/* nag_dsyr2k (f16yrc) Example Program. * * Copyright 2005 Numerical Algorithms Group. * * Mark 8, 2005. */ #include #include #include #include #include int main(void) { /* Scalars */ double alpha, beta; Integer adim1, adim2, exit_status, i, j, k, n, pda, pdb, pdc; /* Arrays */ double *a=0, *b=0, *c=0; char nag_enum_arg[40]; /* Nag Types */ NagError fail; Nag_OrderType order; Nag_UploType uplo; Nag_TransType trans; Nag_MatrixType matrix; #ifdef NAG_COLUMN_MAJOR #define A(I,J) a[(J-1)*pda + I - 1] #define B(I,J) b[(J-1)*pdb + I - 1] #define C(I,J) c[(J-1)*pdc + I - 1] order = Nag_ColMajor; #else #define A(I,J) a[(I-1)*pda + J - 1] #define B(I,J) b[(I-1)*pdb + J - 1] #define C(I,J) c[(I-1)*pdc + J - 1] order = Nag_RowMajor; #endif exit_status = 0; INIT_FAIL(fail); Vprintf( "nag_dsyr2k (f16yrc) Example Program Results\n\n"); /* Skip heading in data file */ Vscanf("%*[^\n] "); /* Read the problem dimensions */ Vscanf("%ld%ld%*[^\n] ", &n, &k); /* Read the uplo parameter */ Vscanf("%s%*[^\n] ", nag_enum_arg); /* nag_enum_name_to_value(x04nac). * Converts NAG enum member name to value */ uplo = nag_enum_name_to_value(nag_enum_arg); /* Read the transpose parameter */ Vscanf("%s%*[^\n] ", nag_enum_arg); /* nag_enum_name_to_value(x04nac), see above. */ trans = nag_enum_name_to_value(nag_enum_arg); /* Read scalar parameters */ Vscanf("%lf%lf%*[^\n] ", &alpha, &beta); if (trans == Nag_NoTrans) { adim1 = n; adim2 = k; } else { adim1 = k; adim2 = n; } #ifdef NAG_COLUMN_MAJOR pda = adim1; #else pda = adim2; #endif pdb = pda; pdc = n; if (k > 0 && n > 0) { /* Allocate memory */ if ( !(a = NAG_ALLOC(k*n, double)) || !(b = NAG_ALLOC(k*n, double)) || !(c = NAG_ALLOC(n*n, double)) ) { Vprintf("Allocation failure\n"); exit_status = -1; goto END; } } else { Vprintf("Invalid k or n\n"); exit_status = 1; return exit_status; } /* Input matrix A. */ for (i = 1; i <= adim1; ++i) { for (j = 1; j <= adim2; ++j) Vscanf("%lf", &A(i,j)); Vscanf("%*[^\n] "); } /* Input matrix B. */ for (i = 1; i <= adim1; ++i) { for (j = 1; j <= adim2; ++j) Vscanf("%lf", &B(i,j)); Vscanf("%*[^\n] "); } /* Input matrix C. */ if (uplo == Nag_Upper) { for (i = 1; i <= n; ++i) { for (j = i; j <= n; ++j) Vscanf("%lf", &C(i,j)); } Vscanf("%*[^\n] "); } else { for (i = 1; i <= n; ++i) { for (j = 1; j <= i; ++j) Vscanf("%lf", &C(i,j)); } Vscanf("%*[^\n] "); } /* nag_dsyr2k(f16yrc). * Rank 2k update of symmetric matrix. * */ nag_dsyr2k(order, uplo, trans, n, k, alpha, a, pda, b, pdb, beta, c, pdc, &fail); if (fail.code != NE_NOERROR) { Vprintf("Error from nag_dsyr2k.\n%s\n", fail.message); exit_status = 1; goto END; } if (uplo == Nag_Upper) { matrix = Nag_UpperMatrix; } else { matrix = Nag_LowerMatrix; } /* Print updated matrix C */ /* nag_gen_real_mat_print (x04cac). * Print real general matrix (easy-to-use) */ nag_gen_real_mat_print(order, matrix, Nag_NonUnitDiag, n, n, c, pdc, "Updated Matrix C", 0, &fail); if (fail.code != NE_NOERROR) { Vprintf("Error from nag_gen_real_mat_print (x04cac).\n%s\n", fail.message); exit_status = 1; goto END; } END: if (a) NAG_FREE(a); if (b) NAG_FREE(b); if (c) NAG_FREE(c); return exit_status; }