/* nag_zggev (f08wnc) Example Program. * * Copyright 2011 Numerical Algorithms Group. * * Mark 23, 2011. */ #include #include #include #include #include #include #include int main(void) { /* Scalars */ Complex z; double small; Integer i, j, n, pda, pdb, pdvl, pdvr; Integer exit_status = 0; /* Arrays */ Complex *a = 0, *alpha = 0, *b = 0, *beta = 0, *vl = 0, *vr = 0; char nag_enum_arg[40]; /* Nag Types */ NagError fail; Nag_OrderType order; Nag_LeftVecsType jobvl; Nag_RightVecsType jobvr; #ifdef NAG_COLUMN_MAJOR #define A(I, J) a[(J-1)*pda + I - 1] #define B(I, J) b[(J-1)*pdb + I - 1] order = Nag_ColMajor; #else #define A(I, J) a[(I-1)*pda + J - 1] #define B(I, J) b[(I-1)*pdb + J - 1] order = Nag_RowMajor; #endif INIT_FAIL(fail); printf("nag_zggev (f08wnc) Example Program Results\n"); /* Skip heading in data file */ scanf("%*[^\n]"); scanf("%ld%*[^\n]", &n); if (n < 0) { printf("Invalid n\n"); exit_status = 1; goto END; } scanf(" %39s%*[^\n]", nag_enum_arg); /* nag_enum_name_to_value (x04nac). * Converts NAG enum member name to value */ jobvl = (Nag_LeftVecsType) nag_enum_name_to_value(nag_enum_arg); scanf(" %39s%*[^\n]", nag_enum_arg); jobvr = (Nag_RightVecsType) nag_enum_name_to_value(nag_enum_arg); pda = n; pdb = n; pdvl = (jobvl==Nag_LeftVecs?n:1); pdvr = (jobvr==Nag_RightVecs?n:1); /* Allocate memory */ if (!(a = NAG_ALLOC(n*n, Complex)) || !(alpha = NAG_ALLOC(n, Complex)) || !(b = NAG_ALLOC(n*n, Complex)) || !(beta = NAG_ALLOC(n, Complex)) || !(vl = NAG_ALLOC(pdvl*pdvl, Complex)) || !(vr = NAG_ALLOC(pdvr*pdvr, Complex))) { printf("Allocation failure\n"); exit_status = -1; goto END; } /* Read in the matrices A and B */ for (i = 1; i <= n; ++i) for (j = 1; j <= n; ++j) scanf(" ( %lf , %lf )", &A(i, j).re, &A(i, j).im); scanf("%*[^\n]"); for (i = 1; i <= n; ++i) for (j = 1; j <= n; ++j) scanf(" ( %lf , %lf )", &B(i, j).re, &B(i, j).im); scanf("%*[^\n]"); /* Solve the generalized eigenvalue problem using nag_zggev (f08wnc). */ nag_zggev(order, jobvl, jobvr, n, a, pda, b, pdb, alpha, beta, vl, pdvl, vr, pdvr, &fail); if (fail.code != NE_NOERROR) { printf("Error from nag_zggev (f08wnc).\n%s\n", fail.message); exit_status = 1; goto END; } /* nag_real_safe_small_number (x02amc). */ small = nag_real_safe_small_number; printf("\n Eigenvalues\n"); for (j = 0; j < n; ++j) { if (nag_complex_abs(alpha[j]) * small >= nag_complex_abs(beta[j])) { printf("%2ld numerically infinite or undetermined\n", j+1); printf(" alpha = (%9.4f, %9.4f), beta = (%9.4f, %9.4f)\n", alpha[j].re, alpha[j].im, beta[j].re, beta[j].im); } else { z = nag_complex_divide(alpha[j], beta[j]); printf("%2ld (%13.4e, %13.4e)\n", j+1, z.re, z.im); } } if (jobvl==Nag_LeftVecs) { printf("\n"); /* Print left eigenvectors using nag_gen_complx_mat_print (x04dac). */ fflush(stdout); nag_gen_complx_mat_print(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n, vl, pdvl, " Left eigenvectors (columns)", 0, &fail); } if ( jobvr==Nag_RightVecs && fail.code == NE_NOERROR) { printf("\n"); /* Print rightt eigenvectors using nag_gen_complx_mat_print (x04dac). */ fflush(stdout); nag_gen_complx_mat_print(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n, vr, pdvr, " Right eigenvectors (columns)", 0, &fail); } if (fail.code != NE_NOERROR) { printf("Error from nag_gen_complx_mat_print (x04dac).\n%s\n", fail.message); exit_status = 1; goto END; } END: NAG_FREE(a); NAG_FREE(alpha); NAG_FREE(b); NAG_FREE(beta); NAG_FREE(vl); NAG_FREE(vr); return exit_status; }