# correlation

 C06EKF Circular convolution or correlation of two real vectors, no extra workspace C06FKF Circular convolution or correlation of two real vectors, extra workspace for greater speed C06PKF Circular convolution or correlation of two complex vectors G02BAF Pearson product-moment correlation coefficients, all variables, no missing values G02BBF Pearson product-moment correlation coefficients, all variables, casewise treatment of missing values G02BCF Pearson product-moment correlation coefficients, all variables, pairwise treatment of missing values G02BGF Pearson product-moment correlation coefficients, subset of variables, no missing values G02BHF Pearson product-moment correlation coefficients, subset of variables, casewise treatment of missing values G02BJF Pearson product-moment correlation coefficients, subset of variables, pairwise treatment of missing values G02BNF Kendall/Spearman non-parametric rank correlation coefficients, no missing values, overwriting input data G02BPF Kendall/Spearman non-parametric rank correlation coefficients, casewise treatment of missing values, overwriting input data G02BQF Kendall/Spearman non-parametric rank correlation coefficients, no missing values, preserving input data G02BRF Kendall/Spearman non-parametric rank correlation coefficients, casewise treatment of missing values, preserving input data G02BSF Kendall/Spearman non-parametric rank correlation coefficients, pairwise treatment of missing values G02BWF Computes a correlation matrix from a sum of squares matrix G02BXF Computes (optionally weighted) correlation and covariance matrices G02CGF Multiple linear regression, from correlation coefficients, with constant term G02HKF Calculates a robust estimation of a correlation matrix, Huber's weight function G02HLF Calculates a robust estimation of a correlation matrix, user-supplied weight function plus derivatives G02HMF Calculates a robust estimation of a correlation matrix, user-supplied weight function G03ADF Performs canonical correlation analysis G05QBF Computes a random correlation matrix G13DNF Multivariate time series, sample partial lag correlation matrices, χ2 statistics and significance levels

Library Contents
Keywords in Context Index
© The Numerical Algorithms Group Ltd, Oxford UK. 2001