f16 Chapter Contents
f16 Chapter Introduction
NAG C Library Manual

# NAG Library Function Documentnag_zgemv (f16sac)

## 1  Purpose

nag_zgemv (f16sac) performs matrix-vector multiplication for a complex general matrix.

## 2  Specification

 #include #include
 void nag_zgemv (Nag_OrderType order, Nag_TransType trans, Integer m, Integer n, Complex alpha, const Complex a[], Integer pda, const Complex x[], Integer incx, Complex beta, Complex y[], Integer incy, NagError *fail)

## 3  Description

nag_zgemv (f16sac) performs one of the matrix-vector operations
 $y←αAx+βy, y←αATx+βy or y←αAHx+βy$
where $A$ is an $m$ by $n$ complex matrix, $x$ and $y$ are complex vectors, and $\alpha$ and $\beta$ are complex scalars.
If $m=0$ or $n=0$, no operation is performed.

## 4  References

The BLAS Technical Forum Standard (2001) http://www.netlib.org/blas/blast-forum

## 5  Arguments

1:     orderNag_OrderTypeInput
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by ${\mathbf{order}}=\mathrm{Nag_RowMajor}$. See Section 3.2.1.3 in the Essential Introduction for a more detailed explanation of the use of this argument.
Constraint: ${\mathbf{order}}=\mathrm{Nag_RowMajor}$ or Nag_ColMajor.
2:     transNag_TransTypeInput
On entry: specifies the operation to be performed.
${\mathbf{trans}}=\mathrm{Nag_NoTrans}$
$y←\alpha Ax+\beta y$.
${\mathbf{trans}}=\mathrm{Nag_Trans}$
$y←\alpha {A}^{\mathrm{T}}x+\beta y$.
${\mathbf{trans}}=\mathrm{Nag_ConjTrans}$
$y←\alpha {A}^{\mathrm{H}}x+\beta y$.
Constraint: ${\mathbf{trans}}=\mathrm{Nag_NoTrans}$, $\mathrm{Nag_Trans}$ or $\mathrm{Nag_ConjTrans}$.
3:     mIntegerInput
On entry: $m$, the number of rows of the matrix $A$.
Constraint: ${\mathbf{m}}\ge 0$.
4:     nIntegerInput
On entry: $n$, the number of columns of the matrix $A$.
Constraint: ${\mathbf{n}}\ge 0$.
5:     alphaComplexInput
On entry: the scalar $\alpha$.
6:     a[$\mathit{dim}$]const ComplexInput
Note: the dimension, dim, of the array a must be at least
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pda}}×{\mathbf{n}}\right)$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{m}}×{\mathbf{pda}}\right)$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
If ${\mathbf{order}}=\mathrm{Nag_ColMajor}$, ${A}_{ij}$ is stored in ${\mathbf{a}}\left[\left(j-1\right)×{\mathbf{pda}}+i-1\right]$.
If ${\mathbf{order}}=\mathrm{Nag_RowMajor}$, ${A}_{ij}$ is stored in ${\mathbf{a}}\left[\left(i-1\right)×{\mathbf{pda}}+j-1\right]$.
On entry: the $m$ by $n$ matrix $A$.
7:     pdaIntegerInput
On entry: the stride separating row or column elements (depending on the value of order) in the array a.
Constraints:
• if ${\mathbf{order}}=\mathrm{Nag_ColMajor}$, ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{m}}\right)$;
• if ${\mathbf{order}}=\mathrm{Nag_RowMajor}$, ${\mathbf{pda}}\ge {\mathbf{n}}$.
8:     x[$\mathit{dim}$]const ComplexInput
Note: the dimension, dim, of the array x must be at least
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,1+\left({\mathbf{n}}-1\right)\left|{\mathbf{incx}}\right|\right)$ when ${\mathbf{trans}}=\mathrm{Nag_NoTrans}$;
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,1+\left({\mathbf{m}}-1\right)\left|{\mathbf{incx}}\right|\right)$ when ${\mathbf{trans}}=\mathrm{Nag_Trans}$ or $\mathrm{Nag_ConjTrans}$.
On entry: the vector $x$.
9:     incxIntegerInput
On entry: the increment in the subscripts of x between successive elements of $x$.
Constraint: ${\mathbf{incx}}\ne 0$.
10:   betaComplexInput
On entry: the scalar $\beta$.
11:   y[$\mathit{dim}$]ComplexInput/Output
Note: the dimension, dim, of the array y must be at least
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,1+\left({\mathbf{m}}-1\right)\left|{\mathbf{incy}}\right|\right)$ when ${\mathbf{trans}}=\mathrm{Nag_NoTrans}$;
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,1+\left({\mathbf{n}}-1\right)\left|{\mathbf{incy}}\right|\right)$ when ${\mathbf{trans}}=\mathrm{Nag_Trans}$ or $\mathrm{Nag_ConjTrans}$.
On entry: the vector $y$.
If ${\mathbf{beta}}=0$, y need not be set.
On exit: the updated vector $y$.
12:   incyIntegerInput
On entry: the increment in the subscripts of y between successive elements of $y$.
Constraint: ${\mathbf{incy}}\ne 0$.
13:   failNagError *Input/Output
The NAG error argument (see Section 3.6 in the Essential Introduction).

## 6  Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
On entry, argument $〈\mathit{\text{value}}〉$ had an illegal value.
NE_INT
On entry, ${\mathbf{incx}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{incx}}\ne 0$.
On entry, ${\mathbf{incy}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{incy}}\ne 0$.
On entry, ${\mathbf{m}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{m}}\ge 0$.
On entry, ${\mathbf{n}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{n}}\ge 0$.
NE_INT_2
On entry, ${\mathbf{pda}}=〈\mathit{\text{value}}〉$, ${\mathbf{m}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{m}}\right)$.
On entry, ${\mathbf{pda}}=〈\mathit{\text{value}}〉$ and ${\mathbf{n}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{pda}}\ge {\mathbf{n}}$.
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

## 7  Accuracy

The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see Section 2.7 of The BLAS Technical Forum Standard (2001)).

None.

## 9  Example

This example computes the matrix-vector product
 $y=αAx+βy$
where
 $A = 1.0+1.0i 1.0+2.0i 2.0+1.0i 2.0+2.0i 3.0+1.0i 3.0+2.0i ,$
 $x = 1.0-1.0i 2.0-2.0i ,$
 $y = -3.5-0.5i -4.5+1.5i -5.5+3.5i ,$
 $α=1.0+0.0i and β=2.0+0.0i .$

### 9.1  Program Text

Program Text (f16sace.c)

### 9.2  Program Data

Program Data (f16sace.d)

### 9.3  Program Results

Program Results (f16sace.r)