NAG Library Routine Document

 D05AAF

 D05AAF}

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

D05AAF solves a linear, nonsingular Fredholm equation of the second kind with a split kernel.

2 Specification

```
SUBROUTINE D05AAF (LAMBDA, A, B, K1, K2, G, F, C, N, IND, W1, W2, WD, LDW1,
    LDW2, IFAIL)
INTEGER N, IND, LDW1, LDW2, IFAIL
REAL (KIND=nag_wp) LAMBDA, A, B, K1, K2, G, F(N), C(N), W1(LDW1,LDW2),
    W2(LDW2,4), WD(LDW2)
EXTERNAL K1, K2,G
```


3 Description

D05AAF solves an integral equation of the form

$$
f(x)-\lambda \int_{a}^{b} k(x, s) f(s) d s=g(x)
$$

for $a \leq x \leq b$, when the kernel k is defined in two parts: $k=k_{1}$ for $a \leq s \leq x$ and $k=k_{2}$ for $x<s \leq b$. The method used is that of El-Gendi (1969) for which, it is important to note, each of the functions k_{1} and k_{2} must be defined, smooth and nonsingular, for all x and s in the interval $[a, b]$.
An approximation to the solution $f(x)$ is found in the form of an n term Chebyshev series $\sum_{i=1}^{n} c_{i} T_{i}(x)$, where ' indicates that the first term is halved in the sum. The coefficients c_{i}, for $i=1,2, \ldots, n$, of this series are determined directly from approximate values f_{i}, for $i=1,2, \ldots, n$, of the function $f(x)$ at the first n of a set of $m+1$ Chebyshev points:

$$
x_{i}=\frac{1}{2}(a+b+(b-a) \cos [(i-1) \pi / m]), \quad i=1,2, \ldots, m+1
$$

The values f_{i} are obtained by solving simultaneous linear algebraic equations formed by applying a quadrature formula (equivalent to the scheme of Clenshaw and Curtis (1960)) to the integral equation at the above points.
In general $m=n-1$. However, if the kernel k is centro-symmetric in the interval $[a, b]$, i.e., if $k(x, s)=k(a+b-x, a+b-s)$, then the routine is designed to take advantage of this fact in the formation and solution of the algebraic equations. In this case, symmetry in the function $g(x)$ implies symmetry in the function $f(x)$. In particular, if $g(x)$ is even about the mid-point of the range of integration, then so also is $f(x)$, which may be approximated by an even Chebyshev series with $m=2 n-1$. Similarly, if $g(x)$ is odd about the mid-point then $f(x)$ may be approximated by an odd series with $m=2 n$.

4 References

Clenshaw C W and Curtis A R (1960) A method for numerical integration on an automatic computer Numer. Math. 2 197-205

El-Gendi S E (1969) Chebyshev solution of differential, integral and integro-differential equations Comput. J. 12 282-287

5 Parameters

1: \quad LAMBDA - REAL (KIND=nag_wp)
Input
On entry: the value of the parameter λ of the integral equation.
2: \quad A - REAL (KIND=nag_wp)
On entry: a, the lower limit of integration.
3: $\quad \mathrm{B}-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$
Input
On entry: b, the upper limit of integration.
Constraint: B > A.

4: \quad K1 - REAL (KIND=nag_wp) FUNCTION, supplied by the user.
External Procedure
K1 must evaluate the kernel $k(x, s)=k_{1}(x, s)$ of the integral equation for $a \leq s \leq x$.

```
The specification of K1 is:
FUNCTION K1 (X, S)
REAL (KIND=nag_wp) K1
REAL (KIND=nag_wp) X, S
1: X - REAL (KIND=nag_wp) Input
2: S - REAL (KIND=nag_wp) Input
    On entry: the values of }x\mathrm{ and }s\mathrm{ at which }\mp@subsup{k}{1}{}(x,s)\mathrm{ is to be evaluated.
```

K1 must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)program from which D05AAF is called. Parameters denoted as Input must not be changed by this procedure.

5: K2 - REAL (KIND=nag_wp) FUNCTION, supplied by the user. External Procedure K2 must evaluate the kernel $k(x, s)=k_{2}(x, s)$ of the integral equation for $x<s \leq b$.

```
The specification of K2 is:
FUNCTION K2 (X, S)
REAL (KIND=nag_wp) K2
REAL (KIND=nag_wp) X, S
1: X - REAL (KIND=nag_wp) Input
2: S - REAL (KIND=nag_wp) Input
    On entry: the values of }x\mathrm{ and }s\mathrm{ at which }\mp@subsup{k}{2}{}(x,s)\mathrm{ is to be evaluated.
```

K2 must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)program from which D05AAF is called. Parameters denoted as Input must not be changed by this procedure.

Note that the functions k_{1} and k_{2} must be defined, smooth and nonsingular for all x and s in the interval $[a, b]$.

6: $\quad \mathrm{G}$ - REAL (KIND=nag_wp) FUNCTION, supplied by the user.
External Procedure G must evaluate the function $g(x)$ for $a \leq x \leq b$.

```
The specification of G is:
FUNCTION G (X)
REAL (kIND=nag_wp) G
REAL (KIND=nag_wp) X
1: X - REAL (KIND=nag_wp)
    Input
    On entry: the values of }x\mathrm{ at which }g(x)\mathrm{ is to be evaluated.
```

G must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)program from which D05AAF is called. Parameters denoted as Input must not be changed by this procedure.

7: $\quad \mathrm{F}(\mathrm{N})-$ REAL (KIND=nag_wp) array
Output
On exit: the approximate values f_{i}, for $i=1,2, \ldots, \mathrm{~N}$, of $f(x)$ evaluated at the first N of $m+1$ Chebyshev points x_{i}, (see Section 3).
If $\mathrm{IND}=0$ or $3, m=\mathrm{N}-1$.
If $\operatorname{IND}=1, m=2 \times \mathrm{N}$.
If $\mathrm{IND}=2, m=2 \times \mathrm{N}-1$.
8: $\quad \mathrm{C}(\mathrm{N})-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp) array
Output
On exit: the coefficients c_{i}, for $i=1,2, \ldots, \mathrm{~N}$, of the Chebyshev series approximation to $f(x)$.
If $\operatorname{IND}=1$ this series contains polynomials of odd order only and if $\mathrm{IND}=2$ the series contains even order polynomials only.

9: N - INTEGER
Input
On entry: the number of terms in the Chebyshev series required to approximate $f(x)$.
Constraint: $\mathrm{N} \geq 1$.
10: IND - INTEGER
Input
On entry: determines the forms of the kernel, $k(x, s)$, and the function $g(x)$.
$\mathrm{IND}=0$
$k(x, s)$ is not centro-symmetric (or no account is to be taken of centro-symmetry).
$\mathrm{IND}=1$
$k(x, s)$ is centro-symmetric and $g(x)$ is odd.
$\mathrm{IND}=2$
$k(x, s)$ is centro-symmetric and $g(x)$ is even.
$\mathrm{IND}=3$
$k(x, s)$ is centro-symmetric but $g(x)$ is neither odd nor even.
Constraint: IND $=0,1,2$ or 3 .
11: W1(LDW1,LDW2) - REAL (KIND=nag_wp) array Workspace
12: W2(LDW2,4) - REAL (KIND=nag_wp) array Workspace
13: $\quad \mathrm{WD}(\mathrm{LDW} 2)-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Workspace

14: LDW1 - INTEGER
Input
On entry: the first dimension of the array W1 as declared in the (sub)program from which D05AAF is called.

Constraint: LDW1 $\geq \mathrm{N}$.

15: LDW2 - INTEGER
Input
On entry: the second dimension of the array W1 and the first dimension of the array W2 and the dimension of the array WD as declared in the (sub)program from which D05AAF is called.
Constraint: LDW2 $\geq 2 \times \mathrm{N}+2$.
16: IFAIL - INTEGER
Input/Output
On entry: IFAIL must be set to $0,-1$ or 1 . If you are unfamiliar with this parameter you should refer to Section 3.3 in the Essential Introduction for details.
For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the recommended value is 0 . When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL $=0$ unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL $=0$ or -1 , explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors or warnings detected by the routine:
IFAIL $=1$
On entry, $\mathrm{A} \geq \mathrm{B}$ or $\mathrm{N}<1$.
IFAIL $=2$
A failure has occurred due to proximity to an eigenvalue. In general, if LAMBDA is near an eigenvalue of the integral equation, the corresponding matrix will be nearly singular. In the special case, $m=1$, the matrix reduces to a zero-valued number.

7 Accuracy

No explicit error estimate is provided by the routine but it is usually possible to obtain a good indication of the accuracy of the solution either
(i) by examining the size of the later Chebyshev coefficients c_{i}, or
(ii) by comparing the coefficients c_{i} or the function values f_{i} for two or more values of N .

8 Further Comments

The time taken by D05AAF increases with N .
This routine may be used to solve an equation with a continuous kernel by defining K 1 and K 2 to be identical.
This routine may also be used to solve a Volterra equation by defining K2 (or K1) to be identically zero.

9 Example

This example solves the equation

$$
f(x)-\int_{0}^{1} k(x, s) f(s) d s=\left(1-\frac{1}{\pi^{2}}\right) \sin (\pi x)
$$

where

$$
k(x, s)= \begin{cases}s(1-x) & \text { for } 0 \leq s \leq x \\ x(1-s) & \text { for } x<s \leq 1\end{cases}
$$

Five terms of the Chebyshev series are sought, taking advantage of the centro-symmetry of the $k(x, s)$ and even nature of $g(x)$ about the mid-point of the range $[0,1]$.

The approximate solution at the point $x=0.1$ is calculated by calling C06DCF.

9.1 Program Text

```
D05AAF Example Program Text
    Mark 24 Release. NAG Copyright 2012.
    Module d05aafe_mod
    DO5AAF Example Program Module:
                Parameters and User-defined Routines
    .. Use Statements ..
    Use nag_library, Only: nag_wp
    .. Implicit None Statement ..
    Implicit None
    .. Parameters ..
    Real (Kind=nag_wp), Parameter :: a = 0.0_nag_wp
    Real (Kind=nag_wp), Parameter :: b = 1.0_nag_wp
    Real (Kind=nag_wp), Parameter :: lambda = 1.0_nag_wp
    Real (Kind=nag_wp), Parameter :: xval = 0.1_nag_wp
    Integer, Parameter :: ind = 2, n = 5, nout = 6
    Integer, Parameter :: ldw1 = n
    Integer, Parameter :: ldw2 = 2*n + 2
Contains
    Function k1(x,s)
! .. Function Return Value ..
            Real (Kind=nag_wp) :: k1
            .. Scalar Arguments ..
            Real (Kind=nag_wp), Intent (In) :: s, x
            .. Executable Statements ..
            k1 = s*(1.0_nag_wp-x)
            Return
    End Function kl
    Function k2(x,s)
! .. Function Return Value ..
            Real (Kind=nag_wp) :: k2
! .. Scalar Arguments ..
            Real (Kind=nag_wp), Intent (In) :: s, x
! .. Executable Statements ..
            k2 = x*(1.0_nag_wp-s)
            Return
        End Function k2
        Function g(x)
! .. Use Statements ..
            Use nag_library, Only: x0laaf
            .. Function Return Value ..
            Real (Kind=nag_wp) :: g
            .. Scalar Arguments ..
            Real (Kind=nag_wp), Intent (In) :: x
            .. Local Scalars ..
            Real (Kind=nag_wp) :: pi
            .. Intrinsic Procedures ..
            Intrinsic :: sin
            .. Executable Statements ..
            pi = x01aaf(pi)
            g = sin(pi*x)*(1.0_nag_wp-1.0_nag_wp/(pi*pi))
```

```
            Return
        End Function g
    End Module dO5aafe_mod
    Program d05aafe
    D05AAF Example Main Program
    .. Use Statements ..
    Use nag_library, Only: c06dcf, d05aaf, nag_wp
    Use dO5aafe_mod, Only: a, b, g, ind, k1, k2, lambda, ldw1, ldw2, n, &
                                    nout, xval
! .. Implicit None Statement ..
    Implicit None
! .. Local Scalars ..
    Integer :: ifail, is
    .. Local Arrays ..
    Real (Kind=nag_wp) :: ans(1), x(1)
    Real (Kind=nag_wp), Allocatable :: c(:), f(:), w1(:,:), w2(:,:), &
    wd(:)
! .. Executable Statements ..
    Write (nout,*) 'D05AAF Example Program Results'
    Allocate (c(n),f(n),w1(ldw1,ldw2),w2(ldw2,4),wd(ldw2))
    ifail = 0
    Call d05aaf(lambda,a,b,k1,k2,g,f,c,n,ind,w1,w2,wd,ldw1,ldw2,ifail)
    Write (nout,99999)
    Write (nout,99998) c(1:n)
    x(1) = xval
    Select Case (ind)
    Case (1)
        is = 3
    Case (2)
        is = 2
    Case Default
        is = 1
    End Select
    ifail = O
    Call c06dcf(x,1,a,b,c,n,is,ans,ifail)
    Write (nout,99997) 'X=', x, ' ANS=', ans
99999 Format (/1X,'Kernel is centro-symmetric and G is even so the ', &
    'solution is even'//1X,'Chebyshev coefficients'/)
99998 Format (1X,5E14.4/)
99997 Format (1X,A,F5.2,A,1F10.4)
    End Program d05aafe
```


9.2 Program Data

None.

9.3 Program Results

D05AAF Example Program Results
Kernel is centro-symmetric and G is even so the solution is even
Chebyshev coefficients

$0.9440 \mathrm{E}+00$	$-0.4994 \mathrm{E}+00$	$0.2799 \mathrm{E}-01$	$-0.5967 \mathrm{E}-03$	$0.6658 \mathrm{E}-05$
$\mathrm{X}=$	0.10 ANS $=$	0.3090		

