/* nag_zheevx (f08fpc) Example Program. * * Copyright 2011 Numerical Algorithms Group. * * Mark 23, 2011. */ #include #include #include #include #include #include int main(void) { /* Scalars */ double abstol, vl, vu; Integer exit_status = 0, i, il = 0, iu = 0, j, m, n, pda, pdz; /* Arrays */ Complex *a = 0, *z = 0; double *w = 0; Integer *index = 0; /* Nag Types */ Nag_OrderType order; NagError fail, fail_print; #ifdef NAG_COLUMN_MAJOR #define A(I, J) a[(J - 1) * pda + I - 1] #define Z(I, J) z[(J - 1) * pdz + I - 1] order = Nag_ColMajor; #else #define A(I, J) a[(I - 1) * pda + J - 1] #define Z(I, J) z[(I - 1) * pdz + J - 1] order = Nag_RowMajor; #endif INIT_FAIL(fail); printf("nag_zheevx (f08fpc) Example Program Results\n\n"); /* Skip heading in data file */ scanf("%*[^\n]"); scanf("%ld%*[^\n]", &n); m = n; #ifdef NAG_COLUMN_MAJOR pda = n; pdz = n; #else pda = n; pdz = m; #endif /* Allocate memory */ if (!(a = NAG_ALLOC(n*n, Complex)) || !(z = NAG_ALLOC(n*m, Complex)) || !(w = NAG_ALLOC(n, double)) || !(index = NAG_ALLOC(n, Integer))) { printf("Allocation failure\n"); exit_status = -1; goto END; } pda = n; #ifdef NAG_COLUMN_MAJOR pdz = n; #else pdz = m; #endif /* Read the lower and upper bounds of the interval to be searched, * and read the upper triangular part of the matrix A from data file. */ scanf("%lf%lf%*[^\n]", &vl, &vu); for (i = 1; i <= n; ++i) for (j = i; j <= n; ++j) scanf(" ( %lf , %lf )", &A(i, j).re, &A(i, j).im); scanf("%*[^\n]"); /* Set the absolute error tolerance for eigenvalues. * With abstol set to zero, the default value is used instead. */ abstol = 0.0; /* nag_zheevx (f08fpc). * Solve the Hermitian eigenvalue problem. */ nag_zheevx(order, Nag_DoBoth, Nag_Interval, Nag_Upper, n, a, pda, vl, vu, il, iu, abstol, &m, w, z, pdz, index, &fail); if (fail.code != NE_NOERROR && fail.code != NE_CONVERGENCE) { printf("Error from nag_zheevx (f08fpc).\n%s\n", fail.message); exit_status = 1; goto END; } /* nag_complex_divide (a02cdc). * Normalize the eigenvectors. */ for(j=1; j<=m; j++) for(i=n; i>=1; i--) Z(i, j) = nag_complex_divide(Z(i, j),Z(1, j)); /* Print solution */ printf("Number of eigenvalues found =%5ld\n", m); printf("\nEigenvalues\n"); for (j = 0; j < m; ++j) printf("%8.4f%s", w[j], (j+1)%8 == 0?"\n":" "); printf("\n\n"); /* nag_gen_complx_mat_print (x04dac). * Print selected eigenvectors. */ INIT_FAIL(fail_print); fflush(stdout); nag_gen_complx_mat_print(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, m, z, pdz, "Selected eigenvectors", 0, &fail_print); if (fail_print.code != NE_NOERROR) { printf("Error from nag_gen_complx_mat_print (x04dac).\n%s\n", fail_print.message); exit_status = 1; goto END; } if (fail.code == NE_CONVERGENCE) { printf("eigenvectors failed to converge\n"); printf("Indices of eigenvectors that did not converge\n"); for (j = 0; j < m; ++j) printf("%8ld%s", index[j], (j+1)%8 == 0?"\n":" "); } END: NAG_FREE(a); NAG_FREE(z); NAG_FREE(w); NAG_FREE(index); return exit_status; } #undef A #undef Z