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Abstract

We examine using the Stochastic Grid Bundling Method (SGBM) to price a Bermu-
dan swaption driven by a one-factor LIBOR Market Model (LMM). Using a well-
known approximation formula from the finance literature, we implement SGBM with
one basis function and show that it is around six times faster than the equivalent
Longstaff-Schwartz method. The two methods agree in price to one basis point, and
the SGBM path estimator gives better (higher) prices than the Longstaff-Schwartz
prices. A closer examination shows that inaccuracies in the approximation formula
introduce a small bias into the SGBM direct estimator.

1 Introduction

The LIBOR Market Model (LMM) is an interest rate market model. It owes much of its
popularity to the fact that it is consistent with Black’s pricing formulas for simple interest
rate derivatives such as caps and swaptions, see, for example, [3].

Under LMM all forward rates are modelled as individual processes, which typically
results in a high dimensional model. Consequently when pricing more complex instruments
under LMM, Monte Carlo simulation is usually used.

When pricing products with early-exercise features, such as Bermudan swaptions, a
method is required to determine the early-exercise policy. The most popular approach to
this is the Longstaff-Schwartz Method (LSM) [8]. When time is discrete (as is usually the
case in numerical schemes) Bellman’s backward induction principle says that the price of
the option at any exercise time is the maximum of the spot payoff and the so-called contin-
uation value. In LSM this continuation value can be approximated through regression: a
set of basis functions is chosen which are closely correlated with the option value, and these
are then regressed on the option values at the next time step to get a simple functional
form for the continuation value. From the continuation value it is easy to determine the
optimal exercise policy.

LSM is an intuitive method which is easy to implement. Due to its generality, it is
also widely applicable. However, many sample paths are often required to generate a
suitably small confidence interval for the option value, which means that accurate pricing
with LSM can be slow. The Stochastic Grid Bundling Method (SGBM) introduced in
[5] is a competitor to LSM. While SGBM is also based on regression, it makes different
approximations and requires more analytic inputs. The result is a method which has much
lower variance, but is often difficult to implement for more complex underlyings since the
necessary analytic inputs are frequently not available.

To date SGBM has been applied to geometric Brownian motion (see [6]), to the Heston
model, and to a Heston—Hull-White process (see [1]). In all these cases it compared
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favourably to LSM. The aim in this paper is to see whether SGBM can be applied to the
LIBOR Market Model and how the results compare to LSM. We chose to price a Bermudan
swaption since this is a relatively simple path dependent product which is still quite widely
traded.

2 Bermudan Pricing Problem

Consider a finite time horizon [0, 7] and let W = (W (t))+>0 be a d-dimensional Brownian
motion under the risk-neutral measure P. Let (B (t)) +>o denote a risk-less bank account
and (S(t))t>0 a risky asset, and define a fixed set of times 7 := {TYM_,, where 0 = Tp <
Ty <---<Ty =T. Let h(S(T),)) be the intrinsic value of a Bermudan option, i.e. the
holder of the option receives max (h(Tm), 0) if the option is exercised at time T,.

The value V (Tp, S(1p)) of the Bermudan option at time Tp is then given by

VT, S(T) = maxe | "2 )

where 7 is a stopping time taking values in 7. To find the option price at time Ty we apply
backward induction. Starting from the option value at maturity Ths, we know the option
value is equal to the payoff

V (T, S(Thr)) = max (h(S(Tw)),0) . (2)

For any other time T, with 0 < m < M we assume by induction that V(T},41,S(Tn+1))
is known. If we define the continuation value at time T;, by

B(Tm)
B(Tm—f—l)

then the value of the Bermudan option at time 7;, is given by

QT S(T) = E WEHhanwnﬂsum], 3)

V (T, S(Tm)) = max (h(S(Tin)), Q(Trn, S(T))) (4)

if the option is still alive at time 7T,,. The main challenge is the computation of the
continuation value in (3), which is typically accomplished by the LSM and is based on
regression.

2.1 Bermudan Option Pricing with Longstaff-Schwartz (LSM)

The LSM [8] is a Monte Carlo based method to price Bermudan style options. As in
any Monte Carlo method, a set of N paths is generated, {S?(T),) : p = 1,...,N;m =
0,..., M}, all starting from the same value S(0) = Sy. For each sample path p the option
value at maturity V (T, SP(Th)) can be computed by (2).

Assume now that the set of option values V(Ty,+1,SP(T)n41)), for p = 1,..., N, is
known. To compute the continuation value at time 7T;,, we regress the discounted option
values at time T}, 11 on a set of basis functions ¢ (1), S(T)), for k= 1,..., K, where K
is a fixed (preferably small) number. In the language of simple linear regression, at each
time step T}, the dependent variables are given by

B(Tm)

Yp = mV(TmH, Sp(Tm+1))v (5)

the independent variables are given by

Tpk = ¢k(Tma Sp(Tm))v (6)



the regression parameters are 3, and the independent error is €, resulting in the standard
regression equation

K
Yp = Z BrTpk + Ep, (7)
k=1
for p=1,..., N, which is readily solved.
One of the key assumptions in LSM is that at any time T, we have

B(Tm)

K
mV(Tm+l75(Tm+l)) ~ Z,Bk(bk(Tm,S(Tm)), (8)

k=1

where the (s were determined from (7). This functional form involves the stochastic
process at time Ty,4+1 and at time 7;,. The SGBM method makes a slightly different
assumption, as will be discussed later. Note that the parameters g are clearly dependent
on time T,.

Using (3) and (8) we can approximate the continuation value for each path by

B(Tm)

TS0 =5 ™

V(Toost, S(Tons1)) ] sp<Tm>} ©)

%

K
E[ S Bu( L) Ty S(Tn)) | S (L)
k=1

[
M=

ﬁk(Tm)¢k(va Sp(Tm)) :

b
Il
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Once we have the continuation value at time 7,,, we can compute the option value at T},
by (4) as
V(Tm7 Sp(Tm)) = max (h(Sp(Tm)a Q(Tma Sp(Tm))) . (10)

To be specific, not all sample paths p = 1,..., N are considered in (7) at each time step,
only the paths that are in the money. If a sample path is out of the money, no choice has
to be made, and the option value is just the discounted option value at the next time step
8]

While LSM is intuitive and easy to implement, there are some drawbacks. The main
problem is the assumption (8) that LSM uses to bridge the time difference from 7,41 to T),.
It says that a function of the process at the next time step is a linear combination of basis
functions of the process at the current time step. There are, therefore, two approximations
here: the one saying that V can be approximated by a linear combination of K basis
functions (this is the standard regression assumption) and the second saying that S(7},41)
can be approximated by S(T},,). It was shown in [4] that this time difference is a big source
of randomness, and many sample paths are needed to reduce the variance suitably.

2.2 Bermudan Option Pricing with the Stochastic Grid Bundling Method
(SGBM)

The SGBM differs from LSM in the way it handles the approximation (8). It clearly
separates out the two assumptions that LSM combines.

We follow the construction in [1]. By backward induction we can assume that the
option values V(Ty41, SP(Tim+1)) are known for all sample paths p. Suppose we are now
at time T,,,. SGBM begins by constructing a regression approximation to V' at time T}, 41:
it sets

Yp = V(Tny1, SP(Trns1)),  and  zpr = op(Tinr1, SP(Tint1)), (11)



and solves the regression equation

K
Up = Brpk + &p, (12)
k=1

where the regression parameters [ clearly depend on time T},11. This means that SGBM
makes the approximation

K

V(Tri1, S (Tin1)) % Y BT 1) (L1, 57 (Trni1)), (13)
k=1

for all sample paths p. Note that the parameters fi(7,,+1) are determined during the
iteration (backward induction) at time T5,, i.e. the S (Ths)’s are determined during the
iteration at time Th;_1 and so forth.

2.2.1 Projection

The biggest difference between SGBM and LSM is in the projection from time 7},41 to
time T},,. Using (13) we compute the continuation value at time 7T}, as

Q. 57(T,)) = E| eV (i, S(Toin) | 73, (14
K
~ 5| o S BT T, i) | S7(T3)
m+1 =1
- B(T,) )
= gﬁk(Tm—&-l)E{BCZwM¢k(Tm+17S(Tm+1)) ‘ S (Tm)] :

Setting 14(Tm, S*(To)) = E| 5y 01T 1, S(Tns1)) | S7(Tn)] we gt

M=

k=1

The value of the option at time 7, is then given by (4) as before. Clearly the choice of
basis functions for SGBM is more involved than for LSM, as they not only have to be
representative for the option value, but we also require an expression for their discounted
conditional expectation .

2.2.2 Bundling

SGBM improves the regression approximation by grouping sample paths into bundles and
regressing only within a bundle. The intuition here is simple: a Taylor series approximation
of given order is most accurate close to the point where it was constructed. In a similar
way, if we fix a (small) interval B and perform the regression (12) only for those z, € B,
then we would expect a better fit to the data within B than if we had regressed across
the whole space (see [1]). There is a caveat though, in that, there needs to be a sufficient
number of sample paths in B for the regression to accurately capture the shape of the
option value V. Note that the regression parameters g5 will now be dependent on B: each
bundle will have its own set of regression parameters so that we construct a set of local
approximations.

At each time step T3,, SGBM constructs X,,, bundles By, ..., Bx,,. Each bundle B;
consists of a number of sample paths SP(7},). The way in which bundles are determined



is discussed later, but the idea is that sample paths in the same bundle will have values of
the basis functions that are “close”, i.e.

SPY(Ty,), SP*(T,,) € B; implies (16)
Ok(Tnt1, S” (Tnt1)) — G(Lint1, S (Ling1))| s “small”,

for all k£ and any sample paths p1,p2, so that when the regression is performed within a
bundle then a local approximation to the value function is constructed.

2.2.3 Greeks

In contrast to LSM, the Greeks ‘Delta’ and ‘Gamma’ can be obtained by SGBM at almost
no extra costs, but the accuracy depends on the quality of the basis functions. For example,

the option Delta is defined as
oV (T, S(To))
oS(Ty)

and can be approximated (assuming it is not optimal to exercise at Tp) as

A =

V(To, S(To) + =) — V(To, S(To))

A = lim
r—0 xT
i S Be(T1) (i (To, S(To) + ) — i (To, S(Tv))) a7
z—0 X
- O (S(Tp))

Note that the B (711) are the parameters determined during the iteration (backward induc-
tion) at time Tp. A generalization to multiple underlying assets is straight forward, and
described in [6].

2.3 Low Biased Price Estimate

With both LSM or SGBM it is easy to construct a low biased path estimator once an
exercise policy has been obtained. We generate a new set of sample paths and apply the
previously found exercise boundary to them; as soon as a path crosses the boundary, we
exercise the option and compute the discounted payoff.

This calculation is cheap as no additional regressions are required, however, numerical
results show that a large number of paths are required to reduce the variance of the final
price approximation suitably.

3 Bermudan Swaption on the LIBOR Market Model (LMM)

We briefly define the LIBOR Market Model just to fix notation, and then derive a pricing
formula for Bermudan swaptions driven by it.

3.1 The LIBOR Market Model

Consider a finite set of tenor dates {T;,}M* 1 such that 0 = Ty < Ty < ... < Tarps
and denote by d,, the length of the period [T}, T),+1]. Denote the forward LIBOR rate
over [T;,T;41] as of time 0 < ¢ < T; by L;(t) and write the vector of forward rates as the
(M + 1)-dimensional vector L(t) = (Lo(t), ..., La(t)). LIBOR rates are stochastic simple
interest rates, which we consider as the risk-free rates. Note that L;(t) only exists when

t<T,.



We define a bank account B*(T5,) as the value at time T}, of an investment of one unit
of currency at time T, which we can write in terms of the LIBOR rates as

m—1
B*(Ty) = B*(L(Tw)) = [] [+ 6,L;(Ty), form=1,...,M +1, (18)
j=0

and which we will take as the numeraire asset. The associated measure is called the spot
measure.

Denote by P;(t) the time ¢ value of a zero-coupon bond, paying one unit of currency
at maturity 7;, for ¢ = 0,..., M + 1, where P;(t) is defined for 0 < ¢ < T;. Then we can
express the forward LIBOR rates as

Pi(t) = Pita(t)
6;Piy1(t)

We can invert this equality for a tenor date T),, and write bond value P;(T},) as

Li(t) = 0<t<T, i=01,...,M. (19)

1—1
=[] 0 +6,L;(Tw)™", fori=m,...,M+1. (20)
]:m

Note that it is not possible in LMM to compute P;(t) for an arbitrary 0 < t < T;, as
LIBOR rates do not specify accrual over periods shorter than the difference between tenor
dates.

We model the forward LIBOR rates by a system of SDEs of the form

dL;(t)
Li(t)

= i (6, L(t)dt +s;(t) "dW (), 0<t<Tj, andi=1,..., M, (21)

where W is a d- dimensional standard Brownian motion under the spot measure, s; is a
d-dimensional vector and s denotes its transpose. We allow u; and s; to depend on the
current vector of rates L(t ) and the current time ¢, but we assume s; to be deterministic.
Using the restriction that the discounted bond prices have to be martingales under this
measure we find that the drift parameter must be given by

7 TS
j=n(t)

where 7(t) is the unique integer satisfying Ty )—1 <t < Ty ().
Since a swaption is an option on an interest rate swap, we briefly examine the basics
of swaps first.

3.2 Interest Rate Swap

For any times T, < T, define the forward swap value S},)(Tm, L(T},)) to be the value at
time T, and state L(7T},) of a receiver interest rate swap over the time interval [T}, Th/]
with payment dates Tj4+1,...,Th+1. The holder of the swap receives a fixed interest rate
K and pays the floating LIBOR rate over some notional (face) value F. The swap value
is found by summing over all its payments: from (19) we have

Sy (T, L(Th, ZF(S Py (T, (K L;(Ty, )) (23)



for m < r. The future swap rate Ry (T, L(T;,)) for m < r is the rate K that makes the
swap Sy (T, L(Tm)) fair, in other words that solves Si, (T, L(T;,)) = 0 for K. This is
just

M

Ry (T, L(Tr)) = Z Pia(T))

M
Zj:r F)j‘f'l (Tm)
thus the swap rate can be written as a linear combination of forward LIBOR rates with

stochastic weights. Using (24) we can formulate the value for the receiver swap in terms
of the swap rate, which gives

Li(Tm), (24)

Sy (T, L(Th)) = (K Riyy (T, L(T; )ZF& P (T, (25)

In contrast to a receiver swap, a payer swap is an interest rate swap in which the holder
of the swap pays the fixed rate. The value of a payer swap is equal to the value of the
receiver swap, but of opposite sign.

3.3 Bermudan Swaption

A swaption is an option on a swap. A Bermudan swaption allows multiple times at which
the holder can exercise the option and enter into the underlying swap. With Tj; the
maturity of the option, we let T, be the reset date with 0 < r < M. The holder of the
option may exercise it at any tenor between T, and Th;, but may not exercise it before
time T.. To value a Bermudan swaption, we need to find the optimal stopping time 7

taking values in T := {r,r + 1,..., M} which maximises the option value
S (T, L(T7))
Ty) = E|l———— 2
V(To) = max [ B*(T;) ] ’ (26)

where E is the expectation under the spot-measure corresponding to the numeraire B*. We
denote the set of simulated LMM sample paths by {LP(T,,) :m=1,...,M;p=1,...,N}.
The payoff function h(L(T},)) of a Bermudan swaption is given by

max (Spn) (T, L(Tn)),0) ,  if r <m < M, (exercise dates)

) (27)
0, otherwise.

hL(Tn)) = {

Pricing proceeds by backward induction. For the final time step Th; the swaption value is
simply equal to its payoff

V(Tar, LP(Thr)) = (LP(Tar))- (28)

At each preceding time step Ths—1,...,T) the option value is given by (4) for which we
need to compute a continuation value. For both LSM and SGBM this requires a set of
basis functions.

3.4 Basis Functions

The choice of basis functions under LSM and SGBM mainly relies on experience and numer-
ical tests. It was shown in |7] that the number of sample paths needed grows exponentially
with the number of basis functions used. Over specification resulting from too many basis
functions makes the regression more sensitive to outliers. Therefore we look for just a few
basis functions that are highly correlated to the Bermudan swaption value.

Using the full set of zero coupon bonds or forward rates L(¢) as the basis would result
in too many basis functions, especially when one bears in mind that swaptions are sensitive



to correlations between LIBOR rates, which means that cross-product terms would also
be needed in the basis.

A process that captures almost all the dynamics of the Bermudan swaption is the
underlying swap. In [3] the author suggests to use the swap rate of the nearest-to-maturity
swap as a basis function, as well as its square (and a constant). For LSM we therefore set
K = 3 and define

Ry (T, L(Tn))F 1 i r <m < M,
Ry (T, L(T)*t i m<r

= R[max(mﬂ")] (va L(Tm))k_17

¢k(TmaL(Tm)) = { (29>

for k =1,2,3. For SGBM we will see that fewer basis functions are needed.

3.5 Simulation of the LIBOR Market Model

In (21) the term s;(t) determines both the correlation and volatility structure. It is a
common choice to write

Si(t) = Ui(t)Ai(t), (30)

where o;(t) determines the volatility of the forward LIBOR rate L;(¢) and \;(¢) is a vector
specifying the correlation among forward rates. This allows independent calibration of
correlation and volatility. We choose a piece-wise constant deterministic volatility function
of the parametric form

0i(t) = viexp{—y(T; — T;))}, (31)

where v; is an individual factor for the process L;(t), and ~ is a fixed common component.
For a fixed ~, the v; are calibrated to caplet implied volatilities. Then + is chosen such
that our system calibrates to the quoted price for a European swaption in [2].

To simulate the SDEs for the LIBOR rates we apply an Euler scheme to log(L;(T},)).
This is equivalent to approximating L; by a geometric Brownian motion over [T}, Ty,+1]
with drift and volatility parameters frozen at T,,. This method is attractive since for a
deterministic volatility, L; is close to log-normal. The Euler approximation is then given
by

LiTr) % LT 50 ([T LT)) = 50T ] -4 VBT i ) (32)

where Z,,+1 is a d-dimensional vector of correlated normal random numbers where the
correlation is specified by A;(Ty,). The drift p;(T),, L(T},)) is as in (22), but we empha-
size that in the drift the LIBOR rates L(7},) are taken to be constant over the interval
[T, Tint1]- Note also that for Euler time steps we use the tenor dates 717, ..., Ty and do
not simulate the process at times between tenor dates, which is justified since the volatility
function o;(t) is piecewice constant between tenor dates.

4 Pricing Bermudan Swaptions with SGBM

Two difficulties arise when pricing Bermudan swaptions under the LMM. The first is due
to the fact that we are working with a high-dimensional system of equations, and bundling
a high-dimensional space is expensive. The second problem is the choice of basis func-
tions since an analytic expression (or suitably accurate approximation) is required for the
conditional expectations .



4.1 Conditional Expectations of Basis Functions

Ideally one would use the same basis functions (29) for SGBM as one does for LSM. However
(recall (14) and (15)) SGBM requires a functional form for the conditional expectation

B*(Tm)

Vi (Tons L(Tin)) = E[B*@W

01, L(Ts1)) \ L<Tm>] , (33)

for each k where the expectation is taken under the spot-measure. The availability of such
analytic expressions is one of the biggest factors affecting the choice of basis.
For ¢ = 1 we find from (18) that

B*(Trm)
B (Tm+1)

1

T 1+ 0L (T) (34

(T L(T) = 5| LT
For ¢o(Tn, L(Tin)) = Rimax(m,r)) (Tm, L(T)), however, it is easily shown via Ito’s Lemma
that the swap rate is not log-normal. Thus, the conditional expectation is difficult to com-
pute. Luckily, the swap rate is close to log-normal as shown in [3]. Using an approximation
introduced by Rebonato (see e.g. [2]), we can approximate the swap rate by a log-normal
process.

Recall that the underlying swap rate of the nearest-to-maturity swap as of Ty,11 is
given by

M

-PZ' 1 Tm 1
R[max(r,m—i—l)] (Tm+17L<Tm+1)) = Z Wi + ( + ) Li(Tm—l—l);
i=max(r,m+1) Zj:max(r,m—i-l) Pj+1 (Tm+1)

in other words a weighted average of LIBOR rates. The weight factors are stochastic, but
[3] argues that their volatility is small compared to the volatility of the forward LIBOR
rates. If we approximate the weights by their known values at time 7,,, then we find
that the swap rate is a linear combination of forward rates at time 7},11. The conditional
expectation of these forward rates can be readily approximated as well if we use (32) to
approximate L;(T},+1) by a log-normal variable

B*(Tn)
E[ B*(Tm—i-l)

Since the forward swap rate is approximated by a linear combination of the forward rates,
we find an approximation for the conditional expectation

Li(Trm+1)

— Li(Tw) L n@n)ss
”E“]N1+&hu%f ' (3)

M

Vo (Thn, L(Ty)) ~ Z P 1(Thn)

[ Ll (Tm)eﬂi (TmaL(TnL))éi
M
i=max(r,m+1) ijmax(r,erl) P (Tm)

1+ 0y L (Thn)

(36)

Thus the swap rate can be used as a basis function under SGBM provided the approxima-
tion (36) is accurate enough.

In [6], SGBM was applied to several options driven by geometric Brownian motion. It
was shown that in this model a constant and a first order basis function served well enough
to approximate the option price. By contrast, LSM requires at least second order bases
as well. We note that using the squared swap rate as a basis function in SGBM would be
difficult since approximation formulas for the squared rate are not readily available. For
Greeks, especially Gamma, higher order basis functions are typically required.



4.2 Bundling the LIBOR Market Model

The LMM contains M +1 different underlying stochastic forward rates. Recall from Section
2.2.2 that the purpose of bundling is to partition the state space into small pieces so that
local approximations can be made on each piece.

Partitioning the high dimensional state space of a non-trivial process in this way leads
to exponential growth in the number of bundles, and hence exponential growth in the
computational complexity of the SGBM algorithm. In addition, a huge number of sample
paths would be needed to ensure a sufficient number in each bundle. High dimensional
spaces therefore have to be handled by some form of dimension reduction. Typically, one
chooses a mapping function f which takes the state L(7},) and maps it down to a target
space, ideally R. The bundling can then be performed in R on the mapped values. A good
mapping function should have the following properties:

1. when the target space is bundled, each bundle should contain sample paths which
have “similar” values of the basis functions. This addresses (16) and ensures that when
we regress paths within a bundle, we do indeed construct a local approximation to
the option value

2. the mapped value should ideally be a sufficient statistic for the computation of the
conditional expectations of the basis functions (the 1’s). This would avoid having
to invert the mapping function since by assumption given f(T,,L(7),)) we would
be able to compute each ¥y (T, L(T,,)) without needing the value of L(7},). This
is not necessary but it is convenient.

Since we have only one non-trivial basis function, namely the swap rate, we can take
as our mapping function s, the conditional expectation of the swap rate. Then the
second condition above is trivially satisfied, while the first is true in an Ly sense since the
conditional expectation s is the best prediction of ¢ in the Lo metric.

To determine the bundles in R we apply a so-called equal number bundling on X,,
bundles at time T;,. The aim is to get roughly an equal number of sample paths in each
bundle. This method of bundling was selected primarily for its speed and simplicity. In [5]
the authors argue that the quality of the bundling is not very important when good basis
functions are used.

To speed up the bundling we use only the set of Nypqin << N paths to generate bundles.
At each time step we order the training paths with respect to the mapping function, and
paths with rankings between (Jxﬁ + 1 and 4~ N belong to the j* bundle. The minimum
and maximum path values in each bundle are then taken to be the bundle boundaries.

Once the bundles at each time step have been fixed, we generate the full set of NV
sample paths and use the bundle boundaries to assign paths to bundles.

5 Numerical Results

We present numerical results comparing the pricing of Bermudan swaptions on the LIBOR
Market Model with SGBM and LSM. We consider a constant time § = % between tenor
dates, and set T, = md, for m = 0,...,20. We value an ATM Bermudan swaption with
reset date T, = Ty = 4 years and maturity Thy = Tbg = 10 years, having semi-annual
payments and exercise moments 7}, for j =8, ..., 20.

To test the accuracy and computational time of SGBM against LSM, we calibrate a one
factor LMM according to the initial LIBOR curve shown in Table 1 with the caplet implied
volatilities shown in Table 2 (the data comes from [2]). The volatility decay parameter -y

n (31) is set to 0.07.
In SGBM, three types of errors can occur when approximating the option value:

10



T; 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
L(0,T;) 422.8 279.1 306.7 306.7 372.8 372.8 405.1 405.1 4199 419.9

T; 5 5.5 6 6.5 7 7.5 8 8.5 9.0 9.5
L(0,T;) 445.0 445.0 462.6 462.6 481.6 481.6 496.0 496.0 508.8 508.8

Table 1: Forward LIBOR curve (in BPS) on 18 November 2008. Source: [2]

i 1 2 3 4 5 6 7 8 9 10
Ceap(Tiy7y) D/a 293 29.3 293 208 208 183 183 17.8 178

i 11 12 13 14 15 16 17 18 19 20
Oeap(Ts_ 1 163 163 167 167 161 161 157 157 157 157

Table 2: Implied volatilities o qpr,_, 1) (in %) for caplets over [T;—1,T;] at strike rate
3.5%. Source: [2]

E1 The error in approximating the option value by a linear combination of basis func-
tions. In [1] it is shown that this error can be reduced efficiently by bundling.

E2 The error in approximating the conditional expectation of the swap rate v (Ty,, L(T},))
by the formula (36).

E3 The error in estimating the regression parameters based on the sampled data, which
is related to the number of paths.

According to the Central Limit Theorem, E3 can be reduced by increasing the number
of sample paths. We study the other errors numerically.

5.1 Swap Rate Approximation (SRA) Error

The error E2 is caused by using the SRA formula (36) to compute 2(T, L(Th,)) =~
E[¢2(Trm+1, L(Tm+1) | L(T),)]. This approximation consists of two parts. Firstly, the
‘weights are frozen’, i.e., the bond prices in (36) are frozen at T),. Secondly, the forward
rates L;(T,,+1) are approximated by a log-normal random variable which allows us to
compute the expectation.

To test the accuracy of these approximations, we ran a nested Monte Carlo simulation
to estimate the conditional expectations for a variety of initial LIBOR curves. Since the
discretization scheme we use also approximates the forward rates as log-normal random
variables, both the Monte Carlo estimate and the approximation suffer from this discretiza-
tion bias. We take the nested Monte Carlo result as the true value and therefore the error
in the SRA will be dominated by ‘freezing the weights’. The variation in the weights is far
less than the variation in the forward rates and it takes over 10 sample paths to reduce
the variance of the Monte Carlo estimate, enough to make the error in the approximation
visible.

Figure 1 shows the results of the nested Monte Carlo simulation. We simulated 100
different LIBOR curves at the reset date Tg from the single factor LIBOR model described
above. At this date, the swap rate still depends on all the forward rates L;(T3), i =
8,..., M, as can be seen in (36), and thus the worst approximation can be expected at
this time. For each of the 100 forward curves generated, we used an inner Monte Carlo
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simulation of 10° paths to estimate the conditional expectation. This value (denoted MC
in the figure) was compared to the swap rate approximation formula SRA.

Swap Rate Approximation (SRA) vs Monte Carlo (MC)

x107°
T T T T T T % b
O 14 || o Relative Error (MC - SRA)/MC -
bl — 99% Relative Confidence int. . |
10 o© T
8 - . ()O -
L 00 i
o

Relative Error: (MC - SRA)/M

N o D B O
%
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Figure 1: SRA formula vs MC for 100 simulated forward curves in the one-factor LMM.
The solid line plots 3 \/‘17@ /MC where ¢ is the standard error of the MC estimate. The
solid line is therefore a 99% confidence interval for (MC — 15)/MC. It is clear that the

error in the SRA increases as the future swap rate increases.

On average, the approximation formula for 12 tends to underestimate the true expected
value, and the relative error increases linearly when the expected swap rate increases. When
pricing a receiver swaption, the option value is negatively correlated to 19, which implies
that SGBM overestimates the option price, and the opposite is true for payer swaptions.

5.2 Effects of Bundling
In both SGBM and LSM there are two phases to the calculation:

e In the first phase (also called the direct estimate) the optimal exercise strategy is es-
timated. This procedure is based on Monte Carlo simulation together with regression
onto basis functions. This phase also produces an option price estimate

e The second phase is optional: given an exercise strategy, we can generate a new batch
of sample paths and apply the strategy to them to get a lower bound for the true
option price. This phase is called the path estimator.

The first phase is by far the most expensive in terms of runtime, whereas the second phase
is almost identical for both methods. We consider the SGBM with 4,8 and 16 bundles. We
did not use more bundles in order to avoid over-fitting the option value surface. A large
number of bundles will give a price estimate with a low standard error, but a significant
bias can occur.

Since SGBM generates a single price estimate, an estimate of the standard error of the
price is not readily available. We therefore computed 10 different SGBM price estimates
and took the mean and standard error of this sample.

We see that by increasing the number of bundles the price estimates for SGBM con-
verges, and the exercise strategy of the lower-bound SGBM path estimator outperforms
the LSM path estimator for both receiver and payer swaptions. It was shown in [6] that
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Figure 2: Comparison of SGBM and LSM for the receiver and payer swaption. We simu-
lated 10 batches of N = 10% sample paths. Standard errors are too small to plot.

when the conditional expectation of the basis functions are exact, the SGBM direct es-
timator is high-biased. This is what what we observe for the receiver swaption (indeed
the situation is made worse due to the low bias of the SRA and the negative correlation,
see (25), between the option value and the basis function). For the payer swaption the
SGBM direct estimate is however not high-biased due to the low bias in the SRA and a
positive correlation between the option value and the basis function. It is interesting that
the low-biased path estimator gives a better (higher) price than the direct estimator itself.

We found that SGBM with 8 bundles is sufficient to effectively reduce bias (see Fig-
ure 2), and is small enough not to suffer from over-fitting when using only 10 paths.

5.3 Computational Time

We compare the computational time of the first phase (direct estimator) of SGBM against
LSM in terms of the standard errors of the price estimates.? Numerical experiments show
that the computational time for SGBM is practically independent of the number of bundles,
thus we limit the discussion to SGBM with 8 bundles. For the same number of LIBOR
sample paths, the computational time for the SGBM direct estimator is around six times
larger® than the LSM direct estimator due to the additional computation of the vy’s.
One advantage of SGBM is that regressions are split up per bundle, thus each regression
is smaller and regressions can be performed in parallel, but a synchronization between
parallel threads is still required every time step since paths can change bundle over time.

However, as is clear from Figure 3 the standard error of the SGBM direct estimator is
much lower than the standard error of the LSM direct estimator. This is a big advantage: it
means that fewer sample paths can be used in the SGBM direct estimator than in the LSM
direct estimator and path generation under LMM is typically expensive. SGBM requires
about 10 times fewer paths than LSM to get a price estimate with a similar standard
error. Figure 4 compares the standard error and overall runtime (including LIBOR path
generation) for the LSM and SGBM direct estimators. All in all, we find that SGBM is
around 6 times faster than LSM for a given level of accuracy.

Turning to the path estimators, we find (as expected) that the SGBM and LSM estima-
tors have the same standard error. The computational time for the SGBM path estimator

*We performed the experiments on an 2.66 GHz Intel Core 2 duo with 8 GB of memory and the
algorithms are implemented in C. Regression and random number generation are performed using the
NAG Library. Parallelization of the path generation (over two threads) is performed with OpenMP.

PLSM direct estimator vs SGBM direct estimator is 0.08s vs 0.6s at N = 10,000; 1.0s vs 6.0s at
N =100, 000; and 8.0s vs 50.0s at N = 1,000,000
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Figure 3: Standard errors of direct estimators vs number of sample paths for the receiver
swaption. The figure for payer swaption is similar. Note that SGBM requires around 10
times fewer sample paths to achieve the same standard error as LSM.
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Figure 4: Overall runtime (LIBOR path generation -+ direct estimator) vs standard error
for receiver and payer swaptions. Note that SGBM is around 6 times faster than LSM for
the same level of standard error.

is about five times® more than the LSM path estimator due to the additional computation
of the v¢’s. With careful coding it should be possible to reduce this overhead. The path
estimator runtimes are much lower than the direct estimator runtimes.

6 Conclusions and Outlook

In this paper we explored how to apply the novel Stochastic Grid Bundling Method to
a high-dimensional problem, the Bermudan swaption on the LIBOR Market Model, and
compared it to Longstaff-Schwartz. The two main challenges with SGBM are to choose
a proper set of basis functions and a bundling strategy. For the basis functions we used
a constant and the nearest-to-maturity swap rate. The conditional expectation of the
swap rate was computed via a lognormal approximation formula, and the bundling was
performed on this conditional expectation.

°LSM path estimator vs SGBM path estimator is 0.02s vs 0.1s at N = 10,000; 0.2s vs 1.0s at N =
100, 000; and 2.0s vs 10.0s at N = 1,000,000
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With the swap rate approximation formula, the SGBM price agrees with the LSM price
up to a basis point, and the SGBM path estimators give better (higher) prices than the
LSM prices. The current approach cannot in general deliver highly accurate option prices
due to the inaccuracies in the approximation formula, and to an inherent bias in the SGBM
method. The main advantage of SGBM is that it requires fewer paths to obtain a price
estimate with a similar standard error as LSM, which results in SGBM being around 6
times faster than LSM overall.

The SGBM can therefore serve as a fast method to get reasonably accurate prices.

Further improvements can be made by improving the swap rate approximation and
exploring different basis functions or bundle mappings. Also, more extensive testing should
be done under different calibrations and volatility structures of the driving LMM.
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7 List of NAG C Library Routines Used

The following NAG C Library routines were used to implement the Stochastic Grid Bundling
Method and Longstaff-Schwartz Method on a one factor LIBOR Market Model:

nag_init_repeatable, nag_rand_normal, nag_summary_stats_lvar,
nag_double_quantiles, nag_regsn_mult_linear
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