 1

1 4 0.25

2 1 0.16

2 2 0.36

2 3 0.64

2 4 0.64

;

The data block starts with the data; statement and can be placed either in one
file together with the rest of the model (see hs072.mod) or in a separate file (see
Section 7) which makes swapping data for various problems even easier.

The objective function is given by the minimize (or maximize) keyword followed
by its name and a function definition. The same notation is used for constraints as
well. A constraint is expressed by the subject to (or just s.t.) keyword, its name
and the constraint itself. It is also allowed to combine the curly brackets construct
and specify a set of constraints in one go.

All the constructions of the AMPL language mentioned above should be enough
to understand most AMPL models. If you look closer at the model hs072.mod it
has 4 decision variables, 1 objective function, 2 nonlinear constraints and 8 simple
bounds. The optimal solution is x = (193.4071, 179.5475, 185.0186, 168.7062) with
objective function value 727.67937 as reported in [12].

The problem can be invoked in the very same way as the Rosenbrock model:

ampl: reset;

ampl: model ’hs072.mod’;

ampl: option solver ’e04uf’;

ampl: solve;

ampl: display x;

ampl: display obj;

Note that E04UF reaches a good match with the reported values.
We might be interested in examining dual variables, slacks or bounds in more

complicated models like this one. Simply add behind the name of a variable or
constraint .ub, .lb, .dual and .slack to display upper bound, lower bound, dual
variable and slack variable, respectively. For example, the results of the previous
problem will look like:
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ampl: display x.lb, x, x.ub, x.slack;

: x.lb x x.ub x.slack :=

1 0.001 193.407 4e+05 193.406

2 0.001 179.547 3e+05 179.546

3 0.001 185.018 2e+05 185.017

4 0.001 168.707 1e+05 168.706

;

ampl: display constr.lb, constr, constr.ub, constr.dual;

: constr.lb constr constr.ub constr.dual :=

1 -Infinity -7692.94 0.0401 -7692.94

2 -Infinity -41466.8 0.010085 -41466.8

;

7 AMPL Case Study – Nonlinear data fit

It is no surprise that the place where AMPL helps most is prototyping a new model.
Several changes might be required during the development either because new con-
straints need to be added to adjust the model closer to reality or simply because
you obtained new data. We will demonstrate it on the following fictitious problem.

Imagine that you have an experiment in physics and you know that the measured
data should behave as a convex parabolic function. In addition, you expect that the
function should be increasing for positive inputs. We can formulate such a relation
as a quadratic function with unknown quotients a, b, c with additional constraints
on a to impose convexity and on b to limit us to functions increasing for x > 0. We
will use least-squares for fitting the curve, e.g., minimization of the sum of squared
errors. The problem can be written as:

min
a,b,c∈R

n∑
i=1

(f(xi)− yi)
2

subject to a ≥ 0

b ≥ 0

where

f(x) = ax2 + bx + c

and pairs [xi, yi] are the points of the measurement. Let’s use the following 8 points
with 8 appropriate measured values as our data:
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xi yi

0.5 3.9802
1.0 7.3611
1.5 6.7004
2.0 11.0118
2.5 14.3323
3.0 22.3791
3.5 27.2975
4.0 36.0287

This problem is a typical example in which it can be advantageous to store data
separately from the model. If a new measurement set is received we can simply swap
data files without touching the model. The model in AMPL language and data file
can be written as follows:

lsfit1.mod
param n >= 1;

# number of measurements

param xpts{1..n};

# measurement points (x_i)

param D{1..n};

# Data to fit y_i

var a;

var b;

var c;

minimize obj:

sum{i in 1..n}

(a*xpts[i]^2+b*xpts[i]+c-D[i])^2;

subject to constr1: a>=0;

subject to constr2: b>=0;

lsfit1a.dat
data;

param n := 8;

param xpts :=

1 0.5

2 1.0

3 1.5

4 2.0

5 2.5

6 3.0

7 3.5

8 4.0 ;

param D :=

1 3.9802

2 7.3611

3 6.7004

4 11.0118

5 14.3323

6 22.3791

7 27.2975

8 36.0287 ;

We will need to add the command data filename; in our typical commands
sequence to load the data file. The whole input looks like:

ampl: reset;

ampl: model ’lsfit1.mod’;

ampl: data ’lsfit1a.dat’;

ampl: option solver ’e04uf’;

ampl: solve;

ampl: display a,b,c;

ampl: display obj;
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The computed quotients are a = 2.00052, b = 0, c = 3.38308 with total error (our
objective function) 9.615132. See a picture of the fit.

Now imagine that we would like to confirm the results so we will repeat the
experiment two more times. We will obtain two more independent sets of data as it
is summarised in the following table:

Points xi Set 1 Set 2 Set 3
0.5 3.9802 5.4776 3.0925
1.0 7.3611 8.1040 4.0135
1.5 6.7004 8.4392 6.1188
2.0 11.0118 10.748 9.9346
2.5 14.3323 14.8901 13.6188
3.0 22.3791 19.3112 20.0661
3.5 27.2975 23.7691 27.8293
4.0 36.0287 32.2135 37.9609

Let’s create two more data files lsfit1b.dat and lsfit1c.dat with the new data
and continue our AMPL session:

ampl: reset data;

ampl: data lsfit1b.dat;

ampl: solve;

ampl: display a,b,c;

ampl: display obj;

ampl: reset data;

ampl: data lsfit1c.dat;

ampl: solve;

ampl: display a,b,c;

ampl: display obj;

Note that you do not need to reload the whole model if you wish to change the
data, just use the reset data; command. The results are summarised in the table
below.

Parameter Set 1 Set 2 Set 3
a 2.00052 1.61829 2.19829
b 0 0 0
c 3.38308 5.05247 1.31522

obj 9.615132 5.72935 7.27976
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As we might have expected, each data set produced an individual solution which
differs from the other (see graphs, dotted lines reflect the results of the other data
sets).

Our new task will be a new model which can handle consistently all data sets
so that we obtain one final curve. We could simply merge all the data points and
create one big data set but it does not have to be the best solution in our case.
Let’s say that we want to keep the data from each experiment independent and that
we want to minimize the maximal error of each set (so called, worst-case scenario).
This can be written as

min
a,b,c∈R

max
k=1,2,3

n∑
i=1

(f(xi)− yk
i )2

subject to a ≥ 0

b ≥ 0

where yk
i for k = 1, 2, 3 are the measured data of each of the sets respectively. We

can model it in AMPL by using an extra variable alpha which is the maximal error:
lsfit2.mod

param n >= 1; # number of measurement points

param m >= 1; # number of data sets

param xpts{1..n}; # measurement points (x_i)

param D{1..n,1..m}; # Data to fit y^k_i

var a;

var b;

var c;

var alpha; # maximal error of the fit for a data set

minimize obj: alpha;

subject to err {j in 1..m}:

sum{i in 1..n} (a*xpts[i]^2 + b*xpts[i] +c - D[i,j])^2 <= alpha;

subject to constr1: a>=0;

subject to constr2: b>=0;

lsfit2.dat
data;

param n := 8;
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param m := 3;

param xpts :=

1 0.5

2 1.0

3 1.5

4 2.0

5 2.5

6 3.0

7 3.5

8 4.0 ;

param D: 1 2 3 :=

1 3.9802 5.4776 3.0925

2 7.3611 8.1040 4.0135

3 6.7004 8.4392 6.1188

4 11.0118 10.748 9.9346

5 14.3323 14.8901 13.6188

6 22.3791 19.3112 20.0661

7 27.2975 23.7691 27.8293

8 36.0287 32.2135 37.9609 ;

To continue our AMPL session and solve the problem, type as usual:

ampl: reset;

ampl: model lsfit2.mod;

ampl: data lsfit2.dat;

ampl: solve;

ampl: display a,b,c;

ampl: display alpha;

ampl: display {i in 1..m}: err[i]+alpha;

Note that the last command shows the actual fitting error of each of the data sets.
The computed quotients are a = 1.91428, b = 0, c = 3.14526 with total error
(alpha) 25.2803 and error of each of the fits (err[i]+alpha): 25.2803, 24.7906,
24.7699.

This small example should not demonstrate the best way of a nonlinear least-
squares fit but our intention was to show one thing only – it is really easy to adjust
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your model written in a modelling language without much coding. If the model was
written in a typical programming language the same changes would require much
more effort, especially to incorporate the new objective function and constraints.
With AMPL you can simply type it and let the NAG routines do the rest – deliver
results. The results are what matter.

8 Additional models

The AMPL language has become de facto a standard interface among solvers for
nonlinear programming problems. That is why you can find several test suites for
benchmarking written in AMPL. The whole Hock-Schittkowski test set mentioned
earlier can be found in AMPL format on a webpage of Professor Robert J. Vanderbei
[13].

Another benchmarking suite called COPS (a large-scale Constrained Optimiza-
tion Problem Set) can be downloaded from [5]. COPS consists of 22 difficult test
cases for NLP arising in areas such as population dynamics, shape optimization or
fluid dynamics. All can be obtained as AMPL models. This demonstrates well the
flexibility of the AMPL language; it is also worth a look just for inspiration.

9 Technical notes

So far we have focused on the user’s point of view – how to write a model and solve
it in AMPL, however, we avoided describing how to build such a solver compatible
with AMPL. Explaining it in detail is far beyond the scope of this text. We will
discuss it only to a level that you could compile your own AMPL solver from the
provided source codes. If you are interested in developing an AMPL interface by
yourself, please follow [10] for details.

As was alluded to in Section 4, the AMPL platform communicates with any
solver via files. Your model file is converted into a binary file and the solver gets
its name as a command line argument together with optional parameters (string
solver options). Once the optimization run finishes, the solver generates another
file with the results which is read in by AMPL.

If you want to create an AMPL-compatible solver you will need 3 main ingredi-
ents:

• the solver itself; a routine which is capable of solving your type of problems

• a set of routines which can read the binary file on the input, treat the model
stored there and vice versa can generate the results file at the end

• a main routine which glues both together.

In our case the solvers are either E04UFF and E04UGF (from the NAG Fortran
Library) or E04UCC and E04UGC (from the NAG C Library) depending on the
library you have installed. The AMPL developers provide a library called AMPL
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Solver Library (ASL) which takes care of the input, output and evaluation of the
functions in the model. You can download its source codes free of charge from [4].
Finally, files e04uff ampl.c, e04ugf ampl.c, e04ucc ampl.c and e04ugc ampl.c

create the intermediate layer between ASL and the NAG Library. They are available
on the NAG website [14].

You will need to download and build ASL. There are scripts configure and
configurehere to choose the right makefile for your platform. Please follow the
readme file and instructions in the makefile for building the library. If you want you
can test ASL with some small example programs [16]. It should indicate whether
the ASL build was successful or not.

There are several makefiles ready to compile together your NAG Library, ASL
build and one of the supplied routines. For example, Makefile.fldll224ml.cl is
intended for NAG Fortran Library FLDLL224ML (Mark 22, Windows DLL 32-bit)
and Microsoft C++ compiler (cl). Before you use it it is necessary to edit the
appropriate lines of the file defining the path to the NAG Library and ASL, for
example,

NAG_LIBDIR = C:\math\NAG\FL22\fldll224ml

AMPL_LIBDIR = C:\honza\math\ampl\amplsolver\sys.cl

If you prefer you can edit other parts as well (e.g., compiler flags), however, it should
work as it is. The table below summarizes the systems we have tested.

NAG Library code System Compilers
CLDLL084ZL Win32 cl
CLL6A08DGL Linux64 gcc
CLL6A09DHL Linux64 gcc
CLLUX08DCL Linux32 icc
CLLUX08DGL Linux32 gcc
CLW3209DAL Win32 cl, gcc
FLDLL214AL Win32 cl, gcc
FLDLL224ML Win32 cl, gcc
FLL3A21DFL Linux32 gcc
FLL3A22DFL Linux32 gcc
FLL6A22DFL Linux64 gcc
FLL6I22DCL Linux64 gcc, icc
FLLUX21DGL Linux32 gcc
FLLUX22DCL Linux32 gcc

In case your NAG Library/system is not covered, there are two generic makefiles to
help you write your own. Please check your User’s Note supplied together with the
NAG Library for implementation details if necessary.

To build the solver invoke make (or nmake) as it is described in the comments in
the makefile, for example:

C:\honza\math\nag\ampl\src>nmake -f Makefile.fldll224ml.cl all
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Microsoft (R) Program Maintenance Utility Version 8.00.50727.42

Copyright (C) Microsoft Corporation. All rights reserved.

cl /O2 /nologo /I"C:\honza\math\ampl\amplsolver\sys.cl" /DUSE_STDCALL

e04uff_ampl.c "C:\honza\math\ampl\amplsolver\sys.cl\amplsolv.lib"

"C:\math\NAG\FL22\fldll224ml\lib\FLDLL224M_nag.lib" /Fee04uf.exe

e04uff_ampl.c

Creating library e04uf.lib and object e04uf.exp

cl /O2 /nologo /I"C:\honza\math\ampl\amplsolver\sys.cl" /DUSE_STDCALL

e04ugf_ampl.c "C:\honza\math\ampl\amplsolver\sys.cl\amplsolv.lib"

"C:\math\NAG\FL22\fldll224ml\lib\FLDLL224M_nag.lib" /Fee04ug.exe

e04ugf_ampl.c

Creating library e04ug.lib and object e04ug.exp

Once you build your own solver with an AMPL interface, you should test it as
suggested in Section 3 or with an embedded test in the makefile:

C:\honza\math\nag\ampl\src>nmake -f Makefile.fldll224ml.cl test

Microsoft (R) Program Maintenance Utility Version 8.00.50727.42

Copyright (C) Microsoft Corporation. All rights reserved.

############################################################

# Mini test of e04uf.exe

# Test1: Routine identification & licence check

# the result should start with:

# E04UF, NAG Fortran Library

# Licence: valid

# Test2: Simple test problem, Hock-Schittkowski #72

# an approximate results are:

# x = [193.4, 179.5, 185.0, 168.7]

# objective function = 727.679

############################################################

######################### TEST 1 #########################

e04uf.exe

E04UF, NAG Fortran Library

Licence: valid

...

In case of any difficulties, please verify that the build process was completed
without any errors and that the NAG library is present in your PATH variable (for
Windows) or LD LIBRARY PATH (for Linux). The build should be similar to any other
build of a NAG Library application.
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Note that we unfortunately cannot provide you with any support regarding the
ASL library, however, we may be able to help build an interface specific to your
library version. Please do not hesitate to contact us.

10 Conclusion

We hope you enjoyed the taster session of AMPL and NAG optimization routines.
We covered mostly the basics of the AMPL language but it should be enough to try
it by yourself and see how useful AMPL (or other modelling languages) would be
for you.

The variability of the models is probably AMPL’s main strength together with
the unified interface across various solvers and problems. This could save you a
substantial amount of time during the first phase of development. It can also be
beneficial for demonstrating and teaching as you don’t need to code much to receive
the results. It is apparent that AMPL is not a solution for everything, however,
even if you want to incorporate NAG solvers into a bigger piece of software, AMPL
can be handy with initial prototyping and testing of the mathematical model.

Let us know what you think. We would love to hear from you, your comments
and experience. Do not forget that you can download all the files from the NAG
website. Have you encountered any problems? Do you use AMPL or other modelling
languages? Would you like to see AMPL interfaces for some routines accompanying
the library? Thanks in advance for your kind replies.
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