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1. Introduction 

A partial differential equation (PDE) is a mathematical relation which involves 

functions of multiple variables and their partial derivatives.  PDEs are used to 

formulate (and hence to aid in the solution of) problems involving functions of several 

variables, and they arise in a variety of important fields.  For example, in physics, they 

are used to describe the propagation of sound or heat, electrostatics, electrodynamics, 

fluid flow and elasticity, whilst in finance, they have been used in the modelling of the 

pricing of financial options.  Accordingly, the study of their properties and methods of 

solution has received a great deal of attention [1].   

This note describes some applications of the NAG Library [2] to the solution of PDEs.  

After giving some technical details, including their classification (§2.1), subsidiary 

conditions (§2.2), and methods of solution (§2.3), we present a few example PDEs 

and their solutions in §3.  These are classified according to the type of equation; some 

details about the appropriate NAG routine to be used for its solution are also 

presented.  The example results are generated using routines from the NAG Toolbox 

for MATLAB ® [3] and plotted using tools in that environment.   

The problems described in §3 are treatable using the numerical method of finite 

differences (as implemented, for example, in the PDE chapter of the NAG Library 

[4]) because of the characteristics of the geometry of the domain over which the PDE 

is defined.  Other types of problem (having, for example, domains of irregular 

geometry) require the application of the so-called finite element method.  In §4, we 

describe the two components of this method – namely, the generation of a mesh over 

the problem domain (§4.1), and the transformation of the PDE into a set of 
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simultaneous equations (§4.2) – and indicate how routines from the NAG Library [5] 

[6] [7] can be of assistance in their implementation [8].  A final section (§5) contains 

our conclusions. 

2. Partial Differential Equations – technical background 

2.1 Classification 

An example of a PDE is the Laplace equation in two dimensions: 

   

   
 
   

   
   (1)  

where        is a function of location in 2D space.  This equation describes the 

behaviour of potential fields in areas such as gravitation, electrostatics and fluid 

dynamics.  It can be written using a more compact notation as: 

            (2)  

or, even more compactly, as      .  Laplace’s equation is an example of a so-

called equilibrium PDE, because it describes a function that doesn’t depend on time 

and thus can be used to model an unchanging physical system (for example, it governs 

the distribution of heat in a given region in a steady state).  By contrast, a PDE such as 

the wave equation in one dimension is a dynamical PDE which models a time-varying 

process: 

            (3)  

This describes the behaviour of the displacement       , a function of time   and 

location  , with   a constant corresponding to the velocity of the wave.  It could be 

used to describe, for example, the displacement of a stretched string from equilibrium, 

or the magnitude of an electric field in a tube.   

Finally, we note that the order of a PDE is that of the highest-order derivative which it 

contains; thus, both (2) and (3) are second order PDEs.  The majority of PDEs that 

appear in scientific applications are of this kind.  The general expression for a linear 

second order PDE can be written as 

                                    (4)  
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where the coefficients               are functions of the two independent variables 

  and   only (of course, for a dynamical PDE, one of these will be  ).  If the 

discriminant       is positive, the PDE is called elliptic; if it’s negative, it’s called 

hyperbolic, and if it’s zero, it’s called parabolic.  According to this definition, it can 

be seen that Laplace’s equation (2) – in which                 and         

   – is elliptic, while the wave equation (3) – where                    and 

           – is hyperbolic.  An example of a parabolic PDE is provided by the one-

dimensional heat conduction equation 

          (5)  

which governs the evolution of heat – or, equivalently, temperature –        as a 

function of time and location within a given region.  Here,   is a constant related to 

the thermal diffusivity.  Note that a variant of this PDE arises in the solution of the 

Black-Scholes PDE for financial option pricing. 

2.2 Subsidiary conditions 

In general, there are many functions which satisfy a given PDE – for example, in the 

case of (5), two of these are 

           
 

 
    (6)  

and 

        
   

     

     
  (7)  

Determining which solution is appropriate requires extra information, including the 

details of  , the domain of interest over which   is defined (including a specification 

of  , the contour that bounds the domain) and subsidiary conditions on   and its 

derivatives.  The latter could take the form of boundary conditions – which specify 

the form of the solution on the boundary of the domain, and/or initial conditions – 

which describe the solution at the starting time.  

More specifically, for equilibrium equations such as (2), the subsidiary conditions 

provide information about the solution at all points on   – thus, a solution may be 

sought subject to the condition 
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                                      (8)  

where        is a given function; this is known as a Dirichlet boundary condition.  A 

condition that specifies the values of the derivative of the solution on  , 

                                             (9)  

is called a Neumann boundary condition.  Here,        is a given function,   is the 

gradient vector operator, the dot denotes the inner product and   is the normal to  .  

In this case, a further piece of information (such as the value of the solution at a 

particular location) is necessary to determine a unique solution.  Finally, a Robin 

boundary condition can be seen as a weighted combination of the other two: 

                                        (10)  

 where         and         are given functions.   

For dynamical equations such as (3), the subsidiary conditions provide information 

about the solution at some initial time.  Thus, for example, if (3) is satisfied for    , 

then a solution may be sought subject to   

                                           (11)  

where      and g    are given functions.  A problem formulated in this way is 

usually known as an initial value problem (sometimes referred to as Cauchy’s 

problem). 

Other examples of subsidiary conditions might specify both spatial and temporal 

constraints.  Suppose that (5) is satisfied for     and        , then a solution 

may be sought which satisfies 

                                     (12)  

and 

         

                                
(13)  

This is an example of a mixed initial/boundary value problem. 
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2.3 Solution methods 

A wide variety of methods have been developed for the solution of PDEs [1] [9].  

Analytic methods include [10] the separation of variables, the method of 

characteristics and integral transformation (such as, for example, Fourier analysis), 

whilst finite differences and finite elements are among the most useful numerical 

methods [11].  For linear equilibrium PDEs such as (2), their application results in a 

system of simultaneous equations that can be treated using linear system solvers.  

Dynamical PDEs are often tackled by using these methods to discretize the spatial 

coordinates (leaving   continuous), generating a system of ordinary differential 

equations (ODEs) which can be solved via appropriate techniques (see §§3.2, 3.3, and 

3.4 below).  Alternative solution methods are available for special classes of 

problems.   

3. Examples 

In this section we present some example PDE problems and their solutions using 

routines from the d03 chapter [4] of the NAG Library. 

3.1 3D Elliptic PDE  

We seek a solution of the Laplace equation in three dimensions: 

                (14)  

in a rectangular box having a non-uniform grid spacing in each direction, subject to 

the Dirichlet condition 

          
   
     

   

 
  

    
                            (15)  

where   is the length of the box in the   direction.  Problems such as this can be 

Figure 1.  Solution to (14), displayed as an isosurface (left) and a 2D slice at constant x (right). 
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tackled by the finite difference method: briefly, this involves imposing a mesh on  , 

and representing the function by its values at the discrete set of mesh points; the PDE 

can then be approximated in terms of the difference between values at neighbouring 

points.  This transforms the PDE into a system of simultaneous algebraic equations 

which can then be solved using, for example, the NAG routine d03ec [12].  This 

employs the strongly implicit procedure in the solution of the equations.  Figure 1 

shows the solution, displayed as an isosurface (i.e. a contour in 3D space connecting 

all points in the box where the function has a specific value) and as a surface plot 

showing how the function varies across a 2D slice taken through the box.  Figure 2 

shows how the function varies along the   direction in the box at fixed  , and for a set 

of   values. 

3.2 Advection-Diffusion equation 

The simplest form of the so-called 

advection-diffusion equation in one 

dimension is 

which states that the dynamic evolution of 

– say – a species concentration        is 

given by the sum of an advective term and 

a diffusion term [compare this PDE to the diffusion equation (5)].  It will be recalled 

that advection is the transport of the species due to the bulk motion of the underlying 

fluid, whilst diffusion describes the spread of species along a concentration gradient.   

As noted in §2.3, PDEs such as this may be solved by discretizing the space 

dimension (but not the time), which transforms them into a system of ODEs whose 

solution may be obtained using a stiff solver.  In fact, the NAG routines solve a more 

general form of (16), specifically 

    

 

   

   

  
  

   
  

    
   
  

    (17)  

where   is the number of PDEs in the system, and the number of solutions        .  

Here,    is a function of (amongst other things)       , so the first term on the right 

             (16)  

Figure 2.  Solution to (14), displayed as a plot 

of the function at constant z, for a set of x 

values. 
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contains a term proportional to        
  – i.e. the diffusion term .  Similarly,    

depends on   , so the second term on the left is the advection term, whilst    is a 

source term. 

Our example problem is a simple model of the advection and diffusion of a cloud of 

(single component) material: 

            (18)  

for          , subject to the boundary conditions 

                 (19)  

and the initial conditions 

             
   

   
                          (20)  

with            ,          elsewhere and   and   physical parameters.  

Comparing (18) to the more general formulation (17) identifies   with    and   with 

   .  

As noted above, problems like this can be 

solved by reducing the PDE to a system 

of ODEs (specifically in this example, by 

using the so-called method of lines).  That 

system can then be solved using, for 

example, a Backward Differentiation 

Formula (BDF).  The NAG routine d03ps 

[13] uses this technique, and also 

incorporates automatic adaptive remeshing 

of the spatial grid.  Figure 3 shows the 

solution to (18), as calculated by d03ps; the motion of the concentration peak towards 

larger   as time is increased can clearly be seen. 

3.3 Parabolic PDE  

A general system of parabolic PDEs in one spatial dimension may be written as  

    

 

   

   

  
         

       

  
 (21)  

Figure 3.  Solution to (18), plotted as an (x,t) 

surface. 
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where   is the number of PDEs in the system, and the terms    ,    and    are each 

functions of   ,  ,   and   , in general.  The parameter   allows for the treatment of 

different coordinate systems – specifically: Cartesian (   ), cylindrical polar (  = 

1) and spherical polar (  = 2).   

Such a system can be solved by discretizing the space derivatives and solving the 

resulting set of ODEs using a stiff solver (such as, for example, a BDF).  There are a 

variety of methods which can be used for discretization: thus, for example, the NAG 

routine d03pc [14] uses finite differences, while d03pd [15] uses a Chebyshev 

collocation method. 

Our example [14] is an elliptic-parabolic pair of PDEs: 

 

 

 

  
   

   
  

          
   
  

  

      
   
  

  
 

 

 

  
   

   
  

        

(22)  

for            , subject to the boundary conditions 

        
        

  
   

         
        

  
    

(23)  

and the initial conditions 

                                                    (24)  

 

Figure 4.  Solution to (22), plotted as a pair of (r,t) surfaces. 
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A comparison of (22) with (21) gives 

                         

                         

                                  . 

(25)  

Figure 4 shows the solution to this system of PDEs, as calculated by d03pc.   

This routine has also been used in the solution of [16]: 

  

  
  

 

  
  

  

  
  

  

  
   (26)  

where  ,   and   are functions of   (which is density in the model system).  The 

three functions correspond to diffusion, advection and reaction; a comparison with 

(21) gives 

                      (27)  

3.4 Time-dependent PDE in 2D 

Some PDEs can be classified as time-dependent, with two spatial dimensions.  In 

general, they can be written as  

                                                        (28)  

where   is the number of PDEs in the system, and the number of solutions          .  

We are interested in systems defined on a rectangular spatial domain,  : 

                                    (29)  

The initial treatment of problems such as 

this involves the use of the finite 

difference method (as before) by 

imposing a mesh on  .  This reduces the 

system to a set of ODEs, which may be 

integrated in time using an implicit BDF 

method with variable step size.  The 

nonlinear equations resulting from the 

time integration may be solved using a 

modified Newton method.  The NAG 

Figure 5.  Solution to (23), plotted as an (x,y) 

surface for various values of t. 
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routine d03ra [17] uses these techniques, and also incorporates local uniform grid 

refinement to improve the accuracy of the solution in regions where this is changing 

rapidly.  

Our first example problem is a model for a single, one-step reaction of a mixture of 

two chemicals in a two-dimensional region of space [17].  The PDE for         , the 

dynamic local temperature of the mixture, is  

              
   

  
             (30)  

where  ,  ,   and   are physical parameters associated with the reaction mechanism.  

The domain is defined as 

                                    (31)  

and the initial conditions are             throughout the domain.  The boundary 

conditions are 

                                                        

                                                        
(32)  

Figure 5 shows the solution of (30), as calculated by d03ra.  It can be seen that the 

temperature gradually increases in a circular region around the origin (assuming that 

we are modelling a single quadrant of the full domain), before ignition takes place at 

around       , when the temperature suddenly jumps to 2.0 and a reaction front 

forms and propagates outwards.   

This has also been applied [16] to the solution of  

                   (33)  

where   is a concave function on the interval       with             and     

on      .   

4. Other approaches 

The d03 routines described above use finite differencing techniques, and are 

applicable to a limited number of specific types of PDE which are to be solved on 

domains having regular geometries.  One approach to handling irregular geometries is 

the so-called finite element method (FEM), which is a technique [18] for solving 
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PDEs (or other variational problems) by first discretizing the equations in their spatial 

dimensions.  It has two components: first, the subdivision of the spatial domain into a 

mesh, and second, the transformation of the PDE into a set of simultaneous equations.  

We consider each separately. 

4.1 Mesh generation 

The subdivision of the domain over which a PDE is to be solved is a key requirement 

of the finite element method.  In many cases, the accuracy and validity of a solution is 

strongly tied to the properties of the underlying mesh.   

Generating the mesh over the domain is (usually) a two-stage process [5]: firstly, 

meshing the domain boundary, and secondly, using the boundary mesh points as 

starting points in the generation of a mesh within the domain.  The NAG routine 

d06ba [19] can be used to generate a boundary mesh; we note that the boundary may 

be of an arbitrary shape, and there may be more than one boundary for a given domain 

(that is, the domain can contain holes which are specified by internal boundaries).  A 

variety of different methods are available for generating the mesh within the domain: 

three of these are incremental (as used by d06aa [20]), Delaunay-Voronoi (d06ab 

[21]) and advancing front (d06ac [22]).   

Finally, we note that the d03ma routine [23] generates a triangular mesh over a 2D 

region in a single call.   

4.2 PDE transformation 

Having meshed the domain, the second step in the finite element method is to use the 

elements of the mesh (typically, triangles) in the transformation of the PDE to a 

system of simultaneous equations.  This is done by first choosing a set of basis 

functions to represent the equation within each element, which results in a matrix 

equation that relates the inputs at each node of the element to the outputs at the same 

points.  The number of coefficients in the overall system of equations for the entire 

domain is commensurate with the size of the mesh – i.e., typically, of the order of 

thousands.  However, the matrix of coefficients is also banded because only the 

diagonal and a few non-diagonal elements are non-zero.  The NAG Library contains 

(in the f07 chapter [6]) routines for the solution of this type of system which take 

advantage of its structure.   
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Alternatively, because it could also be described as sparse, special methods for 

solving such a system (which, for example, exploit the sparseness by only storing the 

non-zero elements) can be used to solve it, and this is the route we follow here, using 

routines from the f11 chapter of the NAG Library [7].  Thus, for example, f11jc [24] 

is a so-called black box routine that calls five other f11 routines to solve a real sparse 

symmetric linear system using either a conjugate gradient method, or the Lanczos 

method.  The routine f11ja [25] must be called before using f11jc in order to compute 

the incomplete Cholesky factorization of the matrix (this preconditioning step 

increases the speed and efficiency of the solver); in addition, calling f11zb [26] prior 

to f11ja further increases the efficiency of the solver by reordering the non-zero 

elements of the matrix. 

The d06 and f11 routines have been used in a demo PDE solver [8] which uses the 

finite element method to solve (1) – and its variant having a non-zero right-hand-side, 

namely Poisson’s equation – over a user-specified 2D domain of arbitrary shape.  The 

solver is distributed as part of the NAG Toolbox for MATLAB.   

Finally, we note that further technical background on the use of NAG’s mesh 

generators and sparse solver routines for solving PDEs can be found at [27]. 

5. Conclusions 

In this note, we have described the characteristics of PDEs, including their uses, 

classification, subsidiary conditions and some of the ways in which they may be 

solved.  In this context, we have shown how routines from the NAG Library can be 

used in their numerical solution.  These routines have come not only from the 

Library’s PDE chapter (d03), but also from those that deal with mesh generation (d06) 

and the solution of large linear systems that are either banded (f07) or sparse (f11); 

these three chapters are applicable in the implementation of the finite element method, 

which may be used in cases where the complexity of the geometry of the domain over 

which the PDE is to be solved prevents the application of finite differencing methods 

(as used, for example, in the d03 chapter).   

Finally, it could perhaps be pointed out that, besides the contents that have been 

mentioned here, the NAG Library [2] contains user-callable routines for treatment of a 

wide variety of numerical and statistical problems, including – for example –  
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optimization, curve and surface fitting, quadrature, correlation and regression analysis 

and random number generation.  
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