/* nag_zhegvx (f08spc) Example Program. * * Copyright 2011 Numerical Algorithms Group. * * Mark 23, 2011. */ #include #include #include #include #include #include int main(void) { /* Scalars */ double abstol, vl, vu; Integer i, il = 0, iu = 0, j, m, n, pda, pdb, pdz; Integer exit_status = 0; /* Arrays */ Complex *a = 0, *b = 0, *z = 0; double *w = 0; Integer *index = 0; char nag_enum_arg[40]; /* Nag Types */ NagError fail; Nag_OrderType order; Nag_UploType uplo; #ifdef NAG_COLUMN_MAJOR #define A(I, J) a[(J-1)*pda + I - 1] #define B(I, J) b[(J-1)*pdb + I - 1] #define Z(I, J) z[(J-1)*pdz + I - 1] order = Nag_ColMajor; #else #define A(I, J) a[(I-1)*pda + J - 1] #define B(I, J) b[(I-1)*pdb + J - 1] #define Z(I, J) z[(I-1)*pdz + J - 1] order = Nag_RowMajor; #endif INIT_FAIL(fail); printf("nag_zhegvx (f08spc) Example Program Results\n\n"); /* Skip heading in data file */ scanf("%*[^\n]"); scanf("%ld%*[^\n]", &n); if (n < 0) { printf("Invalid n\n"); exit_status = 1; goto END;; } scanf(" %s%*[^\n]", nag_enum_arg); /* nag_enum_name_to_value(x04nac). * Converts NAG enum member name to value */ uplo = (Nag_UploType) nag_enum_name_to_value(nag_enum_arg); m = n; pda = n; pdb = n; pdz = n; /* Allocate memory */ if (!(a = NAG_ALLOC(n * n, Complex)) || !(b = NAG_ALLOC(n * n, Complex)) || !(z = NAG_ALLOC(n * m, Complex)) || !(w = NAG_ALLOC(n, double)) || !(index = NAG_ALLOC(n, Integer))) { printf("Allocation failure\n"); exit_status = -1; goto END; } /* Read the lower and upper bounds of the interval to be searched. */ scanf("%lf%lf%*[^\n]", &vl, &vu); /* Read the upper triangular parts of the matrices A and B */ if (uplo == Nag_Upper) { for (i = 1; i <= n; ++i) for (j = i; j <= n; ++j) scanf(" ( %lf , %lf ) ", &A(i, j).re, &A(i, j).im); scanf("%*[^\n]"); for (i = 1; i <= n; ++i) for (j = i; j <= n; ++j) scanf(" ( %lf , %lf ) ", &B(i, j).re, &B(i, j).im); } else { for (i = 1; i <= n; ++i) for (j = 1; j <= i; ++j) scanf(" ( %lf , %lf ) ", &A(i, j).re, &A(i, j).im); scanf("%*[^\n]"); for (i = 1; i <= n; ++i) for (j = 1; j <= i; ++j) scanf(" ( %lf , %lf ) ", &B(i, j).re, &B(i, j).im); } scanf("%*[^\n]"); /* Use default value for the absolute error tolerance for eigenvalues. */ abstol = 0.0; /* Solve the generalized Hermitian eigenvalue problem A*x = lambda*B*x * using nag_dsygvx (f08spc). */ nag_zhegvx(order, 1, Nag_DoBoth, Nag_Interval, uplo, n, a, pda, b, pdb, vl, vu, il, iu, abstol, &m, w, z, pdz, index, &fail); if (fail.code != NE_NOERROR) { printf("Error from nag_zhegvx (f08spc).\n%s\n", fail.message); exit_status = 1; goto END; } /* Normalize the eigenvectors */ for(j=1; j<=m; j++) for(i=n; i>=1; i--) Z(i, j) = nag_complex_divide(Z(i, j), Z(1, j)); /* Print eigensolution */ printf("Number of eigenvalues found =%5ld\n\n", m); printf(" Eigenvalues\n "); for (j = 0; j < m; ++j) printf(" %7.4f%s", w[j], j%8 == 7?"\n":""); printf("\n\n"); /* Print eigenvalues using nag_gen_complx_mat_print (x04dac). */ fflush(stdout); nag_gen_complx_mat_print(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, m, z, pdz, "Selected eigenvectors", 0, &fail); if (fail.code != NE_NOERROR) { printf("Error from nag_gen_complx_mat_print (x04dac).\n%s\n", fail.message); exit_status = 1; goto END; } END: if (a) NAG_FREE(a); if (b) NAG_FREE(b); if (z) NAG_FREE(z); if (w) NAG_FREE(w); if (index) NAG_FREE(index); return exit_status; }