/* nag_dtrsm (f16yjc) Example Program. * * Copyright 2005 Numerical Algorithms Group. * * Mark 8, 2005. */ #include #include #include #include #include int main(void) { /* Scalars */ double alpha; Integer exit_status, i, j, m, n, pda, pdb; /* Arrays */ double *a=0, *b=0; char nag_enum_arg[40]; /* Nag Types */ NagError fail; Nag_SideType side; Nag_DiagType diag; Nag_OrderType order; Nag_TransType trans; Nag_UploType uplo; #ifdef NAG_COLUMN_MAJOR #define A(I,J) a[(J-1)*pda + I - 1] #define B(I,J) b[(J-1)*pda + I - 1] order = Nag_ColMajor; #else #define A(I,J) a[(I-1)*pda + J - 1] #define B(I,J) b[(I-1)*pdb + J - 1] order = Nag_RowMajor; #endif exit_status = 0; INIT_FAIL(fail); Vprintf( "nag_dtrsm (f16yjc) Example Program Results\n\n"); /* Skip heading in data file */ Vscanf("%*[^\n] "); /* Read the problem dimensions */ Vscanf("%ld%ld%*[^\n] ",&m, &n); #ifdef NAG_COLUMN_MAJOR pdb = m; #else pdb = n; #endif /* Read side */ Vscanf("%s%*[^\n] ", nag_enum_arg); /* nag_enum_name_to_value(x04nac). * Converts NAG enum member name to value */ side = nag_enum_name_to_value(nag_enum_arg); /* Read uplo */ Vscanf("%s%*[^\n] ", nag_enum_arg); /* nag_enum_name_to_value(x04nac), see above. */ uplo = nag_enum_name_to_value(nag_enum_arg); /* Read trans */ Vscanf("%s%*[^\n] ", nag_enum_arg); /* nag_enum_name_to_value(x04nac), see above. */ trans = nag_enum_name_to_value(nag_enum_arg); /* Read diag */ Vscanf("%s%*[^\n] ", nag_enum_arg); /* nag_enum_name_to_value(x04nac), see above. */ diag = nag_enum_name_to_value(nag_enum_arg); /* Read scalar parameters */ Vscanf("%lf%*[^\n] ", &alpha); if (side == Nag_LeftSide) { pda = m; } else { pda = n; } if (n > 0) { /* Allocate memory */ if ( !(a = NAG_ALLOC(pda*pda, double)) || !(b = NAG_ALLOC(n*m, double)) ) { Vprintf("Allocation failure\n"); exit_status = -1; goto END; } } else { Vprintf("Invalid n\n"); exit_status = 1; return exit_status; } /* Read A from data file */ if (uplo == Nag_Upper) { for (i = 1; i <= pda; ++i) { for (j = i; j <= pda; ++j) Vscanf("%lf", &A(i,j)); } Vscanf("%*[^\n] "); } else { for (i = 1; i <= pda; ++i) { for (j = 1; j <= i; ++j) Vscanf("%lf", &A(i,j)); } Vscanf("%*[^\n] "); } /* Input matrix B */ for (i = 1; i <= m; ++i) { for (j = 1; j <= n; ++j) Vscanf("%lf", &B(i,j)); } /* nag_dtrsm(f16yjc). * Multiply matrix by inverse of Triangular matrix. * */ nag_dtrsm(order, side, uplo, trans, diag, m, n, alpha, a, pda, b, pdb, &fail); if (fail.code != NE_NOERROR) { Vprintf("Error from dtrsm.\n%s\n", fail.message); exit_status = 1; goto END; } /* Print the updated matrix B */ /* nag_gen_real_mat_print (x04cac). * Print real general matrix (easy-to-use) */ nag_gen_real_mat_print(order, Nag_GeneralMatrix, Nag_NonUnitDiag, m, n, b, pdb, "Updated matrix B", 0, &fail); if (fail.code != NE_NOERROR) { Vprintf("Error from nag_gen_real_mat_print (x04cac).\n%s\n", fail.message); exit_status = 1; goto END; } END: if (a) NAG_FREE(a); if (b) NAG_FREE(b); return exit_status; }