
NAG Library Function Document

nag_1d_quad_gauss_1 (d01tac)

1 Purpose

nag_1d_quad_gauss_1 (d01tac) computes an estimate of the definite integral of a function of known
analytical form, using a Gaussian quadrature formula with a specified number of abscissae. Formulae are
provided for a finite interval (Gauss–Legendre), a semi-infinite interval (Gauss–Laguerre, rational
Gauss), and an infinite interval (Gauss–Hermite).

2 Specification

#include <nag.h>
#include <nagd01.h>

double nag_1d_quad_gauss_1 (Nag_GaussFormulae quadrule,

double (*f)(double x, Nag_User *comm),

double a, double b, Integer npts, Nag_User *comm, NagError *fail)

3 Description

3.1 General

nag_1d_quad_gauss_1 (d01tac) evaluates an estimate of the definite integral of a function f xð Þ, over a
finite or infinite interval, by n-point Gaussian quadrature (see Davis and Rabinowitz (1967), Fröberg
(1970), Ward (1975) or Stroud and Secrest (1966)). The integral is approximated by a summation

Xn
i¼1

!if xið Þ

where !i are called the weights, and the xi the abscissae. A selection of values of n is available. (See
Section 5.)

3.2 Both Limits Finite

Z b

a

f xð Þdx

The Gauss–Legendre weights and abscissae are used, and the formula is exact for any function of the
form:

f xð Þ ¼
X2n�1

i¼0

cix
i:

The formula is appropriate for functions which can be well approximated by such a polynomial over
a; b½ �. It is inappropriate for functions with algebraic singularities at one or both ends of the interval, such

as 1ffiffiffiffiffiffiffiffiffi
1þxð Þ

p on �1; 1½ �.

3.3 One Limit Infinite

Z 1
a

f xð Þdx or

Z a

�1
f xð Þdx:

Two quadrature formulae are available for these integrals:

d01 – Quadrature d01tac

Mark 24 d01tac.1

(a) The Gauss–Laguerre formula is exact for any function of the form:

f xð Þ ¼ e�bx
X2n�1

i¼0

cix
i:

(b) This formula is appropriate for functions decaying exponentially at infinity; the argument b should
be chosen if possible to match the decay rate of the function.

(c) The rational Gauss formula is exact for any function of the form:

f xð Þ ¼
X2nþ1

i¼2

ci

xþ bð Þi
¼

X2n�1

i¼0

c2nþ1�i xþ bð Þi

xþ bð Þ2nþ1

(d) This formula is likely to be more accurate for functions having only an inverse power rate of decay
for large x. Here the choice of a suitable value of b may be more difficult; unfortunately a poor
choice of b can make a large difference to the accuracy of the computed integral.

3.4 Both Limits Infinite

Z þ1
�1

f xð Þdx:

The Gauss–Hermite weights and abscissae are used, and the formula is exact for any function of the
form:

f xð Þ ¼ e�b x�að Þ2
X2n�1

i¼0

cix
i:

Again, for general functions not of this exact form, the argument b should be chosen to match if possible
the decay rate at �1.

4 References

Davis P J and Rabinowitz P (1967) Numerical Integration 33–52 Blaisdell Publishing Company

Fröberg C E (1970) Introduction to Numerical Analysis Addison–Wesley

Stroud A H and Secrest D (1966) Gaussian Quadrature Formulas Prentice–Hall

Ward R C (1975) The combination shift QZ algorithm SIAM J. Numer. Anal. 12 835–853

5 Arguments

1: quadrule – Nag_GaussFormulae Input

On entry: indicates the quadrature formula:

quadrule ¼ Nag Legendre, for Gauss–Legendre quadrature on a finite interval;

quadrule ¼ Nag Rational, for rational Gauss quadrature on a semi-infinite interval;

quadrule ¼ Nag Laguerre, for Gauss–Laguerre quadrature on a semi-infinite interval;

quadrule ¼ Nag Hermite, for Gauss–Hermite quadrature on an infinite interval.

Constraint: quadrule ¼ Nag Legendre, Nag Rational, Nag Laguerre or Nag Hermite.

2: f – function, supplied by the user External Function

f must return the value of the integrand f at a given point.

d01tac NAG Library Manual

d01tac.2 Mark 24

The specification of f is:

double f (double x, Nag_User *comm)

1: x – double Input

On entry: the point at which the integrand f must be evaluated.

2: comm – Nag_User *

Pointer to a structure of type Nag_User with the following member:

p – Pointer

On entry/exit: the pointer comm!p should be cast to the required type, e.g.,

struct user *s = (struct user *)comm ! p, to obtain the original
object’s address with appropriate type. (See the argument comm below.)

Some points to bear in mind when coding f are mentioned in Section 9.

3: a – double Input
4: b – double Input

On entry: the arguments a and b which occur in the integration formulae:

Gauss–Legendre: a is the lower limit and b is the upper limit of the integral. It is not necessary
that a < b.

Rational Gauss: b must be chosen so as to make the integrand match as closely as possible the
exact form given in Section 3. The interval of integration is a;1½ Þ if aþ b > 0, and �1; að � if
aþ b < 0.

Gauss–Laguerre: b must be chosen so as to make the integrand match as closely as possible the
exact form given in Section 3. The interval of integration is a;1½ Þ if b > 0, and �1; að � if b < 0.

Gauss–Hermite: a and b must be chosen so as to make the integrand match as closely as possible
the exact form given in Section 3.

Constraints:

Rational Gauss: aþ b 6¼ 0:0;
Gauss–Laguerre: b 6¼ 0:0;
Gauss–Hermite: b > 0:0.

5: npts – Integer Input

On entry: the number of abscissae to be used, n.

Constraint: npts ¼ 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 20, 24, 32, 48 or 64.

6: comm – Nag_User *

Pointer to a structure of type Nag_User with the following member:

p – Pointer

On entry/exit: the pointer comm!p, of type Pointer, allows you to communicate
information to and from f(). An object of the required type should be declared, e.g., a
structure, and its address assigned to the pointer comm!p by means of a cast to Pointer in
the calling program, e.g., comm.p = (Pointer)&s. The type pointer will be void * with
a C compiler that defines void * and char * otherwise.

7: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

d01 – Quadrature d01tac

Mark 24 d01tac.3

../GENINT/essint.pdf
../GENINT/essint.pdf

6 Error Indicators and Warnings

NE_BAD_PARAM

On entry, argument quadrule had an illegal value.

NE_QUAD_GAUSS_CONS

Gauss–Hermite input is invalid with b � 0:0.
Constraint: b > 0:0.

Gauss–Laguerre input is invalid with b ¼ 0:0.
Constraint: b 6¼ 0:0.

Rational Gauss input is invalid with aþ b ¼ 0:0.
Constraint: aþ b 6¼ 0:0.

The answer is returned as zero.

NE_QUAD_GAUSS_NPTS_RULE

The N-point rule is not among those stored.
The answer is evaluated for valueh i, the largest possible value of npts less than the requested
value, valueh i.

7 Accuracy

The accuracy depends on the behaviour of the integrand, and on the number of abscissae used. No tests
are carried out in nag_1d_quad_gauss_1 (d01tac) to estimate the accuracy of the result. If such an
estimate is required, the function may be called more than once, with a different number of abscissae
each time, and the answers compared. It is to be expected that for sufficiently smooth functions a larger
number of abscissae will give improved accuracy.

Alternatively, the interval of integration may be subdivided, the integral estimated separately for each
sub-interval, and the sum of these estimates compared with the estimate over the whole interval.

The coding of the function f may also have a bearing on the accuracy. For example, if a high-order
Gauss–Laguerre formula is used, and the integrand is of the form

f xð Þ ¼ e�bxg xð Þ

it is possible that the exponential term may underflow for some large abscissae. Depending on the
machine, this may produce an error, or simply be assumed to be zero. In any case, it would be better to
evaluate the expression as:

f xð Þ ¼ exp �bxþ ln g xð Þð Þ:

Another situation requiring care is exemplified by
Z þ1
�1

e�x
2

xmdx ¼ 0; m odd:

The integrand here assumes very large values; for example, for m ¼ 63, the peak value exceeds
3� 1033. Now, if the machine holds floating-point numbers to an accuracy of k significant decimal
digits, we could not expect such terms to cancel in the summation leaving an answer of much less than
1033�k (the weights being of order unity); that is instead of zero, we obtain a rather large answer through
rounding error. Fortunately, such situations are characterised by great variability in the answers returned
by formulae with different values of n. In general, you should be aware of the order of magnitude of the
integrand, and should judge the answer in that light.

8 Parallelism and Performance

Not applicable.

d01tac NAG Library Manual

d01tac.4 Mark 24

9 Further Comments

The time taken by nag_1d_quad_gauss_1 (d01tac) depends on the complexity of the expression for the
integrand and on the number of abscissae required.

10 Example

This example evaluates the integrals
Z 1

0

4

1þ x2
dx ¼ �

by Gauss–Legendre quadrature; Z 1
2

1

x2 lnx
dx ¼ 0:378671

by rational Gauss quadrature with b ¼ 0;Z 1
2

e�x

x
dx ¼ 0:048901

by Gauss–Laguerre quadrature with b ¼ 1; and
Z þ1
�1

e�3x2�4x�1dx ¼
Z þ1
�1

e�3 xþ1ð Þ2e2xþ2dx ¼ 1:428167

by Gauss–Hermite quadrature with a ¼ �1 and b ¼ 3.

The formulae with n ¼ 4; 8; 16 are used in each case.

10.1 Program Text

/* nag_1d_quad_gauss_1 (d01tac) Example Program.
*
* Copyright 1998 Numerical Algorithms Group.
*
* Mark 5, 1998.
* Mark 7 revised, 2001.
*
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <math.h>
#include <nagd01.h>

#ifdef __cplusplus
extern "C" {
#endif
static double NAG_CALL fun1(double x, Nag_User *comm);
static double NAG_CALL fun2(double x, Nag_User *comm);
static double NAG_CALL fun3(double x, Nag_User *comm);
static double NAG_CALL fun4(double x, Nag_User *comm);
#ifdef __cplusplus
}
#endif

int main(void)
{

static Integer use_comm[4] = {1, 1, 1, 1};
Integer exit_status = 0;
static Integer nstor[3] = { 4, 8, 16 };
double a, b;
Integer i;
double ans;
Nag_GaussFormulae gaussformula;

d01 – Quadrature d01tac

Mark 24 d01tac.5

Nag_User comm;
NagError fail;

fail.print = Nag_TRUE;

INIT_FAIL(fail);

printf("nag_1d_quad_gauss_1 (d01tac) Example Program Results\n");

/* For communication with user-supplied functions: */
comm.p = (Pointer)

printf("\nGauss-Legendre example\n\n");
for (i = 0; i < 3; ++i)

{
a = 0.0;
b = 1.0;
gaussformula = Nag_Legendre;
/* nag_1d_quad_gauss_1 (d01tac).
* One-dimensional Gaussian quadrature rule evaluation,
* thread-safe
*/

ans = nag_1d_quad_gauss_1(gaussformula, fun1, a, b, nstor[i], &comm,
&fail);

if (fail.code == NE_NOERROR || fail.code == NE_QUAD_GAUSS_NPTS_RULE)
printf("%ld Points Answer = %10.5f\n\n", nstor[i], ans);

else
{

printf("%s\n", fail.message);
exit_status = 1;
goto END;

}
}

printf("\nGauss-Rational example\n\n");
for (i = 0; i < 3; ++i)

{
a = 2.0;
b = 0.0;
gaussformula = Nag_Rational;
/* nag_1d_quad_gauss_1 (d01tac), see above. */
ans = nag_1d_quad_gauss_1(gaussformula, fun2, a, b, nstor[i], &comm,

&fail);
if (fail.code == NE_NOERROR || fail.code == NE_QUAD_GAUSS_NPTS_RULE)

printf("%ld Points Answer = %10.5f\n\n", nstor[i], ans);
else

{
printf("%s\n", fail.message);
exit_status = 1;
goto END;

}
}

printf("\nGauss-Laguerre example\n\n");
for (i = 0; i < 3; ++i)

{
a = 2.0;
b = 1.0;
gaussformula = Nag_Laguerre;
/* nag_1d_quad_gauss_1 (d01tac), see above. */
ans = nag_1d_quad_gauss_1(gaussformula, fun3, a, b, nstor[i], &comm,

&fail);
if (fail.code == NE_NOERROR || fail.code == NE_QUAD_GAUSS_NPTS_RULE)

printf("%ld Points Answer = %10.5f\n\n", nstor[i], ans);
else

{
printf("%s\n", fail.message);
exit_status = 1;
goto END;

}
}

printf("\nGauss-Hermite example\n\n");
for (i = 0; i < 3; ++i)

d01tac NAG Library Manual

d01tac.6 Mark 24

{
a = -1.0;
b = 3.0;
gaussformula = Nag_Hermite;
/* nag_1d_quad_gauss_1 (d01tac), see above. */
ans = nag_1d_quad_gauss_1(gaussformula, fun4, a, b, nstor[i], &comm,

&fail);
if (fail.code == NE_NOERROR || fail.code == NE_QUAD_GAUSS_NPTS_RULE)

printf("%ld Points Answer = %10.5f\n\n", nstor[i], ans);
else

{
printf("%s\n", fail.message);
exit_status = 1;
goto END;

}
}

END:
return exit_status;

}

static double NAG_CALL fun1(double x, Nag_User *comm)
{

Integer *use_comm = (Integer *)comm->p;

if (use_comm[0])
{

printf("(User-supplied callback fun1, first invocation.)\n");
use_comm[0] = 0;

}

return 4.0/(x*x+1.0);
}

static double NAG_CALL fun2(double x, Nag_User *comm)
{

Integer *use_comm = (Integer *)comm->p;

if (use_comm[1])
{

printf("(User-supplied callback fun2, first invocation.)\n");
use_comm[1] = 0;

}

return 1.0/(x*x*log(x));
}

static double NAG_CALL fun3(double x, Nag_User *comm)
{

Integer *use_comm = (Integer *)comm->p;

if (use_comm[2])
{

printf("(User-supplied callback fun3, first invocation.)\n");
use_comm[2] = 0;

}

return exp(-x)/x;
}

static double NAG_CALL fun4(double x, Nag_User *comm)
{

Integer *use_comm = (Integer *)comm->p;

if (use_comm[3])
{

printf("(User-supplied callback fun4, first invocation.)\n");
use_comm[3] = 0;

}

d01 – Quadrature d01tac

Mark 24 d01tac.7

return exp(x*(-3.0)*x-x*4.0-1.0);
}

10.2 Program Data

None.

10.3 Program Results

nag_1d_quad_gauss_1 (d01tac) Example Program Results

Gauss-Legendre example

(User-supplied callback fun1, first invocation.)
4 Points Answer = 3.14161

8 Points Answer = 3.14159

16 Points Answer = 3.14159

Gauss-Rational example

(User-supplied callback fun2, first invocation.)
4 Points Answer = 0.37910

8 Points Answer = 0.37876

16 Points Answer = 0.37869

Gauss-Laguerre example

(User-supplied callback fun3, first invocation.)
4 Points Answer = 0.04887

8 Points Answer = 0.04890

16 Points Answer = 0.04890

Gauss-Hermite example

(User-supplied callback fun4, first invocation.)
4 Points Answer = 1.42803

8 Points Answer = 1.42817

16 Points Answer = 1.42817

d01tac NAG Library Manual

d01tac.8 (last) Mark 24

	d01tac
	1 Purpose
	2 Specification
	3 Description
	3.1 General
	3.2 Both Limits Finite
	3.3 One Limit Infinite
	3.4 Both Limits Infinite

	4 References
	Davis and Rabinowitz (1967)
	Froberg (1970)
	Stroud and Secrest (1966)
	Ward (1975)

	5 Arguments
	quadrule
	f
	x
	comm
	p

	a
	b
	npts
	comm
	p

	fail

	6 Error Indicators and Warnings
	NE_BAD_PARAM
	NE_QUAD_GAUSS_CONS
	NE_QUAD_GAUSS_NPTS_RULE

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Library Manual, Mark 24
	Introduction
	Essential Introduction
	NAG C Library News, Mark 24
	Multithreaded Functions
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords and GAMS Search

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	c09 - Wavelet Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d04 - Numerical Differentiation
	Chapter Introduction

	d05 - Integral Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	e05 - Global Optimization of a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

	x07 - IEEE Arithmetic
	Chapter Introduction

