F06 Chapter Contents
F06 Chapter Introduction
NAG Library Manual

NAG Library Routine DocumentF06GWF (ZSCTR)

Note:  before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1  Purpose

F06GWF (ZSCTR) scatters the elements of a sparse complex vector $x$ stored in compressed form, into a complex vector $y$ in full storage form.

2  Specification

 SUBROUTINE F06GWF ( NZ, X, INDX, Y)
 INTEGER NZ, INDX(*) COMPLEX (KIND=nag_wp) X(*), Y(*)
The routine may be called by its BLAS name zsctr.

None.

4  References

Dodson D S, Grimes R G and Lewis J G (1991) Sparse extensions to the Fortran basic linear algebra subprograms ACM Trans. Math. Software 17 253–263

5  Parameters

1:     NZ – INTEGERInput
On entry: the number of nonzeros in the sparse vector $x$.
2:     X($*$) – COMPLEX (KIND=nag_wp) arrayInput
Note: the dimension of the array X must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{NZ}}\right)$.
On entry: the compressed vector $x$. X contains ${x}_{i}$ for $i\in J$.
3:     INDX($*$) – INTEGER arrayInput
Note: the dimension of the array INDX must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{NZ}}\right)$.
On entry: the indices of the elements in the compressed vector $x$.
Constraint: the indices must be distinct.
4:     Y($*$) – COMPLEX (KIND=nag_wp) arrayOutput
Note: the dimension of the array Y must be at least $\underset{\mathit{k}}{\mathrm{max}}\phantom{\rule{0.25em}{0ex}}\left\{{\mathbf{INDX}}\left(\mathit{k}\right)\right\}$.
On exit: the vector $y$. Only elements corresponding to indices in INDX are altered.

None.

Not applicable.