
Portfolio Credit Risk: Introduction

Guillermo Navas-Palencia∗

April 8, 2016

Abstract

In the present technical report we examine the main theoretical aspects in some mod-
els used in Portfolio credit risk. We introduce the well-known Vasicek model, the large
homogeneous portfolios or Vasicek distribution and their corresponding generalizations.
An illustrative example considering factors following a logistic distribution is presented.
Numerical experiments for several homogeneous portfolios are performed in order to com-
pare these methods. Finally, we use the NAG Toolbox for MATLABr for implementing
prototypes of these models quickly.

1 Introduction

Credit risk is a critical area in banking and is of concern to a variety of stakeholders: financial
institutions, consumers and regulators. Credit risk is the risk of loss resulting from an obligor’s
inability to meet its legal obligation according to the debt contract. This circumstance is called
the default event.

For financial institutions it is essential to quantify the credit risk at a portfolio level. Portfo-
lio credit loss modelling requires the default dependence among obligors. A common approach
is utilizing one or multiple factor models, such as the obligors are independent conditional on
some latent common factors, which in some cases are assumed to follow a standard Normal
distribution. Some common factors are the state of the economy, changes of a market index or
interest rates, for instance. Furthermore, it is usually considered that an obligor might incur in
default in a fixed time. Financial institutions are also interested in the computation of common
risk measures, such as Value-at-Risk (VaR) and Expected Shortfall (ES), which are typically
used to determine the reserve capital to cover potential extreme losses. VaR is the measure
chosen in the Basel II Accord (Basel Committee on Bank Supervision).

Credit rating agencies such as Moody’s, Standard & Poor’s and Fitch focus their business in
credit risk management and are particularly interested in the portfolio loss distribution. Credit
ratings represent the creditworthiness of individual corporations and consumers. The rating
notes are classified by letters, Aaa and Baa are examples of Moody’s rating system, which uses
Aaa, Aa, A, Baa, Ba, B, Caa, Ca, C to represent the likelihood of default from the lowest
to the highest. The speculative-grade corporate bonds are sometimes said to be high-yield or
junk.

2 Vasicek Model

The general approach in the factor model is that the default times in a portfolio are driven
by several risk factors. The portfolio is composed by N debtors whose default is driven by
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the variation of its firm’s value. The value of the assets of the nth debtor at time t is denoted
by Vn(t). Debtor n defaults if its firm’s value falls below a default threshold Vn(T ) ≤ αn.
The asset values of different debtors are assumed to be correlated with each other and the
variance-covariance matrix of the Vi, i ∈ N is denoted by Σ.

The covariance matrix Σ has N2 elements but is symmetric and may be defined by the
1
2N(N − 1) elements of the upper triangular part, which characterize the joint default proba-
bility between the N debtors. In order to simplify and reduce computational effort, M factors
are chosen reducing the matrix dimensions to N ×M . If a single factor is considered, the
number of coefficients is equal to N (one-factor model), which is reduced to just one parameter
under the assumption of equal correlation coefficient. To clarify the previous concepts, a more
detailed situation that will be used as a framework for the next theoretical aspects is presented.

Definition 2.1 Consider a portfolio of N assets (structured finance products, for instance)
where the nth asset has an initial value of Vn and its default probability pn over a known time
horizon Ti for which the portfolio’s default distribution is determined. Some assumptions are
considered in order to simplify the model:

1. Each asset in the portfolio corresponds to a different debtor. This is modelled if assets
belonging to the same debtor are aggregated.

2. All assets have bullet amortisation (i.e. The payment of the principal balance is due at
the end of the loan term).

Note that in this framework we can still calibrate the model to reflect different individual default
probabilities pn over the time horizon by setting the barrier level to that level which replicates
the given individual default probability. Assuming Vn(t) is normally distributed, this level is

αn = Φ−1(pn) (1)

where Φ(·) is the cumulative Normal distribution function.

2.1 The distributions of defaults

The values of the assets of the obligors are driven by a common systematic factor Y and an
idiosyncratic factor εn:

Vn(t) =
√
ρn Y +

√
1− ρn εn (2)

where Y and εn, n ≤ N are independent normally distributed random variables with mean
0 and variance 1 and ρn ∈ [0, 1]. Using this approach the values of the assets of two obligors
n and m 6= n are correlated with linear correlation coefficient ρ. The important point is that
conditional on the realisation of the systematic factor Y , the firm’s values and the defaults are
independent.

The systematic factor Y can be viewed as an indicator of the state of the business cycle,
and the idiosyncratic factor εn as a firm-specific effects factor. The threshold αn of the firm
is mainly determined by the firm’s reserves and balance-sheet structure. The relative sizes of
the idiosyncratic and systematic components are controlled by the correlation coefficient ρ. If
ρ = 0, then the business cycle has no influence on the fates of the firms, if ρ = 1, then it is the
only driver of defaults, and the individual firm has no control whatsoever.

For example: first, the business cycle variable Y materialises, and conditional on the general
state of the economy, the individual defaults occur independently from each other, but with a
default probability pn(y) which depends on the state of economy. This default probability is

pn(y) = Φ

(
αn −

√
ρn y√

1− ρn

)
(3)
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Indeed, the individual conditional default probability p(y) is the probability that the firm’s
value Vn(t) is below the threshold αn, given that the systematic factor Y takes the value y:

pn(y) = P [Vn(t) < αn |Y = y]

= P [
√
ρn y +

√
1− ρn εn < αn]

= P

[
εn <

αn −
√
ρn y√

1− ρn

]
= Φ

(
αn −

√
ρn y√

1− ρn

)

(4)

It can be proved that the expected value of the random variable pn(y) is the default prob-
ability pn. See proof in [2, subsection 4.4.1]. This result remarks the fact that the expected
value of the default probability conditional to a realisation of Y does not depend on the factor
distribution; therefore, this statement holds for any factor which is not normally distributed. In
the case that the assumption about the factor distribution was non Normal (NIG distribution,
for instance), one must carefully determine the default threshold αn since αn = Φ−1(pn) does
not apply. The default threshold is obtained by solving the following equation for αn, where
φ(·) denotes the density function for the factor:

E[pn(y)] =

∫ ∞
−∞

Φ

(
αn −

√
ρn y√

1− ρn

)
φ(y) dy = pn (5)

The next step is to obtain the distribution function of the defaults. The probability of
having exactly n defaults is the average of the conditional probabilities of n defaults, averaged
over the possible realisations of Y and weighted with the probability density function φ(y),

P [X = n] =

∫ ∞
−∞

P [X = n |Y = y]φ(y) dy (6)

Conditional on the realisation Y = y of the systematic factor, the probability of having
n defaults is given by the binomial probability mass function, which is a discrete probability
function, since defaults are discrete random variables,

P [X = n |Y = y] =

(
N

n

)
(p(y))n(1− p(y))N−n (7)

where we use the conditional independence of the defaults in the portfolio. Substituting
this and (4) into Equation (6) we obtain that the probability of having exactly n defaults in
the underlying portfolio is given by

P [X = n] =

∫ ∞
−∞

(
N

n

)(
Φ

(
αn −

√
ρn y√

1− ρn

))n(
1− Φ

(
αn −

√
ρn y√

1− ρn

))N−n
φ(y) dy (8)

Therefore, the default distribution function, under the normality assumption is,

P [X ≤ m] =

m∑
n=0

(
N

n

)∫ ∞
−∞

(
Φ

(
αn −

√
ρn y√

1− ρn

))n(
1− Φ

(
αn −

√
ρn y√

1− ρn

))N−n
φ(y) dy (9)

2.2 Computing the default probability function

The method used to evaluate the previous integrals is the Gauss–Hermite Quadrature. The
Gauss–Hermite quadrature is a form of Gaussian quadrature for approximating the value of
integrals of the next form, ∫ ∞

−∞
e−x

2

f(x) dx ≈
k∑
i=1

wif(xi) (10)
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Where k is the number of nodes used. The abscissae are given by the roots xi of the Hermite
polynomials Hk(x) and the associated weights wi are given by

wGHi =
2k−1k!

√
π

k2[Hk−1(xi)]2
, i = 1, 2, . . . , k (11)

In order to compute the distribution function of the defaults with this method, a reformu-
lation is required:

P [X ≤ m] =

m∑
n=0

(
N

n

)∫ ∞
−∞

1√
2π
e

−y2
2 h(y) dy

Let us take h(y) as

h(y) =

(
Φ

(
αn −

√
ρn y√

1− ρn

))n(
1− Φ

(
αn −

√
ρn y√

1− ρn

))N−n
We need the following change of variable,

x2 =
y2

2
⇔ y = x

√
2

apply integration by substitution

P [X ≤ m] =

m∑
n=0

(
N

n

)∫ ∞
−∞

1√
2π
e−x

2

h(x
√

2)
√

2dx =

m∑
n=0

(
N

n

)
1√
π

∫ ∞
−∞

e−x
2

h(x
√

2)dx

and finally with (10) and (11)

P [X ≤ m] ≈
m∑
n=0

(
N

n

)
1√
π

k∑
i=1

wGHi

(
Φ

(
αn −

√
2ρn xi√

1− ρn

))n(
1− Φ

(
αn −

√
2ρn xi√

1− ρn

))N−n
(12)

Similarly, we can transform the probability distribution of the defaults, leading to the
following expression

P [X = n] ≈ 1√
π

k∑
i=1

wGHi

(
N

n

)(
Φ

(
αn −

√
2ρn xi√

1− ρn

))n(
1− Φ

(
αn −

√
2ρn xi√

1− ρn

))N−n
(13)

In order to easily check the obtained results we consider six homogeneous portfolios with
100 assets and with pn = p = 0.15, common correlation between assets ρn = ρ and all loans
having the same size. We use these three measures for comparison:

1. Expected Loss (EL): EL(L) = E[L] where L is the Portfolio Loss at time T.

E[L] = 〈 ls, ps〉 (14)

where ls is the vector of losses for each scenario and ps is the corresponding vector of
probabilities. In the homogeneous portfolio the mean of the distribution is EL = p,
therefore, this is a key measure for checking the quality of the method.

2. Portfolio standard deviation: Stdev[L] =
√
E[L2]− E[L]2

3. V aRβ : Value-at-Risk with confidence level β = 99.9%. The β-quantile of the loss distri-
bution F (x)

V aRβ(X) = inf{x, F (x) ≥ β} = F−1(β) (15)

VaR is a risk measure widely used to quantify the risk. This is the measure chosen in the
Basel II Accord for the computation of capital requirements, meaning that a bank that
manages its risks according to Basel II must reserve capital by an amount of xβ = F−1(β)
to cover potential extreme losses.
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In Table 1 we can notice that the number of correct figures diminishes as we consider more
extreme cases, ρ = 0.3 or ρ = 0.5. We have included a metric called standard deviation-over-
mean ratio, which is used to calibrate the factor loadings (w =

√
ρ) for ABS (Asset-Backed-

Securities) and MBS (Mortgage-Backed-Securities).
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Figure 1: Default probabilities distributions under different asset correlation. Parameters:
N = 100 and p = 5%. Asset correlation ρ in percentage points.

ρ Mean Stdev Stdev/Mean V aR0.999

0 0.050000 0.021794 0.4359 0.1346
0.01 0.050000 0.024119 0.4824 0.1478
0.05 0.050000 0.032215 0.6443 0.2028
0.10 0.050000 0.040935 0.8187 0.2716
0.30 0.049999 0.071157 1.4231 0.5570
0.50 0.049997 0.100325 2.0066 0.8145

Table 1: Default probabilities distributions computed using a Gauss–Hermite quadrature with
20 nodes.

3 Generalized Vasicek Model

In this section we focus on the computation of the loss distribution with a general distribution
function. Schönbucher in [3] proposed the generalized one-factor model.

Assumption 3.1 (Generalized One-Factor Model) The values of the assets of the oblig-
ors are driven by a common factor Y which has distribution function G(y), and a idiosyncratic
noise component εn which is distributed according to the distribution function H(εn)

Vn(t) =
√
ρn Y +

√
1− ρn εn n ≤ N (16)

where Y ∼ G and εn, n ≤ N are independent and identically H(εn)-distributed with mean
0 and variance 1 and ρ ∈ [0, 1].
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Therefore, the generalized default probability or conditional default risk is given by

pn(y) = H

(
αn −

√
ρn y√

1− ρn

)
(17)

and must satisfy

E[pn(y)] =

∫ ∞
−∞

H

(
αn −

√
ρn y√

1− ρn

)
G′(y) dy = pn (18)

For the sake of simplicity, and without loss of generality, let us assume pn = p for all
n ∈ {1, . . . , N}, and consequently, pn(y) = p(y) for all n ∈ {1, . . . , N}. Furthermore, let us
consider a portfolio with a common asset correlation ρ, such that ρn = ρ for all n ∈ {1, . . . , N}.
We first need a numerical method for solving the previous equation for αn = α and finally we
compute the generalized default probability function given by

P [X = n] =

∫ ∞
−∞

(
N

n

)(
H

(
α−√ρ y
√

1− ρ

))n(
1−H

(
α−√ρ y
√

1− ρ

))N−n
G′(y) dy (19)

For some cases (18) can be easily solved for α, for example when considering the Vasicek
one-factor Gaussian model. In this special case we can make use of the following identity,∫ ∞

−∞
Φ

(
z − µ
σ

)
φ(z) dz = Φ

(
−µ√
σ2 + 1

)
(20)

E[pn(y)] = Φ

(
−

−α/√ρ
(
√

1− ρ/√ρ)2 + 1)1/2

)
= Φ

(
α√

1− ρ/ρ+ 1
√
ρ

)
= Φ

(
α√

1/ρ
√
ρ

)
= Φ(α) = pn ⇔ α = Φ−1(p)

Hence, in the Vasicek one-factor Gaussian model, α only depends on the individual probabil-
ity of default p, for example α = Φ−1(0.15) = −1.036433389. For other statistical distributions
more sophisticated methods are required, since there might not exist analytical expressions.
Instead, a numerical method based on the discretization of the integral in (18) by using the
double-exponential transformation can be applied (see [1, 4]). Then α is obtained by using a
root-finding algorithm (e.g. Bisection, Newton-Raphson or Brent (nag roots contfn brent,
c05ay)). Further details can be found in [2, subsection 4.2.1].

3.1 Special factor models

Until now, we have computed portfolios assuming a systematic factor and idiosyncratic factor
both normally distributed. In order to extend the one-factor model, we test the generalized
Vasicek model for other continuous distributions with support x ∈ R. Thus, we choose the
logistic distribution as an illustrative example and we refer to this model as the Logistic-factor
model.

The probability density function and the cumulative distribution function of the logistic
distribution are given by,

f(y;µ, s) =
e−

y−µ
s

s(1 + e−
y−µ
s )2

=
1

4s
sech2

(
y − µ

2s

)
=

1

4s cosh2
(
y−µ
2s

) (21)

F (y;µ, s) =
1

1 + e−
y−µ
s

=
1

2
+

1

2
tanh

(
y − µ

2s

)
(22)
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As previously stated, Y and εn are centred and standardized random variables, then we
have to choose the parameters for each factor such that they have zero mean and unit variance.

E[Y ] = µ = 0; V ar[Y ] = 1⇔ s2π2

3
= 1⇔ s =

√
3

π
. (23)

Substituting (21) and (22) in Equation (18), we obtain the following equation to be solved
for α,

π

8
√

3

∫ ∞
−∞

(
1 + tanh

(
π(α−√ρ y)

2
√

3(1− ρ)

))
sech2

(
yπ

2
√

3

)
dy = p (24)

We consider homogeneous portfolios in order to compare the result to large homogeneous
portfolio models. Given p = 0.15 and ρ = 0.1, α = −0.970082643277. Once the threshold α is
computed, we just need to evaluate the following integral for each asset n ∈ {1, . . . , N}, which
after some steps has the following form,

P [X = n] =
π

2N+2
√

3

∫ ∞
−∞

(
N

n

)(
1 + tanh

(
π(α−√ρ y)

2
√

3(1− ρ)

))n(
1− tanh

(
π(α−√ρ y)

2
√

3(1− ρ)

))N−n
× sech2

(
yπ

2
√

3

)
dy (25)

This integral cannot be directly evaluated using Gauss–Hermite quadrature, therefore we
need a general purpose integration routine. We could use several methods, such as tanh-sinh
quadrature (double exponential quadrature) or Monte Carlo using Median Latin hypercube
sampling are described in [2]. As shown in Table 2, portfolio loss distributions highly skewed
and leptokurtic (fat tails) are more difficult to compute, therefore some loss of digits is expected.
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Figure 2: Generalized Vasicek one-factor model. Default probabilities distributions under
different asset probability of default and correlation. Parameters: N = 500, p ∈ {0.05, 0.1, 0.15}
and ρ ∈ {0.1, 0.2, 0.3}.
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Parameters Mean Stdev V aR0.999

p = 0.05, ρ = 0.10 0.050000 0.033978 0.2855
p = 0.15, ρ = 0.30 0.149996 0.143692 0.8860
p = 0.10, ρ = 0.10 0.100000 0.059033 0.4582
p = 0.10, ρ = 0.20 0.100000 0.088145 0.6638

Table 2: Main portfolio metrics for generalized portfolios (Logistic-factor model).

As the number of assets in the portfolio increases, the number of quadratures needed to
obtain the same level of accuracy increases accordingly; being computationally expensive. For
larger portfolios the double exponential quadrature (applicable when the integrand is ana-
lytic) performs better, since the computation of nodes is faster and is able to handle infinite
integration intervals better. We have included a very simplified implementation in section 7.

4 The Large Portfolio Approximation

In this section we introduce the so-called Vasicek Single Factor Model for a large portfolio of
homogeneous assets. This model was initially introduced by Vasicek in [5] and generalized by
Schönbucher in [3]. The Single Factor Model increases the tractability of the one-factor model
by assuming a portfolio of homogeneous assets (pn = p and ρn = ρ) composed by a number
of obligors tending to infinity, given an explicit formula for the default distribution which is
directly derived from the Law of Large Numbers.

4.1 Properties of the Vasicek distribution

Several assumptions are considered in the Single Factor Model:

Assumption 4.1 (The number of obligors N → ∞) Due to individual defaults being in-
dependent when conditioned to the realization of the common factor Y , by the Law of Large
Numbers, the average of N fractions of defaulted obligors in the portfolio sharing the same
probability Xn converges towards the individual default probability of each individual obligor
p(Y ).

For a given realization of the systematic factor Y = y, the individual default probability is
given by

E

[ N∑
n=1

Xn

N
|Y = y

]
= p(y) = Φ

(
α−√ρy
√

1− ρ

)
(26)

Assumption 4.2 (The loss given default is deterministic and homogeneous) The loss
of each obligor due to default is expressed as a percentage of its size and is common to all oblig-
ors in the portfolio.

Assumption 4.3 (The contributions of each obligor are similar) All the obligors in the
portfolio have the same relative size sn = 1/N , the same correlation ρn = ρ and the same de-
fault threshold αn = α. The convergence of the portfolio loss distribution actually holds for
unequal relative sizes if the portfolio contains a sufficiently large number of obligors without it
being dominated by a few obligors much larger than the rest, consequently

N∑
n=1

s2
n → 0 (27)

As a consequence of these three assumptions the cumulative distribution function of portfolio
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losses can be constructed as follows

P [p(y) ≤ x] = P

(
Φ

(
Φ−1(p)−√ρ y
√

1− ρ

)
≤ x

)
= P

(
Φ−1(p)−√ρ y
√

1− ρ
≤ Φ−1(x)

)
= P

(
− y ≤ Φ−1(x)

√
1− ρ− Φ−1(p)
√
ρ

)
= Φ

(√
1− ρΦ−1(x)− Φ−1(p)

√
ρ

)
The portfolio loss distribution given by the cumulative distribution function is a continuous

distribution concentrated on the interval x ∈ [0, 1]

F (x; p, ρ) = P [p(y) ≤ x] = Φ

(√
1− ρΦ−1(x)− Φ−1(p)

√
ρ

)
(28)

which possesses a symmetry property

F (x; p, ρ) = 1− F (1− x; 1− p, 1− ρ) (29)

The portfolio loss density function or Vasicek distribution is defined as a two-parametric
(0 < p < 1 and 0 < ρ < 1) continuous distribution given by the derivative of the portfolio loss
distribution

f(x; p, ρ) =
∂F (x; p, ρ)

∂x

=

√
1− ρ
ρ

1√
2π
e
−

(
√

1−ρΦ−1(x)−Φ−1(p))2

2ρ
∂

∂x
Φ−1(x)

=

√
1− ρ
ρ

1√
2π
e
−

(
√

1−ρΦ−1(x)−Φ−1(p))2

2ρ
√

2πe
(Φ−1(x))2

2

=

√
1− ρ
ρ

e

(
−

(
√

1−ρΦ−1(x)−Φ−1(p))2

2ρ +
(Φ−1(x))2

2

)
(30)

4.1.1 Moments of the Vasicek distribution

Proposition 4.4 Let n be a positive integer and ξ1, . . . , ξn i.i.d. standard normal. If X is
Vasicek-distributed with parameters p = Φ(α) and ρ, then

E[Xn] = E

[
Φ

(
α−√ρy
√

1− ρ

)]
= E

[ n∏
i=1

P [
√
ρY +

√
1− ρξi ≤ α|Y ]

]
= P [Y1 ≤ α, . . . , Yn ≤ α]

where (Y1, . . . , Yn) is a multi-variate normal vector with E[Yi] = 0, V ar[Yi] = 1 and corr[Yi, Yj ] =
ρ, i 6= j.

Thus mean and variance expressions are:

E[X] = P [Y ≤ α] = p (31)

var[X] = E[X2]− E[X]2 = P [Y1 ≤ α, Y2 ≤ α]− p2 = Φ2(α, α, ρ)− p2 (32)

where (Y1, Y2) is a bivariate normal vector with E[Yi] = 0, V ar[Yi] = 1 and corr[Y1, Y2] = ρ,
i = 1, 2 and Φ2(·, ·, ρ) is the bivariate cumulative normal distribution function with zero mean
and variance equal to the correlation ρ.
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Finally, the quantile function or inverse cumulative distribution function can be easily
obtained from Equation (28) as follows

Φ

(√
1− ρΦ−1(x)− Φ−1(p)

√
ρ

)
= β =⇒

√
1− ρΦ−1(x)− Φ−1(p) =

√
ρΦ−1(β)

F−1(β; p, ρ) = Φ

(
Φ−1(p) +

√
ρΦ−1(β)

√
1− ρ

)
(33)

which can be used for the calculation of Value-at-Risk.

4.2 Numerical example

Table 3 shows the relative error due to the use of the approximation. Observe, that the error is
reduced for skewed and leptokurtic portfolios. In many applications the order of magnitude of
the errors is acceptable, therefore the large homogeneous approximation is significantly useful
if the characteristics of the assets within a portfolio are similar.
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Figure 3: Large homogeneous portfolio vs Vasicek one-factor model. Default probabilities
distributions under different asset probability of default and correlation. Parameters: N =
1000, p ∈ {0.05, 0.1, 0.15} and ρ ∈ {0.1, 0.2, 0.3}.

Parameters Mean Stdev V aR0.999

p = 0.05, ρ = 0.10 0.050000 (0.0%) 0.035483 (1.9%) 0.2441 (1.3%)
p = 0.15, ρ = 0.30 0.150000 (0.0%) 0.138304 (0.3%) 0.7861 (0.3%)
p = 0.10, ρ = 0.10 0.100000 (0.0%) 0.058499 (1.3%) 0.3777 (0.9%)
p = 0.10, ρ = 0.20 0.100000 (0.0%) 0.085317 (0.6%) 0.5475 (0.5%)

Table 3: Relative error (within parenthesis) with respect to Vasicek one-factor model.

In terms of computational time1, the large homogeneous portfolio is roughly 150 times faster
than the Vasicek one-factor model in our implementation of the NAG Toolbox for MATLABr.

1Intelr CoreTM i5-5300U CPU @ 2.30GHz using MATLABr R2015b.

10



5 General Loss Distribution

The Vasicek distribution implies a strong assumption; the systematic and idiosyncratic factors
are normally and standardized distributed. This fact is far from common and in general
we encounter factors with different distributions. Schönbucher provided a general portfolio
cumulative distribution function in [3] given by

F (x;α, ρ) = P [X ≤ x] = 1−G
(
α
√
ρ
−
√

1− ρ
ρ

H−1(x)

)
(34)

We can derive Equation (34) to obtain the general portfolio loss density function

f(x;α, ρ) =
∂F (x;α, ρ)

∂x
=

√
1− ρ
ρ

G′
(
α
√
ρ
−
√

1− ρ
ρ

H−1(x)

)
∂

∂x
H−1(x) (35)

and the quantile function or inverse cumulative distribution function can be easily obtained
from Equation (34)

F−1(β;α, ρ) = H

(
α−√ρG−1(1− β)

√
1− ρ

)
(36)

Now we proceed to generate explicit formulas for the large homogeneous approximation of
the Logistic-factor model.

5.1 Logistic-factor model approximation

The Logistic-factor model (L−L) is defined as Y ∼ Logistic(0,
√

3
π ) and H ∼ Logistic(0,

√
3
π ),

as previously stated. For this model we need to compute the derivative of the quantile function
of the logistic distribution

F (x;µ, s) =
1

1 + e−
x−µ
s

=⇒ F−1(p;µ, s) = ln

(
p

1− p

)
s+ µ, (37)

∂

∂p
F−1(p; s) =

s

p(1− p)
(38)

The L− L distribution function is obtained after a few steps

F (x;α, ρ) = 1− 1

2

(
1 + tanh

(
π

2
√

3ρ
(α−

√
1− ρ ln

(
x

1− x

)√
3

π
)

))
=

1

2

(
1− tanh

(
απ

2
√

3ρ
−
√

1− ρ ln
(

x
1−x

)
2
√
ρ

))
(39)

and its derivative leads to the L− L density function

f(x;α) =

√
1− ρ
ρ

π

4
√

3
sech2

(
π

2
√

3

(
α
√
ρ
−
√

1− ρ
ρ

ln

(
x

1− x

)√
3

π

)) √
3

π(1− x)x

=

√
(1− ρ)

16ρ
sech2

(
απ

2
√

3ρ
−
√

1− ρ ln
(

x
1−x

)
2
√
ρ

)
1

(1− x)x
(40)

Finally, we apply the derivative of the quantile function of the logistic distribution to obtain
the L− L quantile function

F−1(β;α, ρ) =
1

2

(
1 + tanh

(
π

2
√

3

α−√ρ ln
(

1−β
β

)√
3
π√

1− ρ

))
(41)
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As shown in Table 4, as the number of assets increases, the approximation by using the
general loss distribution improves. As previously stated, without very strict constraints in
terms of accuracy, it is worth including this approximation in your toolbox for credit risk,
since for the generalized portfolio the speedup is very significant. Furthermore, this method
can be applied to other statistical distribution with several parameters. Examples for the
exponentially-modified Gaussian distribution and the normal inverse Gaussian distribution
can be found in [2]. The usage of statistical distributions with more than two parameters
implies that we obtain extra free parameters, which increase the flexibility of the distribution
to fit the factor data (e.g. stock returns).
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Figure 4: General Loss Distribution vs. Generalized Vasicek Model: Y ∼ Logistic(0,
√

3/π)
and H ∼ Logistic(0,

√
3/π).

N Mean Stdev V aR0.999 CPU
1000 0.150000 (0.0%) 0.078573 (1.0%) 0.6121 (0.3%) ×1338
5000 0.150000 (0.0%) 0.077952 (0.2%) 0.6105 (0.1%) ×1472
10000 0.150000 (0.0%) 0.077874 (0.1%) 0.6103 (0.0%) ×1804

Table 4: Main metrics. General Loss Distribution vs. generalized Vasicek Model: Y ∼
Logistic(0,

√
3/π) and H ∼ Logistic(0,

√
3/π). Relative error (within parenthesis) with re-

spect to the generalized Vasicek one-factor model. CPU speed up ratio compared to generalized
Vasicek model.

6 Conclusions

We described the most widely used models for the calculation of default probabilities in portfolio
credit risk. We introduced the Vasicek one-factor model and its generalization for factors
following non Normal distributions. Similarly, we presented the large portfolio approximation
method and we generated closed-form expressions for the so-called general loss distribution. In
section 7 we provide code for the main routines used throughout this technical report. The code
is not designed to be fast, but to serve as a guidance and point of departure for more elaborate
implementations. Furthermore, the code can be easily extended to heterogeneous portfolios.
As shown, only a few lines of code using the NAG Toolbox for MATLABr are required to
implement the studied models, which makes it extraordinarily suitable for prototyping.
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7 Code

7.1 NAG Functions

• nag stat pdf normal (g01ka): probability density function of the Normal distribution.

• nag stat prob normal (g01ea): cumulative Normal distribution function.

• nag stat inv cdf normal (g01fa): inverse of cumulative Normal distribution.

• nag stat prob bivariate normal (g01ha): lower tail probability for the bivariate Nor-
mal distribution.

• nag stat prob binomial (g01bj): lower tail, upper tail and point probabilities associ-
ated with a binomial distribution.

• nag quad 1d gauss wgen (d01bc): weights and abscissae for a Gaussian integration rule
with a specific number of abscissae.

• nag specfun tanh (s10aa): hyperbolic tangent function.

• nag specfun sinh (s10ab): hyperbolic sine function.

• nag specfun cosh (s10ac): hyperbolic cosine function.

7.2 Main routines

7.2.1 Vasicek one-factor model

Listing 1: loss distribution.m

1 f unc t i on [ l o s s , prob cum , prob ] = l o s s d i s t r i b u t i o n (pd , corr , N, . . .
2 nodes )
3

4 l o s s = ze ro s (N, 1) ;
5 prob cum = ze ro s (N, 1) ;
6 prob = ze ro s (N, 1) ;
7

8 % compute Gauss−Hermite weights and a b s c i s s a e
9 i t ype = nag in t (4 ) ;

10 a = 0 ;
11 b = 1 ;
12 c = 0 ;
13 d = 0 ;
14 [w, x ] = nag quad 1d gauss wgen ( i type , a , b , c , d , nag in t ( nodes ) ) ;
15

16 s q r t p i = 1 / s q r t ( p i ) ;
17

18 % number o f d e f a u l t s = 0
19 prob cum (1) = s q r t p i ∗ gauss hermite (pd , corr , 0 , N, w, x , nodes ) ;
20 prob (1 ) = prob cum (1) ;
21

22 f o r i =2:N
23 l o s s ( i ) = ( i −1) / N;
24 prob cum ( i ) = s q r t p i ∗ gauss hermite (pd , corr , i −1, N, w, x ,

nodes ) ;
25 prob ( i ) = prob cum ( i ) − prob cum ( i −1) ;
26 end

13



Listing 2: gauss hermite.m

1 f unc t i on prob k = gauss hermite (pd , corr , k , N, w, x , nodes )
2

3 prob k = 0 ;
4 f o r i =1: nodes
5 prob k = prob k + w( i ) ∗ b i n o m i a l d e f a u l t p r o b (pd , corr , k , . . .
6 N, x ( i ) ) ;
7 end

Listing 3: binomial default prob.m

1 f unc t i on binomial = b i n o m i a l d e f a u l t p r o b (pd , corr , k , N, y )
2

3 d e f a u l t p r o b = o b l i g o r d e f a u l t p r o b (pd , corr , y ) ;
4 binomial = nag s ta t p rob b inomia l ( nag in t (N) , de fau l t prob , . . .
5 nag in t ( k ) ) ;

Listing 4: obligor default prob.m

1 f unc t i on phi = o b l i g o r d e f a u l t p r o b (pd , corr , y )
2

3 alpha = n a g s t a t i n v c d f n o r m a l (pd) ;
4 t = ( alpha − s q r t (2 ∗ co r r ) ∗ y ) / s q r t (1 − co r r ) ;
5 phi = nag stat prob normal ( t ) ;

Listing 5: portfolio stats.m

1 f unc t i on [ p mean , p stdev ] = p o r t f o l i o s t a t s ( l o s s , prob )
2

3 p mean = l o s s ’ ∗ prob ;
4 p stdev = s q r t ( ( l o s s . ˆ 2 ) ’ ∗ prob − p mean ˆ 2) ;

7.2.2 Large homogeneous portfolio

Listing 6: lhp loss distribution.m

1 f unc t i on [ l o s s , prob ] = l h p l o s s d i s t r i b u t i o n (pd , corr , N)
2

3 alpha = n a g s t a t i n v c d f n o r m a l (pd) ;
4 t = s q r t ( (1 − co r r ) / co r r ) ;
5 l o s s = ze ro s (N, 1) ;
6 prob = ze ro s (N, 1) ;
7

8 f o r i =1:N
9 l o s s ( i ) = ( i −1) / N;

10 i f ( i−1 > 0)
11 c = n a g s t a t i n v c d f n o r m a l ( l o s s ( i ) ) ;
12 e l s e
13 c = n a g s t a t i n v c d f n o r m a l ( 0 . 0 1 / N) ;
14 end
15

16 t1 = 0 .5 ∗ c ˆ 2 ;
17 t2 = 1 / (2 ∗ co r r ) ;
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18 t3 = ( alpha − s q r t (1 − co r r ) ∗ c ) ˆ 2 ;
19 prob ( i ) = t ∗ exp ( t1 − t2 ∗ t3 ) / N;
20 end

Listing 7: lhp portfolio stats.m

1 f unc t i on [ p mean , p stdev ] = l h p p o r t f o l i o s t a t s (pd , corr , l o s s , . . .
2 prob )
3

4 p mean = l o s s ’ ∗ prob ;
5

6 norm inv pd = n a g s t a t i n v c d f n o r m a l (pd) ;
7 bivar = n a g s t a t p r o b b i v a r i a t e n o r m a l ( norm inv pd , norm inv pd , . . .
8 co r r ) ;
9 p var i ance = bivar − pd ˆ 2 ;

10 p stdev = s q r t ( p var i ance ) ;

Listing 8: lhp quantile.m

1 f unc t i on p o r t q u a n t i l e = l h p q u a n t i l e (pd , corr , beta )
2

3 inv pd = n a g s t a t i n v c d f n o r m a l (pd) ;
4 i nv be ta = n a g s t a t i n v c d f n o r m a l ( beta ) ;
5

6 t = ( inv pd + s q r t ( co r r ) ∗ i nv be ta ) / s q r t (1 − co r r ) ;
7 p o r t q u a n t i l e = nag stat prob normal ( t ) ;

7.2.3 Generalized Vasicek one-factor model

Listing 9: logistic loss distribution.m

1 f unc t i on [ l o s s , prob cum , prob ] = l o g i s t i c l o s s d i s t r i b u t i o n ( . . .
2 alpha , corr , N, m, nodes )
3

4 l o s s = ze ro s (N, 1) ;
5 prob cum = ze ro s (N, 1) ;
6 prob = ze ro s (N, 1) ;
7

8 % compute Double exponent i a l weights and a b s c i s s a e
9 [w, x , h ] = doub l e exponent i a l node s (m, nodes ) ;

10

11 % number o f d e f a u l t s = 0
12 prob cum (1) = doub l e exponent i a l ( alpha , corr , 0 , N, w, x , h) ;
13 prob (1 ) = prob cum (1) ;
14

15 f o r i =2:N
16 l o s s ( i ) = ( i −1) / N;
17 prob cum ( i ) = doub l e exponent i a l ( alpha , corr , i −1, N, w, x , h) ;
18 prob ( i ) = prob cum ( i ) − prob cum ( i −1) ;
19 end
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Listing 10: double exponential.m

1 f unc t i on prob k = doub l e exponent i a l ( alpha , corr , k , N, w, x , h)
2

3 nodes = length (w) ;
4

5 prob k = 0 ;
6 f o r i =1: nodes
7 prob k = prob k + w( i ) ∗ l o g i s t i c b i n o m i a l d e f a u l t p r o b ( . . .
8 alpha , corr , k , N, x ( i ) ) ;
9 end

10

11 prob k = prob k ∗ 0 .5 ∗ pi ∗ h ;

Listing 11: double exponential nodes.m

1 f unc t i on [w, x , h ] = doub l e exponent i a l node s (m, n)
2

3 h f a c t o r = −m / (m + 1) ;
4 h = n ˆ h f a c t o r ;
5

6 x = ze ro s (2 ∗ n , 1) ;
7 w = ze ro s (2 ∗ n , 1) ;
8

9 f o r i=−n : n
10 aux = 0 .5 ∗ pi ∗ nag spec fun s inh ( i ∗ h) ;
11 x ( i+n+1) = nag spec fun s inh ( aux ) ;
12 w( i+n+1) = nag spec fun cosh ( i ∗ h) ∗ nag spec fun cosh ( aux ) ;
13 end

Listing 12: logistic binomial default prob.m

1 f unc t i on binomial = l o g i s t i c b i n o m i a l d e f a u l t p r o b ( alpha , corr , . . . .
2 k , N, y )
3

4 d e f a u l t p r o b = l o g i s t i c o b l i g o r d e f a u l t p r o b ( alpha , corr , y ) ;
5 binom = nag s ta t p rob b inomia l ( nag in t (N) , de fau l t prob , nag in t ( k ) )

;
6 l o g i s p d f = l o g i s t i c p d f (y , 0 , s q r t (3 ) / p i ) ;
7 binomial = binom ∗ l o g i s p d f ;

Listing 13: logistic obligor default prob.m

1 f unc t i on phi = l o g i s t i c o b l i g o r d e f a u l t p r o b ( alpha , corr , y )
2

3 t = ( alpha − s q r t ( co r r ) ∗ y ) / s q r t (1 − co r r ) ;
4 phi = l o g i s t i c c d f ( t , 0 , s q r t (3 ) / p i ) ;
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7.2.4 General loss distribution

Listing 14: lhp logistic loss distribution.m

1 f unc t i on [ l o s s , prob ] = l h p l o g i s t i c l o s s d i s t r i b u t i o n ( alpha , . . .
2 corr , N)
3

4 t = s q r t ( (1 − co r r ) / co r r ) ;
5

6 l o s s = ze ro s (N, 1) ;
7 prob = ze ro s (N, 1) ;
8

9 f o r i =1:N
10 l o s s ( i ) = ( i −1) / N;
11

12 i f ( i−1 > 0)
13 c = l o g i s t i c i n v c d f ( l o s s ( i ) , 0 , s q r t (3 ) / p i ) ;
14 d = l o g i s t i c i n v c d f d e r i v ( l o s s ( i ) , s q r t (3 ) / p i ) ;
15 e l s e
16 c = n a g s t a t i n v c d f n o r m a l ( 0 . 0 1 / N) ;
17 d = l o g i s t i c i n v c d f d e r i v ( 0 . 0 1 / N, s q r t (3 ) / p i ) ;
18 end
19

20 aux = alpha / s q r t ( co r r ) − t ∗ c ;
21 t1 = l o g i s t i c p d f ( aux , 0 , s q r t (3 ) / p i ) ;
22 prob ( i ) = t ∗ t1 ∗ d / N;
23 end

Listing 15: lhp logistic quantile.m

1 f unc t i on p o r t q u a n t i l e = l h p l o g i s t i c q u a n t i l e ( alpha , corr , beta )
2

3 t = alpha − s q r t ( co r r ) ∗ l og ( (1 − beta ) / beta ) ∗ s q r t (3 ) / p i ;
4 p o r t q u a n t i l e = l o g i s t i c c d f ( t / s q r t (1 − co r r ) , 0 , s q r t (3 ) / p i ) ;

Listing 16: logistic pdf.m

1 f unc t i on [ r e s u l t , i f a i l ] = l o g i s t i c p d f (x , mu, sigma )
2

3 t = 0 .5 ∗ ( x − mu) / sigma ;
4 [ d , i f a i l ] = nag spec fun cosh ( t ) ;
5 i f ( i f a i l ˜= 0)
6 e r r o r ( ’ Error occurred . ’ )
7 end
8 r e s u l t = 1 / (4 ∗ sigma ∗ d ˆ 2) ;

Listing 17: logistic cdf.m

1 f unc t i on [ r e s u l t , i f a i l ] = l o g i s t i c c d f (x , mu, sigma )
2

3 t = 0 .5 ∗ ( x − mu) / sigma ;
4 [ d , i f a i l ] = nag spec fun tanh ( t ) ;
5 i f ( i f a i l ˜= 0)
6 e r r o r ( ’ Error occurred . ’ )
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7 end
8 r e s u l t = 0 .5 ∗ (1 + d) ;

Listing 18: logistic inv cdf.m

1 f unc t i on r e s u l t = l o g i s t i c i n v c d f (p , mu, sigma )
2

3 t = p / (1 − p) ;
4 r e s u l t = log ( t ) ∗ sigma + mu;

Listing 19: logistic inv cdf deriv.m

1 f unc t i on r e s u l t = l o g i s t i c i n v c d f d e r i v (x , sigma )
2

3 r e s u l t = sigma / ( (1 − x ) ∗ x ) ;
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7.3 Examples

Listing 20: example vasicek.m

1 % example Vasicek one−f a c t o r model .
2

3 pd = 0 . 0 5 ; % common p r o b a b i l i t y o f d e f a u l t
4 co r r = 0 . 1 0 ; % common c o r r e l a t i o n between a s s e t s
5 N = 100 ; % number o f a s s e t s
6 nodes = 20 ; % number o f quadrature nodes
7

8 % compute p o r t f o l i o l o s s d i s t r i b u t i o n
9 t i c ;

10 [ l o s s , prob cum , prob ] = l o s s d i s t r i b u t i o n (pd , corr , N, nodes ) ;
11 e lapsed = toc ;
12

13 % compute main p o r t f o l i o met r i c s
14 [ p mean , p stdev ] = p o r t f o l i o s t a t s ( l o s s , prob ) ;
15

16 % compute standard deviaton over mean
17 std mean = p stdev / p mean ;
18

19 % compute Value−at−Risk (VaR at l e v e l 99.9%)
20 VaR 999 = q u a n t i l e ( l o s s , prob cum , 0 . 999 ) ;
21

22 % r e s u l t s :
23 f p r i n t f ( ’ \ n P o r t f o l i o met r i c s \n ’ )
24 f p r i n t f ( ’============================ \n ’ )
25 f p r i n t f ( ’ prob . d e f a u l t = %10.3 f \n ’ , pd )
26 f p r i n t f ( ’ c o r r e l a t i o n = %10.3 f \n ’ , c o r r )
27 f p r i n t f ( ’ a s s e t s = %10.3 i \n ’ , N)
28 f p r i n t f ( ’ P o r t f o l i o mean = %10.6 f \n ’ , p mean )
29 f p r i n t f ( ’ P o r t f o l i o stdev = %10.6 f \n ’ , p s tdev )
30 f p r i n t f ( ’ Stdev over mean = %10.6 f \n ’ , std mean )
31 f p r i n t f ( ’VaR (99.9%%) = %10.4 f \n ’ , VaR 999 )
32 f p r i n t f ( ’CPU time ( sec ) = %10.3 f \n ’ , e l apsed )

Portfolio metrics

============================

prob. default = 0.050

correlation = 0.100

assets = 100

Portfolio mean = 0.050000

Portfolio stdev = 0.040935

Stdev over mean = 0.818697

VaR (99.9%) = 0.2716

CPU time (sec) = 0.023
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Listing 21: example lhp.m

1 % example l a r g e homogeneous p o r t f o l i o .
2

3 pd = 0 . 1 5 ; % common p r o b a b i l i t y o f d e f a u l t
4 co r r = 0 . 3 0 ; % common c o r r e l a t i o n between a s s e t s
5 N = 10000; % number o f a s s e t s
6

7 % compute p o r t f o l i o l o s s d i s t r i b u t i o n
8 t i c ;
9 [ l o s s , prob ] = l h p l o s s d i s t r i b u t i o n (pd , corr , N) ;

10 e lapsed = toc ;
11

12 % compute main p o r t f o l i o met r i c s
13 [ p mean , p stdev ] = l h p p o r t f o l i o s t a t s (pd , corr , l o s s , prob ) ;
14

15 % compute standard deviaton over mean
16 std mean = p stdev / p mean ;
17

18 % compute Value−at−Risk (VaR at l e v e l 99.9%)
19 VaR 999 = l h p q u a n t i l e (pd , corr , 0 . 999 ) ;
20

21 % r e s u l t s :
22 f p r i n t f ( ’ \ n P o r t f o l i o met r i c s \n ’ )
23 f p r i n t f ( ’============================ \n ’ )
24 f p r i n t f ( ’ prob . d e f a u l t = %10.3 f \n ’ , pd )
25 f p r i n t f ( ’ c o r r e l a t i o n = %10.3 f \n ’ , c o r r )
26 f p r i n t f ( ’ a s s e t s = %10.3 i \n ’ , N)
27 f p r i n t f ( ’ p o r t f o l i o mean = %10.6 f \n ’ , p mean )
28 f p r i n t f ( ’ p o r t f o l i o stdev = %10.6 f \n ’ , p s tdev )
29 f p r i n t f ( ’ s tdev over mean = %10.6 f \n ’ , std mean )
30 f p r i n t f ( ’VaR (99.9%%) = %10.4 f \n ’ , VaR 999 )
31 f p r i n t f ( ’CPU time ( sec ) = %10.3 f \n ’ , e l apsed )

Portfolio metrics

============================

prob. default = 0.150

correlation = 0.300

assets = 10000

portfolio mean = 0.150000

portfolio stdev = 0.137911

stdev over mean = 0.919408

VaR (99.9%) = 0.7836

CPU time (sec) = 0.020
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Listing 22: example generalized vasicek.m

1 % example g e n e r a l i z e d Vasicek one−f a c t o r model : L o g i s t i c f a c t o r
model .

2

3 alpha = −0.970082643277; % thre sho ld alpha , p r e v i o u s l y computed
4 co r r = 0 . 1 0 ; % common c o r r e l a t i o n between a s s e t s
5 N = 10000; % number o f a s s e t s
6 m = 12 ; % double exponent i a l parameter
7 nodes = 300 ; % number o f quadrature nodes
8

9 % compute p o r t f o l i o l o s s d i s t r i b u t i o n
10 t i c ;
11 [ l o s s , prob cum , prob ] = l o g i s t i c l o s s d i s t r i b u t i o n ( alpha , corr , . . .
12 N, m, nodes ) ;
13 e lapsed = toc ;
14

15 % compute main p o r t f o l i o met r i c s
16 [ p mean , p stdev ] = p o r t f o l i o s t a t s ( l o s s , prob ) ;
17

18 % compute standard deviaton over mean
19 std mean = p stdev / p mean ;
20

21 % compute Value−at−Risk (VaR at l e v e l 99.9%)
22 VaR 999 = q u a n t i l e ( l o s s , prob cum , 0 . 999 ) ;
23

24 % r e s u l t s :
25 f p r i n t f ( ’ \ n P o r t f o l i o met r i c s \n ’ )
26 f p r i n t f ( ’============================ \n ’ )
27 f p r i n t f ( ’ th r e sho ld = %10.6 f \n ’ , alpha )
28 f p r i n t f ( ’ c o r r e l a t i o n = %10.3 f \n ’ , c o r r )
29 f p r i n t f ( ’ a s s e t s = %10.3 i \n ’ , N)
30 f p r i n t f ( ’ P o r t f o l i o mean = %10.6 f \n ’ , p mean )
31 f p r i n t f ( ’ P o r t f o l i o stdev = %10.6 f \n ’ , p s tdev )
32 f p r i n t f ( ’ Stdev over mean = %10.6 f \n ’ , std mean )
33 f p r i n t f ( ’VaR (99.9%%) = %10.4 f \n ’ , VaR 999 )
34 f p r i n t f ( ’CPU time ( sec ) = %10.3 f \n ’ , e l apsed )

Portfolio metrics

============================

prob. default = 0.150

threshold = -0.970083

correlation = 0.100

assets = 10000

Portfolio mean = 0.150000

Portfolio stdev = 0.077874

Stdev over mean = 0.519159

VaR (99.9%) = 0.6103

CPU time (sec) = 78.455
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Listing 23: example lhp logistic.m

1 % example l a r g e homogeneous p o r t f o l i o − L o g i s t i c f a c t o r model .
2

3 pd = 0 . 1 5 ; % common p r o b a b i l i t y o f d e f a u l t
4 alpha = −0.970082643277; % thre sho ld alpha , p r e v i o u s l y computed
5 co r r = 0 . 1 0 ; % common c o r r e l a t i o n between a s s e t s
6 N = 10000; % number o f a s s e t s
7

8 % compute p o r t f o l i o l o s s d i s t r i b u t i o n
9 t i c ;

10 [ l o s s , prob ] = l h p l o g i s t i c l o s s d i s t r i b u t i o n ( alpha , corr , N) ;
11 e lapsed = toc ;
12

13 % compute main p o r t f o l i o met r i c s
14 [ p mean , p stdev ] = p o r t f o l i o s t a t s ( l o s s , prob ) ;
15

16 % compute standard deviaton over mean
17 std mean = p stdev / p mean ;
18

19 % compute Value−at−Risk (VaR at l e v e l 99.9%)
20 VaR 999 = l h p l o g i s t i c q u a n t i l e ( alpha , corr , 0 . 999 ) ;
21

22 % r e s u l t s :
23 f p r i n t f ( ’ \ n P o r t f o l i o met r i c s \n ’ )
24 f p r i n t f ( ’============================ \n ’ )
25 f p r i n t f ( ’ prob . d e f a u l t = %10.3 f \n ’ , pd )
26 f p r i n t f ( ’ th r e sho ld = %10.6 f \n ’ , alpha )
27 f p r i n t f ( ’ c o r r e l a t i o n = %10.3 f \n ’ , c o r r )
28 f p r i n t f ( ’ a s s e t s = %10.3 i \n ’ , N)
29 f p r i n t f ( ’ P o r t f o l i o mean = %10.6 f \n ’ , p mean )
30 f p r i n t f ( ’ P o r t f o l i o stdev = %10.6 f \n ’ , p s tdev )
31 f p r i n t f ( ’ Stdev over mean = %10.6 f \n ’ , std mean )
32 f p r i n t f ( ’VaR (99.9%%) = %10.4 f \n ’ , VaR 999 )
33 f p r i n t f ( ’CPU time ( sec ) = %10.3 f \n ’ , e l apsed )

Portfolio metrics

============================

prob. default = 0.150

threshold = -0.970083

correlation = 0.100

assets = 10000

Portfolio mean = 0.150000

Portfolio stdev = 0.077796

Stdev over mean = 0.518639

VaR (99.9%) = 0.6101

CPU time (sec) = 0.040
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