/* nag_zgelqf (f08avc) Example Program. * * Copyright 2001 Numerical Algorithms Group. * * Mark 7, 2001. */ #include #include #include #include #include #include #include int main(void) { /* Scalars */ Integer i, j, m, n, nrhs, pda, pdb, tau_len; Integer exit_status = 0; NagError fail; Nag_OrderType order; /* Arrays */ Complex *a = 0, *b = 0, *tau = 0; #ifdef NAG_COLUMN_MAJOR #define A(I, J) a[(J - 1) * pda + I - 1] #define B(I, J) b[(J - 1) * pdb + I - 1] order = Nag_ColMajor; #else #define A(I, J) a[(I - 1) * pda + J - 1] #define B(I, J) b[(I - 1) * pdb + J - 1] order = Nag_RowMajor; #endif INIT_FAIL(fail); printf("nag_zgelqf (f08avc) Example Program Results\n\n"); /* Skip heading in data file */ scanf("%*[^\n] "); scanf("%ld%ld%ld%*[^\n] ", &m, &n, &nrhs); #ifdef NAG_COLUMN_MAJOR pda = m; pdb = n; #else pda = n; pdb = nrhs; #endif tau_len = MIN(m, n); /* Allocate memory */ if (!(a = NAG_ALLOC(m * n, Complex)) || !(b = NAG_ALLOC(n * nrhs, Complex)) || !(tau = NAG_ALLOC(tau_len, Complex))) { printf("Allocation failure\n"); exit_status = -1; goto END; } /* Read A and B from data file */ for (i = 1; i <= m; ++i) { for (j = 1; j <= n; ++j) scanf(" ( %lf , %lf )", &A(i, j).re, &A(i, j).im); } scanf("%*[^\n] "); for (i = 1; i <= m; ++i) { for (j = 1; j <= nrhs; ++j) scanf(" ( %lf , %lf )", &B(i, j).re, &B(i, j).im); } scanf("%*[^\n] "); /* Compute the LQ factorization of A */ /* nag_zgelqf (f08avc). * LQ factorization of complex general rectangular matrix */ nag_zgelqf(order, m, n, a, pda, tau, &fail); if (fail.code != NE_NOERROR) { printf("Error from nag_zgelqf (f08avc).\n%s\n", fail.message); exit_status = 1; goto END; } /* Solve L*Y = B, storing the result in B */ /* nag_ztrtrs (f07tsc). * Solution of complex triangular system of linear * equations, multiple right-hand sides */ nag_ztrtrs(order, Nag_Lower, Nag_NoTrans, Nag_NonUnitDiag, m, nrhs, a, pda, b, pdb, &fail); if (fail.code != NE_NOERROR) { printf("Error from nag_ztrtrs (f07tsc).\n%s\n", fail.message); exit_status = 1; goto END; } /* Set rows (M+1) to N of B to zero */ if (m < n) { for (i = m + 1; i <= n; ++i) { for (j = 1; j <= nrhs; ++j) { B(i, j).re = 0.0; B(i, j).im = 0.0; } } } /* Compute minimum-norm solution X = (Q**H)*B in B */ /* nag_zunmlq (f08axc). * Apply unitary transformation determined by nag_zgelqf (f08avc) */ nag_zunmlq(order, Nag_LeftSide, Nag_ConjTrans, n, nrhs, m, a, pda, tau, b, pdb, &fail); if (fail.code != NE_NOERROR) { printf("Error from nag_zunmlq (f08axc).\n%s\n", fail.message); exit_status = 1; goto END; } /* Print minimum-norm solution(s) */ /* nag_gen_complx_mat_print_comp (x04dbc). * Print complex general matrix (comprehensive) */ fflush(stdout); nag_gen_complx_mat_print_comp(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, nrhs, b, pdb, Nag_BracketForm, "%7.4f", "Minimum-norm solution(s)", Nag_IntegerLabels, 0, Nag_IntegerLabels, 0, 80, 0, 0, &fail); if (fail.code != NE_NOERROR) { printf( "Error from nag_gen_complx_mat_print_comp (x04dbc).\n%s\n", fail.message); exit_status = 1; goto END; } END: if (a) NAG_FREE(a); if (b) NAG_FREE(b); if (tau) NAG_FREE(tau); return exit_status; }