E04 — Minimizing or Maximizing a Function E04USF

NAG Library Routine Document
E04USF/E04USA

Note: before using this routine, please read the Users” Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

Note: this routine uses optional parameters fo define choices in the problem specification and in the
details of the algorithm. If you wish to use default settings for all of the optional parameters, you need
only read Sections 1 to 9 of this document. If, however, you wish to reset some or all of the settings please
refer to Section 10 for a detailed description of the algorithm, to Section 11 for a detailed description of
the specification of the optional parameters and to Section 12 for a detailed description of the monitoring
information produced by the routine.

1 Purpose

EO4USF/E04USA is designed to minimize an arbitrary smooth sum of squares function subject to
constraints (which may include simple bounds on the variables, linear constraints and smooth nonlinear
constraints) using a sequential quadratic programming (SQP) method. As many first derivatives as
possible should be supplied by you; any unspecified derivatives are approximated by finite differences.
See the description of the optional parameter Derivative Level, in Section 11.1. It is not intended for large
sparse problems.

EO04USF/E04USA may also be used for unconstrained, bound-constrained and linearly constrained
optimization.

EO4USA is a version of EO4USF that has additional parameters in order to make it safe for use in
multithreaded applications (see Section 5). The initialization routine EO4WBF must have been called
before calling EO4USA.

2 Specification
2.1 Specification for E04USF

SUBROUTINE EQ4USF (M, N, NCLIN, NCNLN, LDA, LDCJ, LDFJ, LDR, A, BL, BU, Y, &
CONFUN, OBJFUN, ITER, ISTATE, C, CJAC, F, FJAC, CLAMDA, &
OBJF, R, X, IWORK, LIWORK, WORK, LWORK, IUSER, RUSER, &
IFAIL)

INTEGER M, N, NCLIN, NCNLN, LDA, LDCJ, LDFJ, LDR, ITER, &
ISTATE (N+NCLIN+NCNLN), IWORK(LIWORK), LIWORK, LWORK, &
IUSER(#*), IFAIL

REAL (KIND=nag_wp) A(LDA,#*), BL(N+NCLIN+NCNLN), BU(N+NCLIN+NCNLN), Y(M), &
C(max(1,NCNLN)), CJAC(LDCJ,*), F(M), FJAC(LDFJ,N), &
CLAMDA (N+NCLIN+NCNLN), OBJF, R(LDR,N), X(N), &
WORK (LWORK) , RUSER(*)

EXTERNAL CONFUN, OBJFUN

2.2 Specification for E04USA

SUBROUTINE EO4USA (M, N, NCLIN, NCNLN, LDA, LDCJ, LDFJ, LDR, A, BL, BU, Y, &
CONFUN, OBJFUN, ITER, ISTATE, C, CJAC, F, FJAC, CLAMDA, &
OBJF, R, X, IWORK, LIWORK, WORK, LWORK, IUSER, RUSER, &
LWSAV, IWSAV, RWSAV, IFAIL)

INTEGER M, N, NCLIN, NCNLN, LDA, LDCJ, LDFJ, LDR, ITER, &
ISTATE (N+NCLIN+NCNLN), IWORK(LIWORK), LIWORK, LWORK, &
IUSER(*), IWSAV(610), IFAIL

REAL (KIND=nag_wp) A(LDA,#*), BL(N+NCLIN+NCNLN), BU(N+NCLIN+NCNLN), Y(M), &
C(max(1,NCNLN)), CJAC(LDCJ,*), F(M), FJAC(LDFJ,N), &
CLAMDA (N+NCLIN+NCNLN), OBJF, R(LDR,N), X(N), &
WORK (LWORK) , RUSER(*), RWSAV(475)

LOGICAL LWSAV(120)
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EXTERNAL CONFUN, OBJFUN

Before calling EO4USA, or either of the option setting routines EO4UQA or E0O4URA, E0O4WBF must be
called. The specification for EO4WBF is:

SUBROUTINE EO4WBF (RNAME, CWSAV, LCWSAV, LWSAV, LLWSAV, IWSAV, LIWSAV, &
RWSAV, LRWSAV, IFAIL)

INTEGER LCWSAV, LLWSAV, IWSAV(LIWSAV), LIWSAV, LRWSAV, IFAIL
REAL (KIND=nag_wp) RWSAV(LRWSAV)

LOGICAL LWSAV (LLWSAV)

CHARACTER () RNAME

CHARACTER(80) CWSAV (LCWSAV)

E04WBF should be called with RNAME = "E04USA'. LCWSAV, LLWSAV, LIWSAV and LRWSAV, the
declared lengths of CWSAV, LWSAV, IWSAV and RWSAV respectively, must satisfy:

LCWSAV > 1

LLWSAV > 120
LIWSAV > 610
LRWSAV > 475

The contents of the arrays CWSAV, LWSAV, IWSAV and RWSAV must not be altered between calling
routines E0O4UQA, E0O4URA, E0O4USA and E0O4WBF.

3 Description

EO04USF/E04USA is designed to solve the nonlinear least squares programming problem — the
minimization of a smooth nonlinear sum of squares function subject to a set of constraints on the
variables. The problem is assumed to be stated in the following form:

m X
minimize F'(x) = %Z(yl - fi(:v))2 subject to 1< Az p <, (1)
r€R" -
()

where F'(x) (the objective function) is a nonlinear function which can be represented as the sum of squares
of m subfunctions (y; — f1(x)), (y» — fo(x)),- -, (Y — fi(z)), the y,; are constant, A; is an ny by n
constant matrix, and ¢(z) is an ny element vector of nonlinear constraint functions. (The matrix Ay and
the vector c(x) may be empty.) The objective function and the constraint functions are assumed to be
smooth, i.e., at least twice-continuously differentiable. (The method of E04USF/E04USA will usually
solve (1) if any isolated discontinuities are away from the solution.)

Note that although the bounds on the variables could be included in the definition of the linear constraints,
we prefer to distinguish between them for reasons of computational efficiency. For the same reason, the
linear constraints should not be included in the definition of the nonlinear constraints. Upper and lower
bounds are specified for all the variables and for all the constraints. An equality constraint can be specified
by setting [; = u;. If certain bounds are not present, the associated elements of [ or « can be set to special
values that will be treated as —oco or +o0o. (See the description of the optional parameter Infinite Bound
Size.)

You must supply an initial estimate of the solution to (1), together with subroutines that define

f@) = (fi(@), /r(@),..., fu(x))", c¢(z) and as many first partial derivatives as possible; unspecified
derivatives are approximated by finite differences.

The subfunctions are defined by the array Y and OBJFUN, and the nonlinear constraints are defined by
CONFUN. On every call, these subroutines must return appropriate values of f(z) and ¢(x). You should
also provide the available partial derivatives. Any unspecified derivatives are approximated by finite
differences for a discussion of the optional parameter Derivative Level. Note that if there are any
nonlinear constraints, then the first call to CONFUN will precede the first call to OBJFUN.

For maximum reliability, it is preferable for you to provide all partial derivatives (see Chapter 8 of Gill et
al. (1981) for a detailed discussion). If all gradients cannot be provided, it is similarly advisable to provide
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as many as possible. While developing OBJFUN and CONFUN, the optional parameter Verify should be
used to check the calculation of any known gradients.

4
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1:

Parameters
M — INTEGER Input
On entry: m, the number of subfunctions associated with F'(z).

Constraint: M > 0.

N — INTEGER Input
On entry: n, the number of variables.

Constraint: N > 0.

NCLIN — INTEGER Input
On entry: ny, the number of general linear constraints.

Constraint: NCLIN > 0.

NCNLN — INTEGER Input
On entry: ny, the number of nonlinear constraints.

Constraint: NCNLN > 0.

LDA — INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which EO4USF/
E04USA is called.

Constraint: LDA > max(1,NCLIN).

LDCJ — INTEGER Input

On entry: the first dimension of the array CJAC as declared in the (sub)program from which
EO04USF/E04USA is called.

Constraint: LDCJ > max(1, NCNLN).

LDFJ — INTEGER Input

On entry. the first dimension of the array FJAC as declared in the (sub)program from which
E04USF/E04USA is called.

Constraint. LDF] > M.

LDR — INTEGER Input

On entry: the first dimension of the array R as declared in the (sub)program from which E04USF/
E04USA is called.

Constraint: LDR > N.

Mark 24 E04USF.3



E04USF NAG Library Manual

9: A(LDA,x) — REAL (KIND=nag_wp) array Input
Note: the second dimension of the array A must be at least N if NCLIN > 0, and at least 1
otherwise.

On entry: the ith row of A contains the ith row of the matrix A; of general linear constraints in (1).
That is, the ¢th row contains the coefficients of the ith general linear constraint, for
i=1,2,...,NCLIN.

If NCLIN = 0, the array A is not referenced.

10:  BL(N + NCLIN + NCNLN) — REAL (KIND=nag_wp) array Input
11:  BU(N + NCLIN + NCNLN) — REAL (KIND=nag_wp) array Input

On entry: must contain the lower bounds and BU the upper bounds, for all the constraints in the
following order. The first n elements of each array must contain the bounds on the variables, the
next n;, elements the bounds for the general linear constraints (if any) and the next n, elements the
bounds for the general nonlinear constraints (if any). To specify a nonexistent lower bound (i.e.,
l; = —00), set BL(j) < —bighnd, and to specify a nonexistent upper bound (i.e., u; = +00), set

BU(j) > bighnd; the default value of bighnd is 10?°, but this may be changed by the optional
parameter Infinite Bound Size. To specify the jth constraint as an equality, set
BL(j) = BU(j) = S, say, where |3| < bigbnd.

Constraints:
BL(j) < BU(j), for j =1,2,...,N + NCLIN + NCNLN;
if BL(j) = BU(j) = 3, |8| < bigbnd.
122 Y(M) — REAL (KIND=nag_wp) array Input

On entry: the coefficients of the constant vector y of the objective function.

13:  CONFUN - SUBROUTINE, supplied by the NAG Library or the user. External Procedure
CONFUN must calculate the vector c¢(x) of nonlinear constraint functions and (optionally) its

Jacobian (= %) for a specified n-element vector x. If there are no nonlinear constraints (i.e.,
x

NCNLN = 0), CONFUN will never be called by E04USF/E04USA and CONFUN may be the
dummy routine E0O4UDM. (E04UDM is included in the NAG Library.) If there are nonlinear
constraints, the first call to CONFUN will occur before the first call to OBJFUN.

The specification of CONFUN is:

SUBROUTINE CONFUN (MODE, NCNLN, N, LDCJ, NEEDC, X, C, CJAC, NSTATE, &
IUSER, RUSER)

INTEGER MODE, NCNLN, N, LDCJ, NEEDC(NCNLN), NSTATE, &
TUSER(*)
REAL (KIND=nag_wp) X(N), C(NCNLN), CJAC(LDCJ,N), RUSER(¥*)

1: MODE - INTEGER Input/Output

On entry: indicates which values must be assigned during each call of CONFUN. Only
the following values need be assigned, for each value of 7 such that NEEDC(i) > 0:
MODE =0

C(7).
MODE =1

All available elements in the ¢th row of CJAC.
MODE =2

C(4) and all available elements in the ith row of CJAC.

On exit: may be set to a negative value if you wish to terminate the solution to the current
problem, and in this case EO4USF/E04USA will terminate with IFAIL set to MODE.

E04USF.4 Mark 24



E04 — Minimizing or Maximizing a Function E04USF

Mark 24

2:

NCNLN — INTEGER Input

On entry: ny, the number of nonlinear constraints.

N — INTEGER Input

On entry: n, the number of variables.

LDCJ — INTEGER Input
On entry: the first dimension of the array CJAC as declared in the (sub)program from
which EO4USF/E04USA is called.

NEEDC(NCNLN) — INTEGER array Input
On entry: the indices of the elements of C and/or CJAC that must be evaluated by
CONFUN. If NEEDC(i) > 0, then the ith element of C and/or the available elements of
the ¢th row of CJAC (see parameter MODE) must be evaluated at x.

X(N) — REAL (KIND=nag_wp) array Input
On entry: x, the vector of variables at which the constraint functions and/or all available
elements of the constraint Jacobian are to be evaluated.

C(NCNLN) — REAL (KIND=nag_wp) array Output

On exit: if NEEDC(i) > 0 and MODE = 0 or 2, C(i) must contain the value of the ith
constraint at z. The remaining elements of C, corresponding to the non-positive elements
of NEEDC, are ignored.

CJAC(LDCIJ,N) — REAL (KIND=nag_wp) array Input/Output

On entry: is set to a special value.

On exit: if NEEDC(¢) > 0 and MODE = 1 or 2, the ith row of CJAC must contain the
available elements of the vector V¢; given by

T
VCZ‘: (862 8Cl‘ 867‘) ,

) ) )
0z’ 0z, oz,

8Ci
evaluated at the point z. See also the parameter NSTATE. The remaining rows of CJAC,

corresponding to non-positive elements of NEEDC, are ignored.

where is the partial derivative of the ¢th constraint with respect to the jth variable,

If all elements of the constraint Jacobian are known (i.e., Derivative Level = 2 or 3), any
constant elements may be assigned to CJAC one time only at the start of the optimization.
An element of CJAC that is not subsequently assigned in CONFUN will retain its initial
value throughout. Constant elements may be loaded into CJAC either before the call to
EO4USF/E04USA or during the first call to CONFUN (signalled by the value

NSTATE = 1). The ability to preload constants is useful when many Jacobian elements
are identically zero, in which case CJAC may be initialized to zero and nonzero elements
may be reset by CONFUN.

Note that constant nonzero elements do affect the values of the constraints. Thus, if
CJAC(i, 7) is set to a constant value, it need not be reset in subsequent calls to CONFUN,
but the value CJAC(i, j) x X(j) must nonetheless be added to C(i). For example, if
CJAC(1,1) =2 and CJAC(1,2) = —5, then the term 2 x X(1) — 5 x X(2) must be
included in the definition of C(1).

It must be emphasized that, if Derivative Level = 0 or 1, unassigned elements of CJAC
are not treated as constant; they are estimated by finite differences, at nontrivial expense.
If you do not supply a value for the optional parameter Difference Interval, an interval
for each element of = is computed automatically at the start of the optimization. The
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automatic procedure can usually identify constant elements of CJAC, which are then
computed once only by finite differences.

9: NSTATE — INTEGER Input

On entry: if NSTATE = 1 then EO4USF/E04USA is calling CONFUN for the first time.
This parameter setting allows you to save computation time if certain data must be read or
calculated only once.

10:  TUSER(x) — INTEGER array User Workspace
11:  RUSER(*) — REAL (KIND=nag_wp) array User Workspace

CONFUN is called with the parameters IUSER and RUSER as supplied to EO4USF/
E04USA. You are free to use the arrays IUSER and RUSER to supply information to
CONFUN as an alternative to using COMMON global variables.

CONFUN must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which EO4USF/E04USA is called. Parameters denoted as I/nput must not be
changed by this procedure.

Note: CONFUN should be tested separately before being used in conjunction with E04USF/
EO04USA. See also the description of the optional parameter Verify.

14:  OBJFUN — SUBROUTINE, supplied by the user. External Procedure
OBJFUN must calculate either the ith element of the vector f(z) = (f;(x), fo(x),..., f,,,,(av))T or

all m elements of f(z) and (optionally) its Jacobian ( = 8_£) for a specified n-element vector z.

The specification of OBJFUN is:

SUBROUTINE OBJFUN (MODE, M, N, LDFJ, NEEDFI, X, F, FJAC, NSTATE, &
IUSER, RUSER)

INTEGER MODE, M, N, LDFJ, NEEDFI, NSTATE, IUSER(*)
REAL (KIND=nag_wp) X(N), F(M), FJAC(LDFJ,N), RUSER(*)
1: MODE — INTEGER Input/Output

On entry: indicates which values must be assigned during each call of OBJFUN. Only the
following values need be assigned:

MODE = 0 and NEEDFI = i, where i > 0
F(i).

MODE = 0 and NEEDFI < 0
F.

MODE = 1 and NEEDFI < 0
All available elements of FJAC.

MODE = 2 and NEEDFI < 0
F and all available elements of FJAC.

On exit: may be set to a negative value if you wish to terminate the solution to the current
problem, and in this case E0O4USF/E04USA will terminate with IFAIL set to MODE.

2: M — INTEGER Input

On entry: m, the number of subfunctions.

3: N - INTEGER Input

On entry: n, the number of variables.
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15:

4: LDFJ — INTEGER Input
On entry: the first dimension of the array FJAC as declared in the (sub)program from
which EO4USF/E04USA is called.

5 NEEDFI — INTEGER Input
On entry: if NEEDFI = ¢ > 0, only the ith element of f(z) needs to be evaluated at x; the
remaining elements need not be set. This can result in significant computational savings
when m > n.

6: X(N) — REAL (KIND=nag_wp) array Input
On entry: x, the vector of variables at which f(z) and/or all available elements of its
Jacobian are to be evaluated.

7: F(M) — REAL (KIND=nag_wp) array Output
On exit: if MODE = 0 and NEEDFI = ¢ > 0, F(7) must contain the value of f; at .

If MODE = 0 or 2 and NEEDFI < 0, F(7) must contain the value of f; at x, for
i=1,2,...,m.

8: FJAC(LDFJ\N) — REAL (KIND=nag_wp) array Input/Output
On entry: is set to a special value.

On exit: if MODE =1 or 2 and NEEDFI < 0, the ith row of FJIAC must contain the
available elements of the vector V f; given by

T
VS = <3fi of; - afi) ’

Ox,’ 0z, " Oz,
evaluated at the point . See also the parameter NSTATE.

9: NSTATE — INTEGER Input

On entry: if NSTATE = 1 then EO4USF/E04USA is calling OBJFUN for the first time.
This parameter setting allows you to save computation time if certain data must be read or
calculated only once.

10:  TUSER(x) — INTEGER array User Workspace
11:  RUSER(x) — REAL (KIND=nag_wp) array User Workspace

OBJFUN is called with the parameters IUSER and RUSER as supplied to E04USF/
E04USA. You are free to use the arrays IUSER and RUSER to supply information to
OBJFUN as an alternative to using COMMON global variables.

OBJFUN must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which EO4USF/E04USA is called. Parameters denoted as /nmput must not be
changed by this procedure.

Note: OBJFUN should be tested separately before being used in conjunction with E04USF/
E04USA. See also the description of the optional parameter Verify.
ITER — INTEGER Output

On exit: the number of major iterations performed.

ISTATE(N + NCLIN + NCNLN) — INTEGER array Input/Output
On entry: need not be set if the (default) optional parameter Cold Start is used.

If the optional parameter Warm Start has been chosen, the elements of ISTATE corresponding to
the bounds and linear constraints define the initial working set for the procedure that finds a feasible
point for the linear constraints and bounds. The active set at the conclusion of this procedure and
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the elements of ISTATE corresponding to nonlinear constraints then define the initial working set for
the first QP subproblem. More precisely, the first n elements of ISTATE refer to the upper and
lower bounds on the variables, the next n; elements refer to the upper and lower bounds on Az,
and the next ny elements refer to the upper and lower bounds on c¢(z). Possible values for
ISTATE(j) are as follows:

ISTATE(j) Meaning
0 The corresponding constraint is not in the initial QP working set.
1 This inequality constraint should be in the working set at its lower bound.
2 This inequality constraint should be in the working set at its upper bound.
3 This equality constraint should be in the initial working set. This value must not be

specified unless BL(j) = BU(j).

The values —2, —1 and 4 are also acceptable but will be modified by the routine. If EO4USF/
EO04USA has been called previously with the same values of N, NCLIN and NCNLN, ISTATE
already contains satisfactory information. (See also the description of the optional parameter Warm
Start.) The routine also adjusts (if necessary) the values supplied in X to be consistent with
ISTATE.

Constraint: —2 < ISTATE(j) <4, for j=1,2,...,N+ NCLIN + NCNLN.

On exit: the status of the constraints in the QP working set at the point returned in X. The
significance of each possible value of ISTATE(j) is as follows:

ISTATE()) Meaning

-2 This constraint violates its lower bound by more than the appropriate feasibility
tolerance (see the optional parameters Linear Feasibility Tolerance and Nonlinear
Feasibility Tolerance). This value can occur only when no feasible point can be
found for a QP subproblem.

-1 This constraint violates its upper bound by more than the appropriate feasibility
tolerance (see the optional parameters Linear Feasibility Tolerance and Nonlinear
Feasibility Tolerance). This value can occur only when no feasible point can be
found for a QP subproblem.

0 The constraint is satisfied to within the feasibility tolerance, but is not in the QP
working set.

1 This inequality constraint is included in the QP working set at its lower bound.

2 This inequality constraint is included in the QP working set at its upper bound.

3 This constraint is included in the QP working set as an equality. This value of

ISTATE can occur only when BL(j) = BU(j).

17. C(max(1,NCNLN)) — REAL (KIND=nag_wp) array Output

On exit: if NCNLN > 0, C(i) contains the value of the ith nonlinear constraint function ¢; at the
final iterate, for ¢ = 1,2,...,NCNLN.

If NCNLN = 0, the array C is not referenced.

18:  CJAC(LDCJ,x) — REAL (KIND=nag wp) array Input/Output
Note: the second dimension of the array CJAC must be at least N if NCNLN > 0, and at least 1
otherwise.

On entry: in general, CJAC need not be initialized before the call to EO4USF/E04USA. However, if
Derivative Level = 3, you may optionally set the constant elements of CJAC (see parameter
NSTATE in the description of CONFUN). Such constant elements need not be re-assigned on
subsequent calls to CONFUN.

On exit: if NCNLN > 0, CJAC contains the Jacobian matrix of the nonlinear constraint functions at
the final iterate, i.e., CJAC(¢,7) contains the partial derivative of the ith constraint function with
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19:

20:

21:

22:

23:

24:

respect to the jth variable, for ¢ = 1,2,... ,NCNLN and 5 =1,2,...,N. (See the discussion of
parameter CJAC under CONFUN.)

If NCNLN = 0, the array CJAC is not referenced.

F(M) — REAL (KIND=nag_wp) array Output

On exit: F(i) contains the value of the ith function f; at the final iterate, for i = 1,2,... M.

FJAC(LDFJ\N) — REAL (KIND=nag_wp) array Input/Output

On entry: in general, FJAC need not be initialized before the call to EO4USF/E04USA. However, if
Derivative Level = 3, you may optionally set the constant elements of FJAC (see parameter
NSTATE in the description of OBJFUN). Such constant elements need not be re-assigned on
subsequent calls to OBJFUN.

On exit: the Jacobian matrix of the functions f|, f,,..., f,, at the final iterate, i.e., FIAC(3, )
contains the partial derivative of the ith function with respect to the jth variable, for i = 1,2,... ;M
and j=1,2,...,N. (See also the discussion of parameter FJAC under OBJFUN.)

CLAMDA(N + NCLIN + NCNLN) — REAL (KIND=nag_wp) array Input/Output
On entry: need not be set if the (default) optional parameter Cold Start is used.

If the optional parameter Warm Start has been chosen, CLAMDA(j) must contain a multiplier
estimate for each nonlinear constraint with a sign that matches the status of the constraint specified
by the ISTATE array, for j =N+ NCLIN+1,...,N+ NCLIN + NCNLN. The remaining
elements need not be set. Note that if the jth constraint is defined as ‘inactive’ by the initial
value of the ISTATE array (i.e., ISTATE(j) = 0), CLAMDA(j) should be zero; if the jth constraint
is an inequality active at its lower bound (i.e., ISTATE(j) = 1), CLAMDA(j) should be non-
negative; if the jth constraint is an inequality active at its upper bound (i.e., ISTATE(j) = 2,
CLAMDA(j) should be non-positive. If necessary, the routine will modify CLAMDA to match
these rules.

On exit: the values of the QP multipliers from the last QP subproblem. CLAMDA(j) should be
non-negative if ISTATE(j) = 1 and non-positive if ISTATE(j) = 2.
OBJF — REAL (KIND=nag wp) Output

On exit: the value of the objective function at the final iterate.

R(LDR,N) — REAL (KIND=nag_wp) array Input/Output
On entry: need not be initialized if the (default) optional parameter Cold Start is used.

If the optional parameter Warm Start has been chosen, R must contain the upper triangular
Cholesky factor R of the initial approximation of the Hessian of the Lagrangian function, with the
variables in the natural order. Elements not in the upper triangular part of R are assumed to be zero
and need not be assigned.

On exit: if Hessian = NO, R contains the upper triangular Cholesky factor R of Q"HQ, an estimate
of the transformed and reordered Hessian of the Lagrangian at = (see (6) in EO4UFF/E04UFA). If
Hessian = YES, R contains the upper triangular Cholesky factor R of H, the approximate
(untransformed) Hessian of the Lagrangian, with the variables in the natural order.

X(N) — REAL (KIND=nag_wp) array Input/Output
On entry: an initial estimate of the solution.

On exit: the final estimate of the solution.
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25:
26:

27:
28:

29:
30:

31:

IWORK(LIWORK) — INTEGER array Workspace
LIWORK — INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which E04USF/
E04USA is called.

Constraint: LIWORK > 3 x N + NCLIN + 2 x NCNLN.

WORK(LWORK) — REAL (KIND=nag_wp) array Workspace
LWORK — INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which E04USF/
E04USA is called.

Constraints:

if NCNLN = 0 and NCLIN = 0, LWORK > 20 x N+ M x (N + 3);

if NCNLN = 0 and NCLIN > 0, LWORK > 2 x N> 420 x N + 11 x NCLIN +
M x (N + 3);

if NCNLN > 0 and NCLIN > 0, LWORK > 2 x N* 4+ N x NCLIN + 2 x N x
NCNLN + 20 x N+ 11 x NCLIN + 21 x NCNLN + M x (N + 3).

The amounts of workspace provided and required are (by default) output on the current advisory
message unit (as defined by X04ABF). As an alternative to computing LIWORK and LWORK
from the formulas given above, you may prefer to obtain appropriate values from the output of a
preliminary run with LIWORK and LWORK set to 1. (EO4USF/E04USA will then terminate with
IFAIL =9.)

IUSER () — INTEGER array User Workspace
RUSER(%*) — REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by EO4USF/E04USA, but are passed directly to CONFUN and
OBJFUN and may be used to pass information to these routines as an alternative to using
COMMON global variables.

IFAIL — INTEGER Input/Output

Note: for EO4USA, IFAIL does not occur in this position in the parameter list. See the additional
parameters described below.

On entry: IFAIL must be set to 0, —1 or 1. If you are unfamiliar with this parameter you should
refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value —1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output parameters
may be useful even if IFAIL # 0 on exit, the recommended value is —1. When the value —1 or 1
is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL =0 unless the routine detects an error or a warning has been flagged (see
Section 6).

EO04USF/E04USA returns with IFAIL = 0 if the iterates have converged to a point x that satisfies
the first-order Kuhn—Tucker conditions (see Section 10.1 in EO4UFF/E04UFA) to the accuracy

requested by the optional parameter Optimality Tolerance (default value = 2%, where ¢, is the

value of the optional parameter Function Precision (default value = ¢"°, where ¢ is the machine
precision)), i.e., the projected gradient and active constraint residuals are negligible at z.

You should check whether the following four conditions are satisfied:
(1) the final value of Norm Gz (see Section 8.1) is significantly less than that at the starting point;

(i1) during the final major iterations, the values of Step and Mnr (see Section 8.1) are both one;
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(iii) the last few values of both Norm Gz and Violtn (see Section 8.1) become small at a fast linear
rate; and

(iv) Cond Hz (see Section 8.1) is small.
If all these conditions hold, = is almost certainly a local minimum of (1).

Note: the following are additional parameters for specific use with EQ4USA. Users of EO4USF therefore
need not read the remainder of this description.

31:  LWSAV(120) — LOGICAL array Communication Array
32:  IWSAV(610) — INTEGER array Communication Array
33:  RWSAV(475) — REAL (KIND=nag_wp) array Communication Array

The arrays LWSAV, IWSAV and RWSAV must not be altered between calls to any of the routines
E04USA, E0O4UQA or E0O4URA.

34:  IFAIL — INTEGER Input/Output

Note: see the parameter description for IFAIL above.

6  Error Indicators and Warnings

If on entry IFAIL = 0 or —1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Note: E04USF/E04USA may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL < 0

A negative value of IFAIL indicates an exit from EO4USF/E04USA because you set MODE < 0 in
OBJFUN or CONFUN. The value of IFAIL will be the same as your setting of MODE.

IFAIL =1

The final iterate x satisfies the first-order Kuhn—Tucker conditions (see Section 10.1 in EO4UFF/
EO04UFA) to the accuracy requested, but the sequence of iterates has not yet converged. E04USF/
E04USA was terminated because no further improvement could be made in the merit function (see
Section 8.1).

This value of IFAIL may occur in several circumstances. The most common situation is that you
ask for a solution with accuracy that is not attainable with the given precision of the problem (as
specified by the optional parameter Function Precision (default value = €, where ¢ is the
machine precision)). This condition will also occur if, by chance, an iterate is an ‘exact’ Kuhn—
Tucker point, but the change in the variables was significant at the previous iteration. (This
situation often happens when minimizing very simple functions, such as quadratics.)

If the four conditions listed in Section 5 for IFAIL = 0 are satisfied, = is likely to be a solution of
(1) even if IFAIL = 1.

IFAIL =2

EO04USF/E04USA has terminated without finding a feasible point for the linear constraints and
bounds, which means that either no feasible point exists for the given value of the optional
parameter Linear Feasibility Tolerance (default value = /¢, where € is the machine precision), or
no feasible point could be found in the number of iterations specified by the optional parameter
Minor Iteration Limit (default value = max(50,3(n + n; +ny))). You should check that there
are no constraint redundancies. If the data for the constraints are accurate only to an absolute
precision o, you should ensure that the value of the optional parameter Linear Feasibility
Tolerance is greater than 0. For example, if all elements of A; are of order unity and are accurate

to only three decimal places, Linear Feasibility Tolerance should be at least 10>,
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IFAIL =3

No feasible point could be found for the nonlinear constraints. The problem may have no feasible
solution. This means that there has been a sequence of QP subproblems for which no feasible point
could be found (indicated by I at the end of each line of intermediate printout produced by the
major iterations; see Section 8.1). This behaviour will occur if there is no feasible point for the
nonlinear constraints. (However, there is no general test that can determine whether a feasible point
exists for a set of nonlinear constraints.) If the infeasible subproblems occur from the very first
major iteration, it is highly likely that no feasible point exists. If infeasibilities occur when earlier
subproblems have been feasible, small constraint inconsistencies may be present. You should check
the validity of constraints with negative values of ISTATE. If you are convinced that a feasible
point does exist, EO4USF/E04USA should be restarted at a different starting point.

IFAIL =4

The limiting number of iterations (as determined by the optional parameter Major Iteration Limit
(default value = max(50,3(n + ny) + 10ny)) has been reached.

If the algorithm appears to be making satisfactory progress, then Major Iteration Limit may be too
small. If so, either increase its value and rerun EO4USF/E04USA or, alternatively, rerun EQ4USF/
EO04USA using the optional parameter Warm Start. If the algorithm seems to be making little or
no progress however, then you should check for incorrect gradients or ill-conditioning as described
under IFAIL = 6.

Note that ill-conditioning in the working set is sometimes resolved automatically by the algorithm,
in which case performing additional iterations may be helpful. However, ill-conditioning in the
Hessian approximation tends to persist once it has begun, so that allowing additional iterations
without altering R is usually inadvisable. If the quasi-Newton update of the Hessian approximation
was reset during the latter major iterations (i.e., an R occurs at the end of each line of intermediate
printout; see Section 8.1), it may be worthwhile to try a Warm Start at the final point as suggested
above.

IFAIL =5
Not used by this routine.

IFAIL =6

x does not satisfy the first-order Kuhn—Tucker conditions (see Section 10.1 in EO4UFF/E04UFA),
and no improved point for the merit function (see Section 8.1) could be found during the final
linesearch.

This sometimes occurs because an overly stringent accuracy has been requested, i.e., the value of
the optional parameter Optimality Tolerance (default value = ¢>*, where ¢, is the value of the
optional parameter Function Precision (default value = €*°, where ¢ is the machine precision)) is
too small. In this case you should apply the four tests described under IFAIL = 0 to determine
whether or not the final solution is acceptable (see Gill et al (1981), for a discussion of the
attainable accuracy).

If many iterations have occurred in which essentially no progress has been made and EO4USF/
EO4USA has failed completely to move from the initial point then user-supplied subroutines
OBJFUN and/or CONFUN may be incorrect. You should refer to comments under IFAIL = 7 and
check the gradients using the optional parameter Verify (default value = 0). Unfortunately, there
may be small errors in the objective and constraint gradients that cannot be detected by the
verification process. Finite difference approximations to first derivatives are catastrophically
affected by even small inaccuracies. An indication of this situation is a dramatic alteration in the
iterates if the finite difference interval is altered. One might also suspect this type of error if a
switch is made to central differences even when Norm Gz and Violtn (see Section 8.1) are large.

Another possibility is that the search direction has become inaccurate because of ill-conditioning in
the Hessian approximation or the matrix of constraints in the working set; either form of ill-
conditioning tends to be reflected in large values of Mnr (the number of iterations required to solve
each QP subproblem; see Section 8.1).
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If the condition estimate of the projected Hessian (Cond Hz; see Section 12) is extremely large, it
may be worthwhile rerunning E04USF/E04USA from the final point with the optional parameter
Warm Start. In this situation, ISTATE and CLAMDA should be left unaltered and R should be
reset to the identity matrix.

If the matrix of constraints in the working set is ill-conditioned (i.e., Cond T is extremely large; see
Section 12), it may be helpful to run EO4USF/E04USA with a relaxed value of the optional
parameter Feasibility Tolerance (default value = /e, where ¢ is the machine precision).
(Constraint dependencies are often indicated by wide variations in size in the diagonal elements
of the matrix 7', whose diagonals will be printed if Major Print Level > 30).

IFAIL =7

The user-supplied derivatives of the subfunctions and/or nonlinear constraints appear to be incorrect.

Large errors were found in the derivatives of the subfunctions and/or nonlinear constraints. This
value of IFAIL will occur if the verification process indicated that at least one Jacobian element had
no correct figures. You should refer to the printed output to determine which elements are suspected
to be in error.

As a first-step, you should check that the code for the subfunction and constraint values is correct —
for example, by computing the subfunctions at a point where the correct value of F'(x) is known.
However, care should be taken that the chosen point fully tests the evaluation of the subfunctions.
It is remarkable how often the values x =0 or z =1 are used to test function evaluation
procedures, and how often the special properties of these numbers make the test meaningless.

Special care should be used in this test if computation of the subfunctions involves subsidiary data
communicated in COMMON storage. Although the first evaluation of the subfunctions may be
correct, subsequent calculations may be in error because some of the subsidiary data has
accidentally been overwritten.

Gradient checking will be ineffective if the objective function uses information computed by the
constraints, since they are not necessarily computed before each function evaluation.

Errors in programming the subfunctions may be quite subtle in that the subfunction values are
‘almost’ correct. For example, a subfunction may not be accurate to full precision because of the
inaccurate calculation of a subsidiary quantity, or the limited accuracy of data upon which the
subfunction depends. A common error on machines where numerical calculations are usually
performed in double precision is to include even one single precision constant in the calculation of
the subfunction; since some compilers do not convert such constants to double precision, half the
correct figures may be lost by such a seemingly trivial error.

IFAIL =8

Not used by this routine.

IFAIL =9

An input parameter is invalid.

overflow

7

If overflow occurs then either an element of C' is very large, or the singular values or singular
vectors have been incorrectly supplied.

Accuracy

If IFAIL = 0 on exit, then the vector returned in the array X is an estimate of the solution to an accuracy
of approximately Optimality Tolerance (default value = €*%, where € is the machine precision).
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8 Further Comments

8.1 Description of the Printed Output

This section describes the intermediate printout and final printout produced by E04USF/E04USA. The
intermediate printout is a subset of the monitoring information produced by the routine at every iteration
(see Section 12). You can control the level of printed output (see the description of the optional parameter
Major Print Level). Note that the intermediate printout and final printout are produced only if
Major Print Level > 10 (the default for EO4USF, by default no output is produced by E04USA). (by
default no output is produced by E04USF).

The following line of summary output ( < 80 characters) is produced at every major iteration. In all cases,
the values of the quantities printed are those in effect on completion of the given iteration.

Maj is the major iteration count.

Mnr is the number of minor iterations required by the feasibility and optimality phases of
the QP subproblem. Generally, Mnr will be 1 in the later iterations, since theoretical
analysis predicts that the correct active set will be identified near the solution (see
Section 10 in EO4UFF/E04UFA).

Note that Mnr may be greater than the optional parameter Minor Iteration Limit if
some iterations are required for the feasibility phase.

Step is the step «ay, taken along the computed search direction. On reasonably well-
behaved problems, the unit step (i.e., a;, = 1) will be taken as the solution is
approached.

Merit Function is the value of the augmented Lagrangian merit function (see (12) in EO4UFF/
EO04UFA) at the current iterate. This function will decrease at each iteration unless
it was necessary to increase the penalty parameters (see Section 10.3 in EO4UFF/
E04UFA). As the solution is approached, Merit Function will converge to the
value of the objective function at the solution.

If the QP subproblem does not have a feasible point (signified by I at the end of the
current output line) then the merit function is a large multiple of the constraint
violations, weighted by the penalty parameters. During a sequence of major
iterations with infeasible subproblems, the sequence of Merit Function values will
decrease monotonically until either a feasible subproblem is obtained or EO4USF/
EO4USA terminates with IFAIL =3 (no feasible point could be found for the
nonlinear constraints).

If there are no nonlinear constraints present (i.e., NCNLN = 0) then this entry
contains Objective, the value of the objective function F'(x). The objective
function will decrease monotonically to its optimal value when there are no
nonlinear constraints.

Norm Gz is HZTgFR}, the Euclidean norm of the projected gradient (see Section 10.2 in
EO4UFF/E04UFA). Norm Gz will be approximately zero in the neighbourhood of a
solution.

Violtn is the Euclidean norm of the residuals of constraints that are violated or in the

predicted active set (not printed if NCNLN is zero). Violtn will be approximately
zero in the neighbourhood of a solution.

Cond Hz is a lower bound on the condition number of the projected Hessian approximation
H, (H; = Z'HwpZ = RLRy; see (6) and (11) in EO4UFF/E04UFA). The larger
this number, the more difficult the problem.

M is printed if the quasi-Newton update has been modified to ensure that the Hessian
approximation is positive definite (see Section 10.4 in EO4UFF/E04UFA).

I is printed if the QP subproblem has no feasible point.

C is printed if central differences have been used to compute the unspecified objective

and constraint gradients. If the value of Step is zero then the switch to central
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differences was made because no lower point could be found in the linesearch. (In
this case, the QP subproblem is resolved with the central difference gradient and
Jacobian.) If the value of Step is nonzero then central differences were computed
because Norm Gz and Violtn imply that x is close to a Kuhn—Tucker point (see
Section 10.1 in EO4UFF/E04UFA).

L is printed if the linesearch has produced a relative change in x greater than the value
defined by the optional parameter Step Limit. If this output occurs frequently
during later iterations of the run, optional parameter Step Limit should be set to a
larger value.

R is printed if the approximate Hessian has been refactorized. If the diagonal
condition estimator of R indicates that the approximate Hessian is badly conditioned
then the approximate Hessian is refactorized using column interchanges. If
necessary, R is modified so that its diagonal condition estimator is bounded.

The final printout includes a listing of the status of every variable and constraint.

The following describes the printout for each variable. A full stop (.) is printed for any numerical value
that is zero.

Varbl gives the name (V) and index j, for j =1,2,...,n, of the variable.

State gives the state of the variable (FR if neither bound is in the working set, EQ if a
fixed variable, LL if on its lower bound, UL if on its upper bound, TF if temporarily
fixed at its current value). If Value lies outside the upper or lower bounds by more
than the Feasibility Tolerance, State will be ++ or —- respectively.

A key is sometimes printed before State.

A Alternative optimum possible. The variable is active at one of its bounds, but
its Lagrange multiplier is essentially zero. This means that if the variable
were allowed to start moving away from its bound then there would be no
change to the objective function. The values of the other free variables might
change, giving a genuine alternative solution. However, if there are any
degenerate variables (labelled D), the actual change might prove to be zero,
since one of them could encounter a bound immediately. In either case the
values of the Lagrange multipliers might also change.

D Degenerate. The variable is free, but it is equal to (or very close to) one of
its bounds.
I Infeasible. The variable is currently violating one of its bounds by more than
the Feasibility Tolerance.
Value is the value of the variable at the final iteration.
Lower Bound is the lower bound specified for the variable. None indicates that
BL(j) < —bigbnd.
Upper Bound is the upper bound specified for the variable. None indicates that BU(j) > bighnd.
Lagr Mult is the Lagrange multiplier for the associated bound. This will be zero if State is

FR unless BL(j) < —bighnd and BU(j) > bighnd, in which case the entry will be
blank. If x is optimal, the multiplier should be non-negative if State is LL and
non-positive if State is UL.

Slack is the difference between the variable Value and the nearer of its (finite) bounds
BL(j) and BU(j). A blank entry indicates that the associated variable is not
bounded (i.e., BL(j) < —bighnd and BU(j) > bigbnd).

The meaning of the printout for linear and nonlinear constraints is the same as that given above for
variables, with ‘variable’ replaced by ‘constraint’, BL(j) and BU(j) are replaced by BL(n + j) and
BU(n + j) respectively, and with the following changes in the heading:
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L Con gives the name (L) and index j, for j =1,2,...,n;, of the linear constraint.

N Con gives the name (N) and index (j —ny), for j=n;+1,...,n, +ny, of the
nonlinear constraint.

Note that movement off a constraint (as opposed to a variable moving away from its bound) can be
interpreted as allowing the entry in the Slack column to become positive.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate to this
precision.

9  Example

This example is based on Problem 57 in Hock and Schittkowski (1981) and involves the minimization of
the sum of squares function

Fz) =3y (i — fil2)),

where

and
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subject to the bounds

to the general linear constraint
Ty +2x,>1.0
and to the nonlinear constraint
0.492z, — 212, > 0.09.
The initial point, which is infeasible, is
2o = (0.4,0.0)"
and F'(zy) = 0.002241.
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The optimal solution (to five figures) is
2" = (0.41995,1.28484)",
and F(x") = 0.01423. The nonlinear constraint is active at the solution.

The document for EO4UQF/E04UQA includes an example program to solve the same problem using some
of the optional parameters described in Section 11.

9.1

the following program illustrates the use of EQ4USF. An equivalent program illustrating the use of
E04USA is available with the supplied Library and is also available from the NAG web site.

Program Text

! EOAUSF Example Program Text
! Mark 24 Release. NAG Copyright 2012.

Module eO4usfe_mod

! EO4USF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements

Use nag_library, Only: nag_wp
! .. Implicit None Statement

Implicit None
! .. Parameters

Integer, Parameter

Contains

Subroutine objfun(mode,m,n,1dfj,needfi,x,f,fjac,nstate,iuser,ruser)

! Routine to evaluate the subfunctions and their 1lst derivatives.

nin = 5, nout = 6

! .. Parameters

Real (Kind=nag_wp

10.
12
14.
16.
20.
22
24
28
30.
36.

! .. Scalar Argumen
Integer, Intent (
Integer, Intent (

! .. Array Argument
Real (Kind=nag_wp
Real (Kind=nag_wp
Real (Kind=nag_wp
Integer, Intent (

! .. Local Scalars
Real (Kind=nag_wp
Integer
Logical

! .. Intrinsic Proc
Intrinsic

), Parameter

OEO_nag_wp, 10.
.0EO_nag_wp,12.
OEO_nag_wp, 14.
OEO_nag_wp, 16.
OEO_nag_wp,20.
.0EO_nag_wp,22.
.0EO_nag_wp, 26.
.0EO_nag_wp,28.
OEO_nag_wp,32.
OEO_nag_wp, 36.

ts
In)
Inout)
s
), Intent
), Intent
), Intent
Inout)

)

edures

! .. Executable Statements

x1 = x(1)
x2 = x(2)

mode02
model2 =

(mode==0
(mode==

loop: Do i =1, m

If (needfi==1i)

Mark 24

.Or.

.0r. mode==

Then

(Out)
(Inout)
(In)

mode==2)

a(44) =

OEO_nag_wp, 10.
OEO_nag_wp,12.
OEO_nag_wp,14.
OEO_nag_wp, 18.
OEO_nag_wp,20.
OEO_nag_wp,24.
OEO_nag_wp,26.
OEO_nag_wp, 30.
OEO_nag_wp,32.
OEO_nag_wp, 38.

(/8.0EO_nag_wp, 8.
OEO_nag_wp,10.
OEO_nag_wp,12.
OEO_nag_wp,16.
OEO_nag_wp,18.
OEO_nag_wp,22.
OEO_nag_wp,24.
OEO_nag_wp,26.
OEO_nag_wp, 30.
OEO_nag_wp,34.
OEO_nag_wp, 38.

OEO_nag_wp,
OEO_nag_wp,
OEO_nag_wp,
OEO_nag_wp,
OEO_nag_wp,
OEO_nag_wp,
OEO_nag_wp,
OEO_nag_wp,
OEO_nag_wp,
OEO_nag_wp,
OEO_nag_wp,

40.0EO_nag_wp,42.0EO_nag_wp/)

1dfj, m, n, needfi, nstate

mode
f(m)

x(n)

fjac(ldfj,n),

iuser (*)

ai,
i

mode02,

exp

temp,

x1l, x2

model2

ruser (*)

eI o I B - T - T " T " T " T > T e I e B °]
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f(i) = x1 + (0.49EO0_nag_wp-x1)*exp(-x2*(a(i)-8.0EO0_nag_wp))
Exit loop
End If

ai = a(i)
temp = exp(-x2*(ai-8.0E0_nag_wp))

If (mode02) Then
f(i) = x1 + (0.49E0_nag_wp-x1) *temp
End If

If (model2) Then

fjac(i,1) = 1.0EO_nag _wp - temp

fjac(i,2) = -(0.49E0_nag_wp-x1)*(ai-8.0EO_nag_wp)*temp
End If

End Do loop
Return
End Subroutine objfun
Subroutine confun(mode,ncnln,n,ldcj,needc,x,c,cjac,nstate,iuser,ruser)
! Routine to evaluate the nonlinear constraint and its 1st

! derivatives.

! .. Scalar Arguments

Integer, Intent (In) :: 1ldcj, n, ncnln, nstate
Integer, Intent (Inout) :: mode
! .. Array Arguments
Real (Kind=nag_wp), Intent (Out) :: c(ncnln)
Real (Kind=nag_wp), Intent (Inout) :: cjac(ldcj,n), ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(n)
Integer, Intent (Inout) :: luser(*)
Integer, Intent (In) :: needc(ncnln)

! .. Executable Statements
If (nstate==1) Then

! First call to CONFUN. Set all Jacobian elements to zero.
! Note that this will only work when ’'Derivative Level = 3’
! (the default; see Section 11.2).

cjac(l:ncnln,1l:n) = 0.0EO_nag_wp
End If

If (needc(1)>0) Then
If (mode==0 .0Or. mode==2) Then
c(l) = -0.09EO_nag_wp - x(1)*x(2) + 0.49E0_nag_wp*x(2)
End If

If (mode==1 .0Or. mode==2) Then

cjac(1l,1) = -x(2)
cjac(1l,2) = -x(1) + 0.49EO_nag_wp
End If
End If
Return

End Subroutine confun
End Module eO4usfe_mod
Program eO4usfe

! EO4USF Example Main Program

! .. Use Statements

Use nag_library, Only: eO4usf, nag_wp

Use eO4dusfe_mod, Only: confun, nin, nout, objfun
! .. Implicit None Statement

Implicit None
! .. Local Scalars
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Real (Kind=nag_wp)
Integer

Local Arrays

Real (Kind=nag_wp), Allocatable

Real (Kind=nag_wp)
Integer, Allocatable
Integer

Intrinsic Procedures
Intrinsic

Executable Statements

Write (nout,#*) ’'EO4USF Example Program Results’

Flush (nout)

Skip heading in data file
Read (nin,*)

Read (nin,*) m, n
Read (nin,*) nclin, ncnln

liwork = 3%*n + nclin + 2*ncnln

lda = max(1l,nclin)

If (nclin>0) Then
sda = n

Else
sda = 1

End If

ldcj = max(1l,ncnln)

If (ncnln>O0)
sdcjac = n
Else
sdcjac = 1
End If

Then

1dfj = m
ldr = n

If (ncnln==0 .And. nclin>O0)
lwork

lwork
m* (n+3)
Else
lwork = 20*n + m*(n+3)
End If

objf

E04USF

i, ifail, iter, 1lda, ldcj, 1ldfj, &
1dr, liwork, lwork, m, n, nclin, &

ncnln,

user (1
istate

iuser (

max

= 2*xn**2 + 20*n + 1l*nclin + m*(n+3)
Else If (ncnln>0 .And. nclin>=0)
= 2*n**2 + n*nclin + 2*n*ncnln + 20*n + 1ll*nclin + 21*ncnln + &

a(:,:), bl(:), bu(:), c(:)
)
)

sda, sdcjac

e}

, clamda(:), f(:):
, r(:,:), work(:),
(:)

:), iwork(:)

)

Allocate (istate(n+nclin+ncnln),iwork(liwork) ,a(lda,sda), &
bl(n+nclin+ncnln) ,bu(n+nclin+ncnln),y(m),c(max(1l, &
ncnln)) ,cjac(ldcj,sdcjac),f(m),fjac(1ldfj,n),clamda(n+nclin+ncnln), &

r(1ldr,n),x(n),work(lwork))

If (nclin>0) Then

Read (nin,*)(a(i,l:sda),i=1,nclin)

End If

Read
Read

y(1l:m)

Read x(1l:n)
Solve the problem

ifail = 0
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( ) bl(1l:(n+nclin+ncnln))
Read (nin,*) bu(l:(n+nclin+ncnln))

( )
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Call eO4usf(m,n,nclin,ncnln,lda,ldcj,1dfj,1ldr,a,bl,bu,y,confun,objfun, &
iter,istate,c,cjac,f,fjac,clamda,objf,r,x,iwork,liwork,work,lwork, &
iuser,user,ifail)

End Program eO4usfe

9.2 Program Data

EO4USF Example Program Data

44 2 :Values of M and N

1 1 :Values of NCLIN and NCNLN

1.0 1.0 :End of matrix A

0.49 0.49 0.48 0.47 0.48 0.47 0.406 0.40 0.45 0.43 0.45

0.43 0.43 0.44 0.43 0.43 0.46 0.45 0.42 0.42 0.43 0.41

0.41 0.40 0.42 0.40 0.40 0.41 0.40 0.41 0.41 0.40 0.40

0.40 0.38 0.41 0.40 0.40 0.41 0.38 0.40 0.40 0.39 0.39 :End of Y
0.4 -4.0 1.0 0.0 :End of BL

1.0E+25 1.0E+25 1.0E+25 1.0E+25 :End of BU

0.4 0.0 :End of X

9.3 Program Results

EO4USF Example Program Results
*%% EQ4USF

Parameters

Linear constraints..... 1 Variables.............. 2
Nonlinear constraints.. 1 Subfunctions........... 44
Infinite bound size.... 1.00E+20 COLD start.....ceeeee...

Infinite step size..... 1.00E+20 EPS (machine precision) 1.11E-16
Step limit............. 2.00E+00 Hessian......ooeeeeennn NO
Linear feasibility..... 1.05E-08 Crash tolerance........ 1.00E-02
Nonlinear feasibility.. 1.05E-08 Optimality tolerance... 3.26E-12
Line search tolerance.. 9.00E-01 Function precision..... 4.37E-15
Derivative level....... 3 Monitoring file........ -1
Verify level........... 0

Major iterations limit. 50 Major print level...... 10
Minor iterations limit. 50 Minor print level...... 0
J’J initial Hessian.... Reset frequency........ 2
Workspace provided is IWORK ( 9), WORK( 3006) .

To solve problem we need IWORK( 9), WORK( 3006) .

Verification of the constraint gradients.

The constraint Jacobian seems to be ok.

The largest relative error was 1.89E-08 in constraint 1

Verification of the objective gradients.

The objective Jacobian seems to be ok.

The largest relative error was 1.04E-08 in subfunction 3
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Maj Mnr Step Merit Function Norm Gz Violtn Cond Hz
0 2 0.0E+00 2.224070E-02 8.5E-02 3.6E-02 1.0E+00
1 1 1.0E+00 1.455402E-02 1.5E-03 9.8E-03 1.0E+00
2 1 1.0E+00 1.436491E-02 4.9E-03 7.2E-04 1.0E+00
3 1 1.0E+00 1.427013E-02 2.9E-03 9.2E-06 1.0E+00
4 1 1.0E+00 1.422989E-02 1.6E-04 3.6E-05 1.0E+00
5 1 1.0E+00 1.422983E-02 5.4E-07 6.4E-08 1.0E+00
6 1 1.0E+00 1.422983E-02 3.4E-09 9.8E-13 1.0E+00

Exit from NP problem after 6 major iterations,

8 minor iterations.

Varbl State Value Lower Bound Upper Bound Lagr Mult Slack
\Y, 1 FR 0.419953 0.400000 None . 1.9953E-02
\Y 2 FR 1.28485 -4.00000 None . 5.285
L Con State Value Lower Bound Upper Bound Lagr Mult Slack
L 1 FR 1.70480 1.00000 None . 0.7048
N Con State Value Lower Bound Upper Bound Lagr Mult Slack
N 1 LL -9.767742E-13 . None 3.3358E-02 -9.7677E-13

Exit EO4USF - Optimal solution found.

Final objective value = 0.1422983E-01

Note: the remainder of this document is intended for more advanced users. Section 11 describes the
optional parameters which may be set by calls to EO4UQF/E04UQA and/or EO4URF/EO4URA. Section 12
describes the quantities which can be requested to monitor the course of the computation.

10 Algorithmic Details

EO4USF/E04USA implements a sequential quadratic programming (SQP) method incorporating an
augmented Lagrangian merit function and a BFGS (Broyden—Fletcher—Goldfarb—Shanno) quasi-Newton
approximation to the Hessian of the Lagrangian, and is based on EO4WDF. The documents for EO4NCF/
E04NCA, EO4UFF/E04UFA and E04WDF should be consulted for details of the method.

11 Optional Parameters

Several optional parameters in E04USF/EO04USA define choices in the problem specification or the
algorithm logic. In order to reduce the number of formal parameters of E04USF/E04USA these optional
parameters have associated default values that are appropriate for most problems. Therefore you need only
specify those optional parameters whose values are to be different from their default values.

The remainder of this section can be skipped if you wish to use the default values for all optional
parameters.

The following is a list of the optional parameters available. A full description of each optional parameter
is provided in Section 11.1.

Central Difference Interval

Cold Start

Crash Tolerance

Defaults

Derivative Level

Difference Interval
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Feasibility Tolerance

Function Precision

Hessian

Infinite Bound Size

Infinite Step Size

Iteration Limit

Iters

Itns

JTJ Initial Hessian

Linear Feasibility Tolerance

Line Search Tolerance

List

Major Iteration Limit

Major Print Level

Minor Iteration Limit

Minor Print Level

Monitoring File

Nolist

Nonlinear Feasibility Tolerance
Optimality Tolerance

Print Level

Reset Frequency

Start Constraint Check At Variable
Start Objective Check At Variable
Step Limit

Stop Constraint Check At Variable
Stop Objective Check At Variable
Unit Initial Hessian

Verify

Verify Constraint Gradients
Verify Gradients

Verify Level

Verify Objective Gradients

Warm Start

Optional parameters may be specified by calling one, or both, of EO4UQF/E04UQA and E04URF/
EO04URA before a call to EO4USF/E04USA.

E04UQF/E04UQA reads options from an external options file, with Begin and End as the first and last
lines respectively and each intermediate line defining a single optional parameter. For example,

Begin
Print level = 1
End

The call
CALL EO4UQF (IOPTNS, INFORM)

can then be used to read the file on unit IOPTNS. INFORM will be zero on successful exit. E04UQF/
E04UQA should be consulted for a full description of this method of supplying optional parameters.
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EO4URF/E04URA can be called to supply options directly, one call being necessary for each optional
parameter. For example,

CALL EO4URF (’'Print Level = 1')

EO4URF/E04URA should be consulted for a full description of this method of supplying optional
parameters.

All optional parameters not specified by you are set to their default values. Optional parameters specified
by you are unaltered by EO4USF/E04USA (unless they define invalid values) and so remain in effect for
subsequent calls to EO4USF/E04USA, unless altered by you.

11.1 Description of the Optional Parameters
For each option, we give a summary line, a description of the optional parameter and details of constraints.
The summary line contains:

the keywords, where the minimum abbreviation of each keyword is underlined (if no characters of
an optional qualifier are underlined, the qualifier may be omitted);

a parameter value, where the letters a, ¢ and r denote options that take character, integer and real
values respectively;

the default value, where the symbol € is a generic notation for machine precision (see X02AJF),
and ¢, denotes the relative precision of the objective function Function Precision.

Keywords and character values are case and white space insensitive.

Further details of other quantities not explicitly defined in this section may be found by consulting the
document for EO4UFF/E04UFA.

Central Difference Interval r Default values are computed

If the algorithm switches to central differences because the forward-difference approximation is not
sufficiently accurate, the value of r is used as the difference interval for every element of . The switch to
central differences is indicated by C at the end of each line of intermediate printout produced by the major
iterations (see Section 8.1). The use of finite differences is discussed further under the optional parameter
Difference Interval.

If you supply a value for this optional parameter, a small value between 0.0 and 1.0 is appropriate.

Cold Start Default
Warm Start

This option controls the specification of the initial working set in both the procedure for finding a feasible
point for the linear constraints and bounds, and in the first QP subproblem thereafter. With a Cold Start,
the first working set is chosen by EO4USF/E04USA based on the values of the variables and constraints at
the initial point. Broadly speaking, the initial working set will include equality constraints and bounds or
inequality constraints that violate or ‘nearly’ satisfy their bounds (to within Crash Tolerance).

With a Warm Start, you must set the ISTATE array and define CLAMDA and R as discussed in
Section 5. ISTATE values associated with bounds and linear constraints determine the initial working set
of the procedure to find a feasible point with respect to the bounds and linear constraints. ISTATE values
associated with nonlinear constraints determine the initial working set of the first QP subproblem after such
a feasible point has been found. E04USF/E04USA will override your specification of ISTATE if necessary,
so that a poor choice of the working set will not cause a fatal error. For instance, any elements of ISTATE
which are set to —2, —1 or 4 will be reset to zero, as will any elements which are set to 3 when the
corresponding elements of BL and BU are not equal. A Warm Start will be advantageous if a good
estimate of the initial working set is available — for example, when EO4USF/E04USA is called repeatedly
to solve related problems.

Crash Tolerance r Default = 0.01

This value is used in conjunction with the optional parameter Cold Start (the default value) when
EO04USF/E04USA selects an initial working set. If 0 < r <1, the initial working set will include (if
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possible) bounds or general inequality constraints that lie within r of their bounds. In particular, a
constraint of the form aij > [ will be included in the initial working set if |a]T-x — l’ <r(l1+]l). Ifr<o0
or r > 1, the default value is used.

Defaults

This special keyword may be used to reset all optional parameters to their default values.

Derivative Level i Default =3

This parameter indicates which derivatives are provided in user-supplied subroutines OBJFUN and
CONFUN. The possible choices for ¢ are the following.

i Meaning

3 All elements of the objective Jacobian and the constraint Jacobian are provided by you.

2 All elements of the constraint Jacobian are provided, but some elements of the objective Jacobian are
not specified by you.

1  All elements of the objective Jacobian are provided, but some elements of the constraint Jacobian are
not specified by you.

0 Some elements of both the objective Jacobian and the constraint Jacobian are not specified by you.

The value ¢ =3 should be used whenever possible, since E04USF/E04USA is more reliable (and will
usually be more efficient) when all derivatives are exact.

If i =0 or 2, EO4USF/E04USA will approximate unspecified elements of the objective Jacobian, using
finite differences. The computation of finite difference approximations usually increases the total run-time,
since a call to OBJFUN is required for each unspecified element. Furthermore, less accuracy can be
attained in the solution (see Chapter 8 of Gill ef al. (1981), for a discussion of limiting accuracy).

If i =0 or 1, EO4USF/E04USA will approximate unspecified elements of the constraint Jacobian. One
call to CONFUN is needed for each variable for which partial derivatives are not available. For example,
if the constraint Jacobian has the form

* % ¥ *
* ¥ O *
* 0 0 ¥
LR I

where ‘%’ indicates an element provided by you and °?° indicates an unspecified element, E04USF/
E04USA will call CONFUN twice: once to estimate the missing element in column 2, and again to
estimate the two missing elements in column 3. (Since columns 1 and 4 are known, they require no calls
to CONFUN.)

At times, central differences are used rather than forward differences, in which case twice as many calls to
OBJFUN and CONFUN are needed. (The switch to central differences is not under your control.)

If i < 0 or 7 > 3, the default value is used.

Difference Interval r Default values are computed

This option defines an interval used to estimate derivatives by finite differences in the following
circumstances:

(a) For verifying the objective and/or constraint gradients (see the description of the optional parameter
Verify).

(b) For estimating unspecified elements of the objective and/or constraint Jacobian matrix.

In general, a derivative with respect to the jth variable is approximated using the interval 6;, where
o; = r(l + L@-D, with £ the first point feasible with respect to the bounds and linear constraints. If the
functions are well scaled, the resulting derivative approximation should be accurate to O(r). See Gill et al.
(1981) for a discussion of the accuracy in finite difference approximations.
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If a difference interval is not specified, a finite difference interval will be computed automatically for each
variable by a procedure that requires up to six calls of CONFUN and OBJFUN for each element. This
option is recommended if the function is badly scaled or you wish to have EO4USF/E04USA determine
constant elements in the objective and constraint gradients (see the descriptions of CONFUN and OBJFUN
in Section 5).

If you supply a value for this optional parameter, a small value between 0.0 and 1.0 is appropriate.

Feasibility Tolerance r Default = /e

The scalar r defines the maximum acceptable absolute violations in linear and nonlinear constraints at a
‘feasible’ point; i.e., a constraint is considered satisfied if its violation does not exceed r. If r < ¢ or
r > 1, the default value is used. Using this keyword sets both optional parameters Linear Feasibility
Tolerance and Nonlinear Feasibility Tolerance to 7, if ¢ < r < 1. (Additional details are given under the
descriptions of these optional parameters.)

Function Precision r Default = "

This parameter defines €., which is intended to be a measure of the accuracy with which the problem
functions F'(z) and c(x) can be computed. If r < e or r > 1, the default value is used.

The value of ¢, should reflect the relative precision of 1 + |F(x)]; i.e., €, acts as a relative precision when
|F| is large and as an absolute precision when |F'| is small. For example, if F'(x) is typically of order
1000 and the first six significant digits are known to be correct, an appropriate value for ¢, would be 107°.
In contrast, if F'(z) is typically of order 10~ and the first six significant digits are known to be correct, an
appropriate value for ¢, would be 107'°. The choice of €, can be quite complicated for badly scaled
problems; see Chapter 8 of Gill ef al. (1981) for a discussion of scaling techniques. The default value is
appropriate for most simple functions that are computed with full accuracy. However, when the accuracy
of the computed function values is known to be significantly worse than full precision, the value of e,
should be large enough so that EO4USF/E04USA will not attempt to distinguish between function values
that differ by less than the error inherent in the calculation.

Hessian No Default = NO

This option controls the contents of the upper triangular matrix R (see Section 5). E04USF/E04USA
works exclusively with the transformed and reordered Hessian H(, and hence extra computation is
required to form the Hessian itself. If Hessian = NO, R contains the Cholesky factor of the transformed
and reordered Hessian. If Hessian = YES, the Cholesky factor of the approximate Hessian itself is formed
and stored in R. You should select Hessian = YES if a Warm Start will be used for the next call to
E04USF/E04USA.

Infinite Bound Size r Default = 10%

If » > 0, r defines the ‘infinite’ bound bighnd in the definition of the problem constraints. Any upper
bound greater than or equal to bighnd will be regarded as +oo (and similarly any lower bound less than or
equal to —bighnd will be regarded as —o0). If < 0, the default value is used.

Infinite Step Size r Default = max (bigbnd, 1020)

If » > 0, r specifies the magnitude of the change in variables that is treated as a step to an unbounded
solution. If the change in x during an iteration would exceed the value of r, the objective function is
considered to be unbounded below in the feasible region. If r < 0, the default value is used.

JTJ Initial Hessian Default
Unit Initial Hessian

This option controls the initial value of the upper triangular matrix R. If J denotes the objective Jacobian

matrix V f(z), then J".J is often a good approximation to the objective Hessian matrix V>F(z) (see also
optional parameter Reset Frequency).
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Line Search Tolerance T Default = 0.9

The value r (0 <r < 1) controls the accuracy with which the step « taken during each iteration
approximates a minimum of the merit function along the search direction (the smaller the value of r, the
more accurate the linesearch). The default value » = 0.9 requests an inaccurate search and is appropriate
for most problems, particularly those with any nonlinear constraints.

If there are no nonlinear constraints, a more accurate search may be appropriate when it is desirable to
reduce the number of major iterations — for example, if the objective function is cheap to evaluate, or if a
substantial number of derivatives are unspecified. If » < 0 or r > 1, the default value is used.

Linear Feasibility Tolerance 71 Default = /e
Nonlinear Feasibility Tolerance ) Default = ¢ or /e

0.33

The default value of 7, is €~ if Derivative Level = 0 or 1, and /¢ otherwise.

The scalars r; and r, define the maximum acceptable absolute violations in linear and nonlinear
constraints at a ‘feasible’ point; i.e., a linear constraint is considered satisfied if its violation does not
exceed 7, and similarly for a nonlinear constraint and r,. If r,, < e or r,, > 1, the default value is used,
form=1,2.

On entry to EO4USF/E04USA, an iterative procedure is executed in order to find a point that satisfies the
linear constraints and bounds on the variables to within the tolerance ;. All subsequent iterates will
satisfy the linear constraints to within the same tolerance (unless r; is comparable to the finite difference
interval).

For nonlinear constraints, the feasibility tolerance 7, defines the largest constraint violation that is
acceptable at an optimal point. Since nonlinear constraints are generally not satisfied until the final iterate,
the value of optional parameter Nonlinear Feasibility Tolerance acts as a partial termination criterion for
the iterative sequence generated by EO4USF/E04USA (see also optional parameter Optimality Tolerance).

These tolerances should reflect the precision of the corresponding constraints. For example, if the variables
and the coefficients in the linear constraints are of order unity, and the latter are correct to about 6 decimal

digits, it would be appropriate to specify ; as 107°.

List Default for EO4USF = List
Nolist Default for EO4USA = Nolist

Normally each optional parameter specification is printed as it is supplied. Optional parameter Nolist may
be used to suppress the printing and optional parameter List may be used to restore printing.

Major Iteration Limit i Default = max(50,3(n +np) + 10ny)
Iteration Limit

Iters

Itns

The value of ¢ specifies the maximum number of major iterations allowed before termination. Setting
i = 0 and Major Print Level > 0 means that the workspace needed will be computed and printed, but no
iterations will be performed. If i < 0, the default value is used.

Major Print Level i Default for EO4USF = 10
Print Level Default for EO4USA =0

The value of 7 controls the amount of printout produced by the major iterations of EO4USF/E04USA, as
indicated below. A detailed description of the printed output is given in Section 8.1 (summary output at
each major iteration and the final solution) and Section 12 (monitoring information at each major iteration).
(See also the description of the optional parameter Minor Print Level.)

The following printout is sent to the current advisory message unit (as defined by X04ABF):
i Output
0 No output.

1 The final solution only.
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5 One line of summary output ( < 80 characters; see Section 8.1) for each major iteration (no
printout of the final solution).

> 10 The final solution and one line of summary output for each major iteration.

The following printout is sent to the logical unit number defined by the optional parameter Monitoring
File:

i Output
<5 No output.

> 5  One long line of output ( > 80 characters; see Section 12) for each major iteration (no printout of
the final solution).

> 20 At each major iteration, the objective function, the Euclidean norm of the nonlinear constraint
violations, the values of the nonlinear constraints (the vector c), the values of the linear constraints
(the vector A;x), and the current values of the variables (the vector x).

> 30 At each major iteration, the diagonal elements of the matrix T associated with the 7'Q)
factorization (see (5) in EO4UFF/E04UFA) of the QP working set, and the diagonal elements of R,
the triangular factor of the transformed and reordered Hessian (see (6) in EO4UFF/E04UFA).

If Major Print Level > 5 and the unit number defined by the optional parameter Monitoring File is the
same as that defined by X04ABF, then the summary output for each major iteration is suppressed.
Minor Iteration Limit i Default = max(50,3(n +ny +ny))
The value of 4 specifies the maximum number of iterations for finding a feasible point with respect to the
bounds and linear constraints (if any). The value of ¢ also specifies the maximum number of minor
iterations for the optimality phase of each QP subproblem. If ¢ < 0, the default value is used.

Minor Print Level i Default =0

The value of ¢ controls the amount of printout produced by the minor iterations of EO4USF/E04USA (i.e.,
the iterations of the quadratic programming algorithm), as indicated below. A detailed description of the
printed output is given in Section 8.1 (summary output at each minor iteration and the final QP solution)
and Section 12 (monitoring information at each minor iteration). (See also the description of the optional
parameter Major Print Level.)

The following printout is sent to the current advisory message unit (as defined by X04ABF):
i Output
0 No output.
1  The final QP solution only.

5 One line of summary output ( < 80 characters; see Section 8.1) for each minor iteration (no
printout of the final QP solution).

> 10 The final QP solution and one line of summary output for each minor iteration.

The following printout is sent to the logical unit number defined by the optional parameter Monitoring
File:

i Output
<5 No output.

> 5 One long line of output ( > 80 characters; see Section 12) for each minor iteration (no printout of
the final QP solution).

> 20 At each minor iteration, the current estimates of the QP multipliers, the current estimate of the QP
search direction, the QP constraint values, and the status of each QP constraint.

> 30 At each minor iteration, the diagonal elements of the matrix 7" associated with the T'Q)
factorization (see (5) in EO4UFF/E04UFA) of the QP working set, and the diagonal elements of
the Cholesky factor R of the transformed Hessian (see (6) in EO4AUFF/E04UFA).
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If Minor Print Level > 5 and the unit number defined by the optional parameter Monitoring File is the
same as that defined by X04ABF, then the summary output for each minor iteration is suppressed.

Monitoring File i Default = —1

If i >0 and Major Print Level > 5 or ¢ > 0 and Minor Print Level > 5, monitoring information
produced by EO4USF/E04USA at every iteration is sent to a file with logical unit number . If ¢ < 0 and/
or Major Print Level < 5 and Minor Print Level < 5, no monitoring information is produced.

Optimality Tolerance r Default = €%

The parameter r (e < r < 1) specifies the accuracy to which you wish the final iterate to approximate a
solution of the problem. Broadly speaking, r indicates the number of correct figures desired in the

objective function at the solution. For example, if 7 is 10~ and EO4USF/E04USA terminates successfully,
the final value of F' should have approximately six correct figures. If » < e or r > 1, the default value is
used.

E04USF/E04USA will terminate successfully if the iterative sequence of x values is judged to have
converged and the final point satisfies the first-order Kuhn—Tucker conditions (see Section 10.1 in
EO4UFF/E04UFA). The sequence of iterates is considered to have converged at x if

allpl < vr(1 + iz, (2)

where p is the search direction and « the step length. An iterate is considered to satisfy the first-order
conditions for a minimum if

”ZTQFRH < Vr(1+max(1 + [F(z)], [lger ) 3)

and
|resj| < fiol ~ forall 4, (4)

where ZTgFR is the projected gradient, grg is the gradient of F'(x) with respect to the free variables, res; is
the violation of the jth active nonlinear constraint, and ffol is the Nonlinear Feasibility Tolerance.

Reset Frequency 7 Default =2

If i > 0, this parameter allows you to reset the approximate Hessian matrix to J'.J every i iterations,
where J is the objective Jacobian matrix V f(z) (see also the description of the optional parameter JTJ
Initial Hessian).

At any point where there are no nonlinear constraints active and the values of f are small in magnitude

compared to the norm of J, J".J will be a good approximation to the objective Hessian V>F (z). Under
these circumstances, frequent resetting can significantly improve the convergence rate of E04USF/
E04USA.

Resetting is suppressed at any iteration during which there are nonlinear constraints active.

If © <0, the default value is used.

Start Objective Check At Variable A Default =1
Stop Objective Check At Variable % Default =n
Start Constraint Check At Variable 3 Default =1
Stop Constraint Check At Variable 14 Default =n

These keywords take effect only if Verify Level > 0. They may be used to control the verification of
Jacobian elements computed by user-supplied subroutines OBJFUN and CONFUN. For example, if the
first 30 columns of the objective Jacobian appeared to be correct in an earlier run, so that only column 31
remains questionable, it is reasonable to specify Start Objective Check At Variable = 31. If the first 30
variables appear linearly in the subfunctions, so that the corresponding Jacobian elements are constant, the
above choice would also be appropriate.

If 45,,_1 < 0 or iy,,_; > min(n, i,,,), the default value is used, for m = 1,2. 1If 4,,, < 0 or i,,, > n, the
default value is used, for m =1, 2.
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Step Limit r Default = 2.0

If » > 0,r specifies the maximum change in variables at the first step of the linesearch. In some cases,
such as F(z) = ae” or F(z) = aa’, even a moderate change in the elements of z can lead to floating
point overflow. The parameter r is therefore used to encourage evaluation of the problem functions at
meaningful points. Given any major iterate z, the first point £ at which F' and c are evaluated during the

linesearch is restricted so that
12— 2], < r(1+[z],).

The linesearch may go on and evaluate F' and ¢ at points further from z if this will result in a lower value
of the merit function (indicated by L at the end of each line of output produced by the major iterations; see
Section 8.1). If L is printed for most of the iterations, r should be set to a larger value.

Wherever possible, upper and lower bounds on z should be used to prevent evaluation of nonlinear
functions at wild values. The default value Step Limit = 2.0 should not affect progress on well-behaved
functions, but values such as 0.1 or 0.01 may be helpful when rapidly varying functions are present. If a
small value of Step Limit is selected, a good starting point may be required. An important application is
to the class of nonlinear least squares problems. If r < 0, the default value is used.

Verify Level ) Default =0
Verify

Verify Constraint Gradients

Verify Gradients

Verify Objective Gradients

These keywords refer to finite difference checks on the gradient elements computed by OBJFUN and
CONFUN. (Unspecified gradient elements are not checked.) The possible choices for ¢ are the following:

i Meaning
—1 No checks are performed.
0 Only a ‘cheap’ test will be performed, requiring one call to OBJFUN.
1 Individual gradient elements will also be checked using a reliable (but more expensive) test.

For example, the nonlinear objective gradient (if any) will be verified if either Verify Objective Gradients
or Verify Level = 1 is specified. Similarly, the objective and the constraint gradients will be verified if
Verify = YES or Verify Level = 3 or Verify is specified.

If ¢ = —1, no checking will be performed.

If 0 <+ < 3, gradients will be verified at the first point that satisfies the linear constraints and bounds. If
t =0, only a ‘cheap’ test will be performed, requiring one call to OBJFUN and (if appropriate) one call to
CONFUN. If 1 <14 < 3, a more reliable (but more expensive) check will be made on individual gradient
elements, within the ranges specified by the Start Objective Check At Variable and Stop Objective
Check At Variable keywords. A result of the form OK or BAD? is printed by EO4USF/E04USA to indicate
whether or not each element appears to be correct.

If 10 <4 < 13, the action is the same as for ¢ — 10, except that it will take place at the user-specified
initial value of .

If i <—1o0r4<i<9ori> 13, the default value is used.

We suggest that Verify Level = 3 be used whenever a new function routine is being developed.

12 Description of Monitoring Information

This section describes the long line of output ( > 80 characters) which forms part of the monitoring
information produced by EO4USF/E04USA. (See also the description of the optional parameters Major
Print Level, Minor Print Level and Monitoring File.) You can control the level of printed output.

When Major Print Level > 5 and Monitoring File > 0, the following line of output is produced at every
major iteration of EO4USF/E04USA on the unit number specified by optional parameter Monitoring File.
In all cases, the values of the quantities printed are those in effect on completion of the given iteration.
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is the major iteration count.

is the number of minor iterations required by the feasibility and optimality phases of
the QP subproblem. Generally, Mnr will be 1 in the later iterations, since theoretical
analysis predicts that the correct active set will be identified near the solution (see
Section 10 in EO4UFF/E04UFA).

Note that Mnr may be greater than the optional parameter Minor Iteration Limit if
some iterations are required for the feasibility phase.

is the step «y, taken along the computed search direction. On reasonably well-
behaved problems, the unit step (i.e., ay, = 1) will be taken as the solution is
approached.

is the cumulative number of evaluations of the objective function needed for the
linesearch.  Evaluations needed for the estimation of the gradients by finite
differences are not included. Nfun is printed as a guide to the amount of work
required for the linesearch.

is the value of the augmented Lagrangian merit function (see (12) in EO4UFF/
EO4UFA) at the current iterate. This function will decrease at each iteration unless
it was necessary to increase the penalty parameters (see Section 10.3 in EO4UFF/
E04UFA). As the solution is approached, Merit Function will converge to the
value of the objective function at the solution.

If the QP subproblem does not have a feasible point (signified by I at the end of the
current output line) then the merit function is a large multiple of the constraint
violations, weighted by the penalty parameters. During a sequence of major
iterations with infeasible subproblems, the sequence of Merit Function values will
decrease monotonically until either a feasible subproblem is obtained or EO4USF/
EO4USA terminates with IFAIL =3 (no feasible point could be found for the
nonlinear constraints).

If there are no nonlinear constraints present (i.e., NCNLN = 0) then this entry
contains Objective, the value of the objective function F'(x). The objective
function will decrease monotonically to its optimal value when there are no
nonlinear constraints.

is HZTgFR}, the Euclidean norm of the projected gradient (see Section 10.2 in
EO4UFF/E04UFA). Norm Gz will be approximately zero in the neighbourhood of a
solution.

is the Euclidean norm of the residuals of constraints that are violated or in the
predicted active set (not printed if NCNLN is zero). Violtn will be approximately
zero in the neighbourhood of a solution.

is the number of columns of Z (see Section 10.2 in EO4AUFF/E04UFA). The value
of Nz is the number of variables minus the number of constraints in the predicted
active set; i.e., Nz =n — (Bnd + Lin + N1n).

is the number of simple bound constraints in the current working set.
is the number of general linear constraints in the current working set.

is the number of nonlinear constraints in the predicted active set (not printed if
NCNLN is zero).

is the Euclidean norm of the vector of penalty parameters used in the augmented
Lagrangian merit function (not printed if NCNLN is zero).

is a lower bound on the condition number of the Hessian approximation H.

is a lower bound on the condition number of the projected Hessian approximation
H, (H; = Z'HwZ = Ry Ry; see (6) and (11) in EO4UFF/E04UFA). The larger
this number, the more difficult the problem.
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Cond T

Conv

is a lower bound on the condition number of the matrix of predicted active
constraints.

is a three-letter indication of the status of the three convergence tests (2)—(4) defined
in the description of the optional parameter Optimality Tolerance. Each letter is T
if the test is satisfied and F otherwise. The three tests indicate whether:

(1) the sequence of iterates has converged;
(i1) the projected gradient (Norm Gz) is sufficiently small; and

(iii) the norm of the residuals of constraints in the predicted active set (Violtn) is
small enough.

If any of these indicators is F when E04USF/E04USA terminates with IFAIL = 0,
you should check the solution carefully.

is printed if the quasi-Newton update has been modified to ensure that the Hessian
approximation is positive definite (see Section 10.4 in EO4UFF/E04UFA).

is printed if the QP subproblem has no feasible point.

is printed if central differences have been used to compute the unspecified objective
and constraint gradients. If the value of Step is zero then the switch to central
differences was made because no lower point could be found in the linesearch. (In
this case, the QP subproblem is resolved with the central difference gradient and
Jacobian.) If the value of Step is nonzero then central differences were computed
because Norm Gz and Violtn imply that x is close to a Kuhn—Tucker point (see
Section 10.1 in EO4UFF/E04UFA).

is printed if the linesearch has produced a relative change in x greater than the value
defined by the optional parameter Step Limit. If this output occurs frequently
during later iterations of the run, optional parameter Step Limit should be set to a
larger value.

is printed if the approximate Hessian has been refactorized. If the diagonal
condition estimator of R indicates that the approximate Hessian is badly conditioned
then the approximate Hessian is refactorized using column interchanges. If
necessary, R is modified so that its diagonal condition estimator is bounded.
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