f16 Chapter Contents
f16 Chapter Introduction
NAG C Library Manual

NAG Library Function Documentnag_dmax_val (f16jnc)

1  Purpose

nag_dmax_val (f16jnc) computes the largest component of a real vector, along with the index of that component.

2  Specification

 #include #include
 void nag_dmax_val (Integer n, const double x[], Integer incx, Integer *k, double *r, NagError *fail)

3  Description

nag_dmax_val (f16jnc) computes the largest component, $r$, of an $n$-element real vector $x$, and determines the smallest index, $k$, such that
 $r=xk=maxjxj.$

4  References

Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001) Basic Linear Algebra Subprograms Technical (BLAST) Forum Standard University of Tennessee, Knoxville, Tennessee http://www.netlib.org/blas/blast-forum/blas-report.pdf

5  Arguments

1:     nIntegerInput
On entry: $n$, the number of elements in $x$.
Constraint: ${\mathbf{n}}\ge 0$.
2:     x[$\mathit{dim}$]const doubleInput
Note: the dimension, dim, of the array x must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,1+\left({\mathbf{n}}-1\right)×\left|{\mathbf{incx}}\right|\right)$.
On entry: the vector $x$. Element ${x}_{\mathit{i}}$ is stored in ${\mathbf{x}}\left[\left(\mathit{i}-1\right)×\left|{\mathbf{incx}}\right|\right]$, for $\mathit{i}=1,2,\dots ,n$.
3:     incxIntegerInput
On entry: the increment in the subscripts of x between successive elements of $x$.
Constraint: ${\mathbf{incx}}\ne 0$.
4:     kInteger *Output
On exit: $k$, the index, from the set $\left\{0,\left|{\mathbf{incx}}\right|,\dots ,\left({\mathbf{n}}-1\right)×\left|{\mathbf{incx}}\right|\right\}$, of the largest component of $x$. If ${\mathbf{n}}=0$ on input then k is returned as $-1$.
5:     rdouble *Output
On exit: $r$, the largest component of $x$. If ${\mathbf{n}}=0$ on input then r is returned as $0.0$.
6:     failNagError *Input/Output
The NAG error argument (see Section 3.6 in the Essential Introduction).

6  Error Indicators and Warnings

On entry, argument $〈\mathit{\text{value}}〉$ had an illegal value.
NE_INT
On entry, ${\mathbf{incx}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{incx}}\ne 0$.
On entry, ${\mathbf{n}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{n}}\ge 0$.

Not applicable.

None.

9  Example

This example computes the largest component and index of that component for the vector
 $x= 1,10,11,-2,9T .$

9.1  Program Text

Program Text (f16jnce.c)

9.2  Program Data

Program Data (f16jnce.d)

9.3  Program Results

Program Results (f16jnce.r)