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Abstract

NAG Libraries have many powerful and reliable optimizers which
can be used to solve large portfolio optimization and selection problems
in the financial industry. Below is an introduction into the notation
and techniques used in portfolio optimization. We discuss some sample
problems and present help in choosing an appropriate NAG optimizer.
Finally, there is a section on handling transaction cost for the portfolio
optimization.

1 Introduction

The selection of assets or equities is not just a problem of finding attractive
investments. Designing the correct portfolio of assets cannot be done by
human intuition alone and requires the use of numerical optimization tech-
niques. The Numerical Algorithms Group Ltd (NAG) is world renowned for
its work on numerical algorithms, and NAG routines for optimization are
being used extensively in industry, commerce and academia. Many leading
financial companies and institutions employ NAG optimizers to select, di-
versify and rebalance their portfolios. They are also used by business and
management schools for teaching and research.

Any investor would like to have the highest return possible from an
investment. However, this has to be counterbalanced by the amount of
risk the investor is able or desires to take. The expected return and the
risk as measured by the variance (or the standard deviation, which is the
square-root of the variance) are the two main characteristics of a portfolio.
Unfortunately, equities with high returns usually also have high risk.

The performance of a portfolio can be quite different from the perfor-
mance of individual components of the portfolio. The risk of a properly
constructed portfolio from equities in leading markets could be half the sum



of the risks of individual assets in the portfolio. This is due to complex corre-
lation patterns between individual assets or equities. A good optimizer can
exploit the correlations, the expected returns, the risk (variance) and user
constraints to obtain an optimized portfolio. NAG optimization routines can
deliver optimized and diversified portfolios to match investor expectations.

The mathematical problem of portfolio optimization was initiated by
Professor Harry Markowitz in the fifties and he was rewarded with a No-
bel Prize in Economics in 1990 which he shared with Professors William
Sharpe and Merton Miller [10]. NAG optimizers can handle the classical
Markowitz optimization problems [9], [11], [12] and many modern day ex-
tensions [5], [15], [19], [20], [21]. NAG also provides a consultancy service to
the financial sector to solve mathematical, numerical, programming prob-
lems associated with portfolio optimization, automatic differentiation, bond
and option pricing, and other areas.

Portfolio optimization is often called mean-variance (MV) optimization.
The term 'mean’ refers to the mean or the expected return of the investment
and the ’variance’ is the measure of the risk associated with the portfolio.
The mathematical problem can be formulated in many ways but the princi-
pal problems can be summarized as follows:

1. Minimize risk for a specified expected return
2. Maximize the expected return for a specified risk

3. Minimize the risk and maximize the expected return using a specified
risk aversion factor

4. Minimize the risk regardless of the expected return

5. Maximize the expected return regardless of the risk

The above problems could have linear, nonlinear, equality or inequality
constraints. The first three problems are essentially mathematically equiv-
alent. The fourth problem gives minimum variance solutions which are for
cautious investors. It is also used for comparison and benchmarking of other
portfolios. The fifth problem gives the upper bound of the expected return
which can be attained; this is also useful for comparisons.

When market conditions (for example expected returns or correlations
between assets) or the investor’s risk preferences change, it is advisable to
rebalance the portfolio. Any of the above problems can be solved relative to
an existing portfolio or a benchmark, with the idea of matching or exceed-
ing the benchmark performance. Solutions to the above problems are called
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Figure 1: The curve describes the efficient frontier of maximum and mini-
mum return for a given risk. All realized portfolios lie to its right.

mean-variance (MV) efficient. The efficient points in the Return-Risk graph
are called the Efficient Frontier, as shown in Figure 1.

The transaction costs associated with purchasing a new portfolio or re-
balancing a portfolio could represent a significant amount to the investor.
NAG optimization routines can handle transactions costs and they may sig-
nificantly affect the composition of the portfolio.

2 Notation

We use notation common in portfolio optimization:
x the vector of portfolio weights

i the vector of expected returns!

LCare should be taken when performing MV optimization with linear vs. compound
returns [14].



Y. the covariance matrix (usually computed from historical data)
I; the lower bound for the i*" asset
u; the upper bound for the i*" asset

Typical problems have the weights summing to unity (known as a fully
invested constraint):

and bounds on the variables:
li <ap <y

It is also possible that one x; correspond to a cash-equivalent. Note that if
x; < 0 this corresponds to short selling the asset.

In addition, investors may have linear constraints on certain groups of
assets. They may wish to allocate a minimum of 50% of the portfolio in a
subset of the equities. This can be formulated and input into the optimizer
via the matrix A where:

L<Azx <U

Although the bounds on z; could be included in the definition of gen-
eral linear constraints, we prefer to distinguish between them for reasons of
computational efficiency. For equality constraints, lower and upper limits
are set to equal values. It is also possible to set the upper limits to oo and
the lower limits to —oo.

3 Example Optimization Problems

When formulating your model, there are numerous combinations of objec-
tive functions and constraints that the NAG optimizers can handle. Below
we present some of the more common problems:



Minimize Risk (Markowitz Model) min 7 Yz

T

This is the classic portfolio optimization problem where the investor is
looking to minimize the risk when setting a desired level of return:

NT‘T — M*

Constraints and bounds on variables may or may not be present.

1 m
Resampled MV Optimization — Zarg min :cTij
V=R

Resampled mean variance is used in the presence of linear constraints
and bound constraints only and is similar to the Markowitz model except
the expected returns are assumed to be random variables. The idea is to
simulate the returns p; and covariances ¥; of m outcomes. For each of these
scenarios, perform a portfolio optimization to find the optimal holdings and
then average the results. This approach can be useful when there exists
some prior knowledge of the distribution of assets [15], or when estimation
from historical data is very difficult.

Maximize the Expected Returns max pu! x
x

This is where the investor is looking to get the most returns without
taking risk or other factors into account. Care should be taken with these
optimizations as the solutions can often place the weights on a few assets
regardless of risk.

Risk/Cost Aversions max pl z — f(z)
x

The cost aversion is a variant of Markowitz Portfolio Optimization. The
goal is still to maximize the expected returns, but at the expense of other
factors denoted by the penalty term f. Some common forms of the penalty
are given below:



fx) Interpretation
TS Risk Aversion
|z — a Linear Trading Costs
'z — x| +cl|z; — 252 Quadratic Trading Costs

An investor may choose a combination of the above forms or choose a non-
linear function for f.

Here, 7 is the portfolio prior to reallocation and x is the new allocation.
The case #; = x; is where no trading (and thus no cost) occurs for the
1th asset. Note that the absolute value function for trading costs can be
troublesome for optimizers. A way to handle such situations is detailed in
Section 5.

Black-Litterman Model max {azTﬁ — (g) IL‘TEI}

Published by Fischer Black and Robert Litterman in 1992, the Black-
Litterman model provides a combination of the past performance of assets
with future views on performance. A review of the basic formulas and
notation for Black-Litterman are presented below. (For a detailed derivation
see [7] or [13].)

Instead of the expected return vector u, we have [, a vector that com-
bines the equilibrium risk premiums with prior views on the market. The
distribution pi can be calculated using Bayesian analysis.

p= ()" + PO P (7)) T+ P

with covariance matrix
M=t =[(r2)"t+ PPt
The variables above are:

IT = 6Xweq is the equilibrium risk premiums

0 the risk aversion parameter

Weq the market portfolio

Y = ¥ 4+ M~ the updated covariance matrix

P the view matrix



Q returns on each view
7 the uncertainty of @

Q = diag(P(7%)PT) the covariance matrix of views

To implement Black-Litterman Optimization, the investor begins by for-
mulating views on the market as well as a confidence interval on them. This
is then input into the above formulas for i and X, which are used in the
optimization. The selection of the risk aversion parameter § is based on
prior heuristics. This can either be set to a specific value or calibrated using
past market data.

4 NAG Optimization

The objective function can take on many forms depending upon the prob-
lem and investor preferences. Common forms of the objective function for
optimization problems are given below.

Objective Function Problem Type
T Linear Programming(LP)
e+ 2782 Quadratic Programming(QP)
'z + 3||b — S| Least Squares (LS)
f(z) Nonlinear Programming (NLP)

Note that for the NLP problems, convexity may be an issue. The objective
function may have many local extrema and the resulting numerical solution
may not be the global optimum [18].

Once the model has been formulated, it is time to choose an optimization
routine. Table 1 shows some of the types of problems the NAG Library can
handle and offers a recommendation in selecting routines.

Note that some optimization functions can handle more than one type of
problem. A nonlinear optimizer can be used on QP problems, for example,
but it is computationally inefficient to do so.

4.1 Covariance/Correlation Matrix

When attempting to compute the covariance matrix ¥ from past returns,
rounding or incomplete data may make the computed matrix indefinite.
Performing a computation with such a matrix may produce bizarre results



Objective Function Routine Name Constraints Dense/Sparse

LP, Convex QP, & LS nag_opt_lin_lIsq quadratic dense
LP & QP nag_opt_qp quadratic dense

LP & Convex QP nag_opt_sparse_convex_qp  quadratic sparse
NLP nag_opt_nlp nonlinear dense

NLP nag_opt_nlp_revcomm nonlinear dense

NLP nag_opt_nlp_sparse nonlinear sparse

Table 1: NAG Optimization Routines

if the problem is not sufficiently constrained. Fortunately many of the NAG
algorithms will detect an indefinite matrix. Should the computed matrix be
indefinite, a Nearest Correlation Matrix (NCM) routine from Chapter G02
of the NAG Library might be useful. These functions will find a correlation
matrix that is closest in some sense to the original computed matrix, and
can incorporate weights/factor structures.

4.2 Forward and Direct Communication

Most of the optimization routines are based on forward communications. In
such programs, the routine is called only once to obtain the results and the
user supplies all the necessary information to the NAG routine via a subrou-
tine. However, in some circumstances, it is necessary to do the optimization
step by step and call the user routine repeatedly to get fresh information.

The NAG routine nag_opt_nlp is a forward communication routine and
nag_opt_nlp_revcomm is the direct communication equivalent. This di-
rect communication routine is particularly useful when it is called from an-
other language (i.e., Microsoft VBA) where the callback functions required
by a forward communication algorithm may be unwieldy to code.

4.3 Cold and Warm Starts

Cold starts refer to solutions of the problem from scratch. However, if the
routines are called repeatedly then approximate solutions are available from
previous solutions. In that case, the initial conditions for the next iteration
may be supplied from the previous. Such warm start facilities are available
for many NAG optimization routines.



4.4 Derivatives of Objective

NAG recommends the user supply as many derivatives as a particular algo-
rithm can use for computational efficiency. In cases where the derivatives
of your particular objective function are difficult to calculate or do not ex-
ist at certain points, the NAG routine will automatically calculate partial
differentials for the supplied functions via finite differencing.

When finite differencing is too expensive or inaccurate, or the derivatives
are very difficult to code, another technique that may be used is Algorithmic
Differentiation (AD). NAG has worked very closely with RWTH Aachen
University to deliver AD tools and solutions to customers worldwide [17].

4.5 Global Optimization

It may turn out that your objective function has many local minima, in addi-
tion to a global minimum. Such problems can be much harder to solve than
local optimization problems because it is difficult to determine whether a
potential minimum is global, and because of the nonlocal methods required
to avoid becoming trapped near local optima. If this is the case then we rec-
ommend algorithms from Chapter E05 of the NAG Library which contains
Global Optimization Methods.

5 Transaction Costs

In the classical work of Markowitz, transaction costs associated with buying
and selling of equities are not considered. However, the importance of in-
corporating transaction costs in building portfolios and also in rebalancing
existing portfolios are well recognized. In general, transaction costs are not
trivial enough to be neglected and the optimal portfolio depends upon the
total cost of transactions. Let us model the buying of additional quantities
of asset ¢ by:

i = (a:z — i‘l) for z; > &;
! 0 for x; < x;

where z; is the new portfolio weight of equity 4, T; is the original weight of
equity 4. Similarly, we model the selling of asset i by:

)0 for x; > 7;
%= (.fl — mz) for z; < z;



Note that both p; and ¢; cannot be simultaneously non-zero since you do
not wish to both buy and sell an asset at the same time.

Let ¢(z) be the objective function for minimization without transaction
costs. The new objective function with transaction costs is then given by:

n

o(x) + > (gipi + higs)

i=1

where g; and h; are, respectively, the costs associated with buying and selling
quantities of assets.

By including both p; and ¢; as additional (constrained) variables, the
problem is rendered smooth. This does, however, double the number of
problem variables, or triple them when ¢; and h; are distinct.
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