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1 Introduction

The Cox proportional hazard model relates the time to an event, usually death or failure,
to a number of explanatory variables known as covariates. Some of the observations may be
right-censored, that is the exact time to failure is not known, only that it is greater than a
known time.

Let ti, for i = 1, 2, . . . , n, be the failure time or censored time for the ith observation with
the vector of m covariates zi. It is assumed that censoring and failure mechanisms are inde-
pendent. The hazard function, λ(t, z), is the probability that an individual with covariates
z fails at time t given that the individual survived up to time t. In the Cox proportional
hazards model [1] λ(t, z) is of the form:

λ(t, z) = λ0(t) exp
(
zTβ + ω

)
where λ0 is the base-line hazard function, an unspecified function of time, β is a vector of
unknown parameters and ω is a known offset.

The NAG routine for fitting a Cox proportional hazards model is G12BAF if you are using
the Fortran library and g12bac if you are using the C library. In this article we will show how
to use these routines to perform the three main approaches for automatic variable selection,
that is, choosing which explanatory variables to include in the model. The three approaches
described are; forward selection, backward selection and stepwise selection.

When discussing the NAG routines used in these analyses we concentrate on the Fortran
library, however example programs and code snippets have been provided for both libraries.

2 Forward Selection

The forward selection process can be described as follows:

1. Start with the null model (that is a model with no explanatory variables),

2. Calculate Si, a score for each variable not in the model, adjusted for all variables already
in the model,

3. Find j such that Sj≥Si for all i, i̸=j, i.e. we find the variable (not in the model) with the
largest value of S. We denote the variable associated with the jth score, zj ,

4. Calculate p, the p-value associated with the Sj ,

5. If p > pa then go to step 8,

6. Add variable zj to the model.

7. If there are still variables not in the model then go to step 2,

8. Stop.
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In cases where, at step 3, there are two or more variables with the highest score, one is
chosen. This choice is arbitary.

In order to perform a forward selection procedure one must therefore choose a scoring statistic,
S, and a cut-off pa. When performing a forward selection on a Cox proportional hazards
model one well known statistical package uses the Score test statistic for S and has a default
value of 0.05 for pa.

2.1 Score Test Statistic

The Score test statistic, S, is given by:

S(β0) =

(
∂ lnL

∂β
(β0)

)T(
∂2 lnL

∂β2 (β0)

)−1(
∂ lnL

∂β
(β0)

)
where lnL is the log-likelihood function. S can then be used to test a hypothesis of the form:

H0 : β = β0 vs H1 : β ̸=β0

Under the null hypothesis, H0, S(β0) has a χ2
ν-distribution where ν is the number of variables

being tested.

2.2 Calculating the Score Test

G12BAF has a number of output parameters, including the variance-covariance matrix, Σ,
associated with the estimated values of β, as returned in COV, and the value of the score
function, U(β), as returned in SC. It should be noted that, although they share a common
name, the score function U is not the Score test statistic, S, that we will use during the
forward selection process.

Whilst being primarily designed to estimate the covariate coefficient parameters, β, G12BAF
can be used to calculate the values of the other output parameters for a given value of β
by setting the number of iterations, MAXIT, to zero. It is this feature that we utilize to
calculate the Score test statistic.

The score function, returned by G12BAF is given by

U = U(β) =
∂ lnL

∂β

and the covariance matrix by

Σ = I(β)
−1

,

I(β) = −∂2 lnL

∂β2

therefore the score test statistic, S is given by

S = U
TΣU
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which can be calculated using the following code snippets:

Fortran:
! F06PEF: calculate COV * SC

Allocate (covsc(ip))

Call dspmv(’Upper’,ip,1.0_wp,cov,sc,1,0.0_wp,covsc,1)

! F06EAF: calculate transpose(SC) * COV * SC

! which gives the Score test statistic, S

s = ddot(ip,sc,1,covsc,1)

C:
/* f16pec: calculate cov * sc,

using the default error structure, which will terminate if an error

occurs as we should only ever be supplying valid input arguments, so

routine should not fail */

covsc = NAG_ALLOC(ip, double);

nag_dspmv(Nag_ColMajor,Nag_Upper,ip,1.0,cov,sc,1,0.0,covsc,1,

NAGERR_DEFAULT);

/* calculate transpose(sc) * cov * sc, which gives the

Score test statistic */

for (i = 0, s = 0.0; i < ip; i++) s+= sc[i] * covsc[i];

where ip is the number of variables in the model. The p-value associated with S can be
obtained using:

Fortran:
p = g01ecf(’Upper’,s,df,ifail)

C:
p = g01ecc(Nag_UpperTail,s,df,&fail);

where df is the degrees of freedom associated with the Score test statistic, ν.

Given a model that currently contains m parameters, the Score test statistic tends to be used
to test two types of hypothesis;

1. βi = 0 for i = 1, 2, . . .,m, usually referred to as the global hypothesis as it tests whether all
the parameters in the model are zero simultaneously. When testing the global hypothesis
ν = m.

2. βj = 0, given βi = β̂i, for i ̸=j. This tests that one parameter is zero, given the value of
the other parameters and therefore ν = 1. This is the hypothesis used when calculating
the p-value in step 4 of the forward selection process.

3 Backward Selection

The backward selection process is:
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1. Start with the full model (that is a model containing all the explanatory variables),

2. Calculate Wi, a score for each variable in the model, adjusted for all other variables in
the model,

3. Find k such that Wk≤Wi for all i, i̸=k, i.e. we find the variable (in the model) with the
smallest value of W . We denote the variable associated with the kth score, zk,

4. Calculate p, the p-value associated with Wi,

5. If p < pd then go to step 8,

6. Drop variable zk from the model,

7. If there are still variables in the model then go to step 2,

8. Stop.

In cases where, at step 3, there are two or more variables with the lowest score, one is chosen.
This choice is arbitary.

In order to perform a backward selection procedure one must therefore choose a scoring
statistic, W , and a cut-off pd. When performing a backward selection on a Cox proportional
hazards model one well known statistical package uses the Wald test statisic for W and has
a default value for pd of 0.05.

3.1 Wald Test Statistic

The Wald test statistic, W , is given by:

W =
(
β̂ − β0

)T
(
∂2 lnL

∂β2

(
β̂
))(

β̂ − β0

)
where, β̂ are the maximum likelihood estimates of the model parameters, β and lnL is the
log-likelihood function. The test statistic W can then be used to test a hypothesis of the
form:

H0 : β = β0 vs H1 : β ̸=β0

Under the null hypothesis, W has a χ2
ν-distribution where ν is the number of variables being

tested.

3.2 Calculating the Wald Test Statistic

When calculating the Wald test statistic we again make use of the fact that G12BAF can
return the covariance matrix, Σ, for a given vector of parameter estimates, β̂. The Wald test
statistic is therefore given by

W =
(
β̂ − β0

)T

Σ
−1

(
β̂ − β0

)
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Rather than inverting the covariance matrix, Σ directly, we use a Cholesky decomposition
to obtain the upper triangular matrix, U , such that Σ = UTU and then solve the system of
equations Ux = β̂ − β0 for x, before finally calculating W = xTx.

As Σ is a covariance matrix, it is positive semidefinite, although in the majority of cases
it will be positive definite. The standard Cholesky factorization only works on a positive
definite matrix. The Fortran library has a routine, DPSTRF, which performs a Cholesky
factorization with complete pivoting, allowing the (rare) semidefinite cases to be handled.
Unfortunately, as of Mark 23, the C library does not have such a routine, although it should
be included at Mark 24. Therefore the code for calculating the Wald test statistic differs
somewhat between the Fortran and C.

In the Fortran code we decompose the covariance matrix using F07KDF. Because G12BAF
stores the covariance matrix in packaged storage, where as DPSTRF requires the matrix in
unpacked storage, we first must unpack the matrix

! copy COV from packed format to upper triangular format

Allocate (ccov(ip,ip))

k = 0

Do j = 1, ip

Do i = 1, j

k = k + 1

ccov(i,j) = cov(k)

End Do

End Do

before calling the factorization routine

! use default tolerance in F07KDF

tol = 0.0_wp

! F07KDF: factorize COV so that COV = transpose(U) * U, where

! CCOV = COV on entry and U on exit

Allocate (work(2*ip),piv(ip))

Call dpstrf(’Upper’,ip,ccov,ip,piv,rank,tol,work,info)

where ip is the number of covariates in the current model. In the C code we use nag dpptrf
which performs the Cholesky factorization on a positive definite matrix in packed storage,
so this time we do not need to unpack the covariance matrix. We do still need to copy it as
nag dpptrf overwrites the input matrix.

/* copy cov */

lcov = ip*(ip+1)/2;

ccov = NAG_ALLOC(lcov, double);

for (i = 0; i < lcov; i++) ccov[i] = cov[i];

/* f07gdc: factorize cov so that cov = transpose(U) * U, where ccov = cov

on entry and U on exit */

nag_dpptrf(Nag_ColMajor,Nag_Upper,ip,ccov,NAGERR_DEFAULT);

Because we are using the default NAG error structure, NAGERR_DEFAULT nag dpptrf will
terminate if Σ is semidefinite.
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Once the factorization has been performed we use a back solver to obtain x = U−T
(
β̂ − β0

)
:

Fortran:

! pivot B into PB

Allocate (pb(ip))

Do i = 1, ip

pb(i) = b(piv(i))

End Do

! F06YJF: solve CCOV x = PB for x, putting the result in PB

Call dtrsm(’Left’,’Upper’,’Transpose’,’NonUnit’,rank,1,1.0_wp,ccov,ip, &

pb,ip)

C:

/* copy b */

cb = NAG_ALLOC(ip, double);

for (i = 0; i < ip; i++) cb[i] = b[i];

/* f16plc: solve ccov * x = cb for x, putting the result in cb */

nag_dtpsv(Nag_ColMajor,Nag_Upper,Nag_Trans,Nag_NonUnitDiag,ip,1.0,ccov,cb,

1,NAGERR_DEFAULT);

As can be seen above, in the Fortran code we have to take into account the pivotting per-
formed by DPSTRF when copying the parameter estimates, b. The copy is required in both

cases as both back solvers, DTRSM and nag dtpsv overwrite b, so that b holds
(
β̂ − β0

)
on

entry and x on exit.

Finally W is calculated:

Fortran:

w = ddot(rank,pb,1,pb,1)

C:

for (i = 0, w = 0.0; i < ip; i++) w+= cb[i] * cb[i];

The C library does not have a documented equivalent of DDOT, which performs the dot
product of two vectors, therefore in the C code snippet we need to use a for loop. The
p-value associated with W can be obtained using:

Fortran:
p = g01ecf(’Upper’,s,df,ifail)

C:
p = g01ecc(Nag_UpperTail,s,df,&fail);

where df is the degrees of freedom associated with the Wald test statistic, ν.

Given a model that currently contains m parameters, the Wald test statistic tends to be used
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to test two types of hypothesis;

1. βi = 0 for i = 1, 2, . . .,m, usually referred to as the global hypothesis as it tests whether all
the parameters in the model are zero simultaneously. When testing the global hypothesis
ν = m.

2. βj = 0, given βi = β̂i, for i ̸=j. This tests that one parameter is zero, given the value of
the other parameters and therefore ν = 1. This is the hypothesis used when calculating
the p-value in step 4 of the backward selection process. In this case, the Wald test statistic
simplifies to

W =
β̂2
i

σii

where σii is the (i, i)th element if Σ.

4 Stepwise Selection

The last variable selection process we consider is stepwise selection. Stepwise selection can
be considered as an amalgamation of the forward and backward processes as at each iteration
a forward selection is performed, followed by a backward elimination. The process can be
summarised as:

1. Start with the null model (that is a model with no explanatory variables),

2. Calculate Si, a score for each variable not in the model, adjusted for all variables already
in the model,

3. Find j such that Sj≥Si for all i, i̸=j, i.e. we find the variable (not in the model) with the
largest value of S. We denote the variable associated with the jth score, zj ,

4. Calculate p, the p-value associated with the Sj ,

5. If p > pa then go to step 8,

6. Add variable zj to the model.

7. Calculate Wi, a score for each variable in the model, adjusted for all other variables in
the model,

8. Find k such that Wj≤Wi for all i, i̸=k, i.e. we find the variable (in the model) with the
smallest value of W . We denote the variable associated with the kth score, zk,

9. Calculate p, the p-value associated with Wi,

10. If p≥pd then

a. Drop variable zk from the model,

b. If zk = zj , i.e. the variable that was added at this iteration was also dropped, then go
to step 12.
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11. If there are still variables not in the model then go to step 2,

12. Stop.

In order to perform a stepwise selection procedure one must therefore choose two scoring
statistics, S and W , and a two cut-offs pa and pd. The scoring statistics could be the same,
but the the same well known statistical package again uses the Score statistic for S and the
Wald test statisic for W and uses the same a default value of 0.05 for for pa and pd.

As we already know how to calculate both the Score test statistic and the Wald test statistic
we can perform stepwise selection utilising the same code as we developed before.

5 Further Comments

Both Cox proportional hazards routines, G12BAF and g12bac, require the design matrix to
be supplied. In cases where all of the covariates are binary or continuous (i.e. each covariate
has a single degree of freedom), the design matrix is the same as a matrix holding the data.
In cases where some of the covariates are categorical (i.e. they can take one of a set of discrete
values) and are not binary (i.e. the set of discrete values has more than two values), then
some preprocessing must be performed to obtain a series of dummy variables. A description
of dummy variables and the various ways they can be produced can be found in Section 3 of
the documentation for G04EAF.

The example code supplied with this whitepaper makes the assumption that all of the co-
variates being considered have a single degree of freedom. If this is not the case, then some
recoding will be necessary. The recoding will need to allow dummy variables to be added
or dropped from the model as a block, for example, if a covariate can take one of k possible
values, then it can be represented by k − 1 dummy variables. These k − 1 dummy variables
need to be added or dropped from the model together, as it usually does not make sense to
include a subset of them. In addition the degrees of freedom used when calculating p-value
will need to the additional degrees of freedom into account.

A side effect of the example code assuming that all of the covariates being considered have
a single degree of freedom, i.e. ν = 1 in step 4 of the backward selection process is that the
simplified version of the Wald test statistic is all that is required (i.e. W = β̂2

i /σii). However,
to demonstrate a more complicated case where the simplification is not possible we have
included an example of testing the global null hypothesis using the Wald statistic.
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Referenced NAG Routines

Fortran Library
F06EAF Dot product of two real vectors
DDOT Dot product of two real vectors
F06PEF Matrix-vector product, real symmetric packed matrix
DSPMV Matrix-vector product, real symmetric packed matrix
F06YJF Solves a system of equations with multiple right-hand sides, real trian-

gular coefficient matrix
DTRSM Solves a system of equations with multiple right-hand sides, real trian-

gular coefficient matrix

F07KDF Cholesky factorization of real symmetric positive semidefinite matrix
DPSTRF Cholesky factorization of real symmetric positive semidefinite matrix

G01ECF Computes probabilities for χ2 distribution

G12BAF Fits Cox’s proportional hazard model

C Library
f07gdc Cholesky factorization of real symmetric positive definite matrix, packed

storage
nag dpptrf Cholesky factorization of real symmetric positive definite matrix, packed

storage

f16pec Matrix-vector product, real symmetric packed matrix
nag dspmv Matrix-vector product, real symmetric packed matrix
f16plc System of equations, real triangular packed matrix
nag dtpsv System of equations, real triangular packed matrix

g01ecc Probabilities for χ2 distribution

g12bac Fits Cox’s proportional hazard model

References

[1] D R Cox. Regression models in life tables (with discussion). J. Roy. Statist. Soc. Ser. B,
34:187–220, 1972.

10 of 10

http://www.nag.co.uk/numeric/fl/nagdoc_fl23/xhtml/F06/f06eaf.xml
http://www.nag.co.uk/numeric/fl/nagdoc_fl23/xhtml/F06/f06eaf.xml
http://www.nag.co.uk/numeric/fl/nagdoc_fl23/xhtml/F06/f06pef.xml
http://www.nag.co.uk/numeric/fl/nagdoc_fl23/xhtml/F06/f06pef.xml
http://www.nag.co.uk/numeric/fl/nagdoc_fl23/xhtml/F06/f06yjf.xml
http://www.nag.co.uk/numeric/fl/nagdoc_fl23/xhtml/F06/f06yjf.xml
http://www.nag.co.uk/numeric/fl/nagdoc_fl23/xhtml/F07/f07kdf.xml
http://www.nag.co.uk/numeric/fl/nagdoc_fl23/xhtml/F07/f07kdf.xml
http://www.nag.co.uk/numeric/fl/nagdoc_fl23/xhtml/G01/g01ecf.xml
http://www.nag.co.uk/numeric/fl/nagdoc_fl23/xhtml/G12/g12baf.xml
http://www.nag.co.uk/numeric/CL/nagdoc_cl23/html/F07/f07gdc.html
http://www.nag.co.uk/numeric/CL/nagdoc_cl23/html/F07/f07gdc.html
http://www.nag.co.uk/numeric/CL/nagdoc_cl23/html/F16/f16pec.html
http://www.nag.co.uk/numeric/CL/nagdoc_cl23/html/F16/f16pec.html
http://www.nag.co.uk/numeric/CL/nagdoc_cl23/html/F16/f16plc.html
http://www.nag.co.uk/numeric/CL/nagdoc_cl23/html/F16/f16plc.html
http://www.nag.co.uk/numeric/CL/nagdoc_cl23/html/G01/g01ecc.html
http://www.nag.co.uk/numeric/CL/nagdoc_cl23/html/G12/g12bac.html

	Introduction
	Forward Selection
	Score Test Statistic
	Calculating the Score Test

	Backward Selection
	Wald Test Statistic
	Calculating the Wald Test Statistic

	Stepwise Selection
	Further Comments
	Referenced NAG Routines
	References

