
NAG Library Chapter Introduction

F08 – Least Squares and Eigenvalue Problems (LAPACK)

Contents

1 Scope of the Chapter . 3

2 Background to the Problems . 3

2.1 Linear Least Squares Problems . 3

2.2 Orthogonal Factorizations and Least Squares Problems 4

2.2.1 QR factorization . 4
2.2.2 LQ factorization . 5
2.2.3 QR factorization with column pivoting . 5
2.2.4 Complete orthogonal factorization . 6
2.2.5 Other factorizations . 6

2.3 The Singular Value Decomposition . 6

2.4 The Singular Value Decomposition and Least Squares Problems 7

2.5 Generalized Linear Least Squares Problems . 7

2.6 Generalized Orthogonal Factorization and Generalized Linear Least Squares
Problems . 8

2.6.1 Generalized QR Factorization . 8
2.6.2 Generalized RQ Factorization . 9
2.6.3 Generalized Singular Value Decomposition (GSVD) 10

2.7 Symmetric Eigenvalue Problems . 11

2.8 Generalized Symmetric-definite Eigenvalue Problems 12

2.9 Packed Storage for Symmetric Matrices . 13

2.10 Band Matrices . 13

2.11 Nonsymmetric Eigenvalue Problems . 13

2.12 Generalized Nonsymmetric Eigenvalue Problem . 14

2.13 The Sylvester Equation and the Generalized Sylvester Equation 15

2.14 Error and Perturbation Bounds and Condition Numbers 16

2.14.1 Least squares problems . 17
2.14.2 The singular value decomposition . 17
2.14.3 The symmetric eigenproblem . 18
2.14.4 The generalized symmetric-definite eigenproblem 19
2.14.5 The nonsymmetric eigenproblem . 20
2.14.6 Balancing and condition for the nonsymmetric eigenproblem 20
2.14.7 The generalized nonsymmetric eigenvalue problem 21
2.14.8 Balancing the generalized eigenvalue problem . 21
2.14.9 Other problems . 22

2.15 Block Partitioned Algorithms . 22

3 Recommendations on Choice and Use of Available Routines 22

3.1 Available Routines . 22

3.1.1 Driver routines . 22
3.1.1.1 Linear least squares problems (LLS) . 22

F08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – F08

Mark 24 F08.1

3.1.1.2 Generalized linear least squares problems (LSE and GLM) 22
3.1.1.3 Symmetric eigenvalue problems (SEP) . 23
3.1.1.4 Nonsymmetric eigenvalue problem (NEP) 23
3.1.1.5 Singular value decomposition (SVD) . 23
3.1.1.6 Generalized symmetric definite eigenvalue problems (GSEP) 23
3.1.1.7 Generalized nonsymmetric eigenvalue problem (GNEP) 24
3.1.1.8 Generalized singular value decomposition (GSVD) 24

3.1.2 Computational routines . 24
3.1.2.1 Orthogonal factorizations . 24
3.1.2.2 Generalized orthogonal factorizations . 25
3.1.2.3 Singular value problems . 25
3.1.2.4 Generalized singular value decomposition 26
3.1.2.5 Symmetric eigenvalue problems . 26
3.1.2.6 Generalized symmetric-definite eigenvalue problems 28
3.1.2.7 Nonsymmetric eigenvalue problems . 29
3.1.2.8 Generalized nonsymmetric eigenvalue problems 30
3.1.2.9 The Sylvester equation and the generalized Sylvester equation 31

3.2 NAG Names and LAPACK Names . 32

3.3 Matrix Storage Schemes . 32

3.3.1 Conventional storage . 33
3.3.2 Packed storage . 33
3.3.3 Band storage . 33
3.3.4 Tridiagonal and bidiagonal matrices . 33
3.3.5 Real diagonal elements of complex matrices . 33
3.3.6 Representation of orthogonal or unitary matrices 33

3.4 Parameter Conventions . 34

3.4.1 Option parameters . 34
3.4.2 Problem dimensions . 34
3.4.3 Length of work arrays . 34
3.4.4 Error-handling and the diagnostic parameter INFO 34

4 Decision Trees . 36

4.1 General Purpose Routines (eigenvalues and eigenvectors) 36

4.2 General Purpose Routines (singular value decomposition) 42

5 Functionality Index . 42

6 Auxiliary Routines Associated with Library Routine Parameters 49

7 Routines Withdrawn or Scheduled for Withdrawal 49

8 References . 49

Introduction – F08 NAG Library Manual

F08.2 Mark 24

1 Scope of the Chapter

This chapter provides routines for the solution of linear least squares problems, eigenvalue problems and
singular value problems, as well as associated computations. It provides routines for:

– solution of linear least squares problems

– solution of symmetric eigenvalue problems

– solution of nonsymmetric eigenvalue problems

– solution of singular value problems

– solution of generalized symmetric-definite eigenvalue problems

– solution of generalized nonsymmetric eigenvalue problems

– solution of generalized singular value problems

– solution of generalized linear least squares problems

– matrix factorizations associated with the above problems

– estimating condition numbers of eigenvalue and eigenvector problems

– estimating the numerical rank of a matrix

– solution of the Sylvester matrix equation

Routines are provided for both real and complex data.

For a general introduction to the solution of linear least squares problems, you should turn first to Chapter
F04. The decision trees, at the end of Chapter F04, direct you to the most appropriate routines in Chapters
F04 or F08. Chapters F04 and F08 contain Black Box (or driver) routines which enable standard linear
least squares problems to be solved by a call to a single routine.

For a general introduction to eigenvalue and singular value problems, you should turn first to Chapter F02.
The decision trees, at the end of Chapter F02, direct you to the most appropriate routines in Chapters F02
or F08. Chapters F02 and F08 contain Black Box (or driver) routines which enable standard types of
problem to be solved by a call to a single routine. Often routines in Chapter F02 call Chapter F08 routines
to perform the necessary computational tasks.

The routines in this chapter (Chapter F08) handle only dense, band, tridiagonal and Hessenberg matrices
(not matrices with more specialised structures, or general sparse matrices). The tables in Section 3 and the
decision trees in Section 4 direct you to the most appropriate routines in Chapter F08.

The routines in this chapter have all been derived from the LAPACK project (see Anderson et al. (1999)).
They have been designed to be efficient on a wide range of high-performance computers, without
compromising efficiency on conventional serial machines.

It is not expected that you will need to read all of the following sections, but rather you will pick out those
sections relevant to your particular problem.

2 Background to the Problems

This section is only a brief introduction to the numerical solution of linear least squares problems,
eigenvalue and singular value problems. Consult a standard textbook for a more thorough discussion, for
example Golub and Van Loan (1996).

2.1 Linear Least Squares Problems

The linear least squares problem is

minimize
x

b�Axk k2, ð1Þ

where A is an m by n matrix, b is a given m element vector and x is an n-element solution vector.

F08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – F08

Mark 24 F08.3

In the most usual case m � n and rank Að Þ ¼ n, so that A has full rank and in this case the solution to
problem (1) is unique; the problem is also referred to as finding a least squares solution to an
overdetermined system of linear equations.

When m < n and rank Að Þ ¼ m, there are an infinite number of solutions x which exactly satisfy
b�Ax ¼ 0. In this case it is often useful to find the unique solution x which minimizes xk k2, and the
problem is referred to as finding a minimum norm solution to an underdetermined system of linear
equations.

In the general case when we may have rank Að Þ < min m;nð Þ – in other words, A may be rank-deficient –
we seek the minimum norm least squares solution x which minimizes both xk k2 and b�Axk k2.

This chapter (Chapter F08) contains driver routines to solve these problems with a single call, as well as
computational routines that can be combined with routines in Chapter F07 to solve these linear least
squares problems. Chapter F04 also contains Black Box routines to solve these linear least squares
problems in standard cases. The next two sections discuss the factorizations that can be used in the
solution of linear least squares problems.

2.2 Orthogonal Factorizations and Least Squares Problems

A number of routines are provided for factorizing a general rectangular m by n matrix A, as the product of
an orthogonal matrix (unitary if complex) and a triangular (or possibly trapezoidal) matrix.

A real matrix Q is orthogonal if QTQ ¼ I; a complex matrix Q is unitary if QHQ ¼ I. Orthogonal or
unitary matrices have the important property that they leave the 2-norm of a vector invariant, so that

xk k2 ¼ Qxk k2,

if Q is orthogonal or unitary. They usually help to maintain numerical stability because they do not
amplify rounding errors.

Orthogonal factorizations are used in the solution of linear least squares problems. They may also be used
to perform preliminary steps in the solution of eigenvalue or singular value problems, and are useful tools
in the solution of a number of other problems.

2.2.1 QR factorization

The most common, and best known, of the factorizations is the QR factorization given by

A ¼ Q R
0

� �
, if m � n,

where R is an n by n upper triangular matrix and Q is an m by m orthogonal (or unitary) matrix. If A is
of full rank n, then R is nonsingular. It is sometimes convenient to write the factorization as

A ¼ Q1Q2ð Þ R
0

� �

which reduces to

A ¼ Q1R,

where Q1 consists of the first n columns of Q, and Q2 the remaining m� n columns.

If m < n, R is trapezoidal, and the factorization can be written

A ¼ Q R1R2ð Þ, if m < n,

where R1 is upper triangular and R2 is rectangular.

The QR factorization can be used to solve the linear least squares problem (1) when m � n and A is of
full rank, since

b�Axk k2 ¼ QTb�QTAx
�� ��

2
¼ c1 �Rx

c2

� �����
����

2

,

where

Introduction – F08 NAG Library Manual

F08.4 Mark 24

c � c1

c2

� �
¼

QT
1b

QT
2b

0
@

1
A ¼ QTb;

and c1 is an n-element vector. Then x is the solution of the upper triangular system

Rx ¼ c1.

The residual vector r is given by

r ¼ b� Ax ¼ Q 0
c2

� �
.

The residual sum of squares rk k2
2 may be computed without forming r explicitly, since

rk k2 ¼ b�Axk k2 ¼ c2k k2.

2.2.2 LQ factorization

The LQ factorization is given by

A ¼ L 0ð ÞQ ¼ L 0ð Þ Q1

Q2

� �
¼ LQ1, if m � n,

where L is m by m lower triangular, Q is n by n orthogonal (or unitary), Q1 consists of the first m rows
of Q, and Q2 the remaining n�m rows.

The LQ factorization of A is essentially the same as the QR factorization of AT (AH if A is complex),
since

A ¼ L 0ð ÞQ, AT ¼ QT LT

0

� �
.

The LQ factorization may be used to find a minimum norm solution of an underdetermined system of
linear equations Ax ¼ b where A is m by n with m < n and has rank m. The solution is given by

x ¼ QT L�1b
0

� �
.

2.2.3 QR factorization with column pivoting

To solve a linear least squares problem (1) when A is not of full rank, or the rank of A is in doubt, we can
perform either a QR factorization with column pivoting or a singular value decomposition.

The QR factorization with column pivoting is given by

A ¼ Q R
0

� �
PT, m � n,

where Q and R are as before and P is a (real) permutation matrix, chosen (in general) so that

r11j j � r22j j � � � � � rnnj j
and moreover, for each k,

rkkj j � Rk:j;j

�� ��
2
, j ¼ kþ 1; . . . ; n.

If we put

R ¼ R11 R12

0 R22

� �

where R11 is the leading k by k upper triangular sub-matrix of R then, in exact arithmetic, if rank Að Þ ¼ k,
the whole of the sub-matrix R22 in rows and columns kþ 1 to n would be zero. In numerical
computation, the aim must be to determine an index k, such that the leading sub-matrix R11 is well-
conditioned, and R22 is negligible, so that

F08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – F08

Mark 24 F08.5

R ¼ R11 R12

0 R22

� �
’ R11 R12

0 0

� �
.

Then k is the effective rank of A. See Golub and Van Loan (1996) for a further discussion of numerical
rank determination.

The so-called basic solution to the linear least squares problem (1) can be obtained from this factorization
as

x ¼ P R�1
11 ĉ1

0

� �
,

where ĉ1 consists of just the first k elements of c ¼ QTb.

2.2.4 Complete orthogonal factorization

The QR factorization with column pivoting does not enable us to compute a minimum norm solution to a
rank-deficient linear least squares problem, unless R12 ¼ 0. However, by applying for further orthogonal
(or unitary) transformations from the right to the upper trapezoidal matrix R11 R12

� �
, R12 can be

eliminated:

R11 R12

� �
Z ¼ T11 0

� �
.

This gives the complete orthogonal factorization

AP ¼ Q T11 0
0 0

� �
ZT

from which the minimum norm solution can be obtained as

x ¼ PZ T�1
11 ĉ1

0

� �
.

2.2.5 Other factorizations

The QL and RQ factorizations are given by

A ¼ Q 0
L

� �
, if m � n,

and

A ¼ 0 R
� �

Q, if m � n.

The factorizations are less commonly used than either the QR or LQ factorizations described above, but
have applications in, for example, the computation of generalized QR factorizations.

2.3 The Singular Value Decomposition

The singular value decomposition (SVD) of an m by n matrix A is given by

A ¼ U�V T, A ¼ U�V Hin the complex case
� �

where U and V are orthogonal (unitary) and � is an m by n diagonal matrix with real diagonal elements,
�i, such that

�1 � �2 � � � � � �min m;nð Þ � 0.

The �i are the singular values of A and the first min m;nð Þ columns of U and V are the left and right
singular vectors of A. The singular values and singular vectors satisfy

Avi ¼ �iui and ATui ¼ �ivi or AHui ¼ �ivi
� �

where ui and vi are the ith columns of U and V respectively.

Introduction – F08 NAG Library Manual

F08.6 Mark 24

The computation proceeds in the following stages.

1. The matrix A is reduced to bidiagonal form A ¼ U1BV
T

1 if A is real (A ¼ U1BV
H

1 if A is complex),
where U1 and V1 are orthogonal (unitary if A is complex), and B is real and upper bidiagonal when
m � n and lower bidiagonal when m < n, so that B is nonzero only on the main diagonal and either
on the first superdiagonal (if m � n) or the first subdiagonal (if m < n).

2. The SVD of the bidiagonal matrix B is computed as B ¼ U2�V
T

2 , where U2 and V2 are orthogonal
and � is diagonal as described above. The singular vectors of A are then U ¼ U1U2 and V ¼ V1V2.

If m� n, it may be more efficient to first perform a QR factorization of A, and then compute the SVD of

the n by n matrix R, since if A ¼ QR and R ¼ U�V T, then the SVD of A is given by A ¼ QUð Þ�V T.

Similarly, if m� n, it may be more efficient to first perform an LQ factorization of A.

This chapter supports two primary algorithms for computing the SVD of a bidiagonal matrix. They are:

(i) the divide and conquer algorithm;

(ii) the QR algorithm.

The divide and conquer algorithm is much faster than the QR algorithm if singular vectors of large
matrices are required.

2.4 The Singular Value Decomposition and Least Squares Problems

The SVD may be used to find a minimum norm solution to a (possibly) rank-deficient linear least squares
problem (1). The effective rank, k, of A can be determined as the number of singular values which exceed

a suitable threshold. Let �̂ be the leading k by k sub-matrix of �, and V̂ be the matrix consisting of the
first k columns of V . Then the solution is given by

x ¼ V̂ �̂�1ĉ1,

where ĉ1 consists of the first k elements of c ¼ UTb ¼ UT
2U

T
1 b.

2.5 Generalized Linear Least Squares Problems

The simple type of linear least squares problem described in Section 2.1 can be generalized in various
ways.

1. Linear least squares problems with equality constraints:

find x to minimize S ¼ c�Axk k2
2 subject to Bx ¼ d,

where A is m by n and B is p by n, with p � n � mþ p. The equations Bx ¼ d may be regarded as
a set of equality constraints on the problem of minimizing S. Alternatively the problem may be
regarded as solving an overdetermined system of equations

A
B

� �
x ¼ c

d

� �
,

where some of the equations (those involving B) are to be solved exactly, and the others (those
involving A) are to be solved in a least squares sense. The problem has a unique solution on the

assumptions that B has full row rank p and the matrix
A
B

� �
has full column rank n. (For linear least

squares problems with inequality constraints, refer to Chapter E04.)

2. General Gauss–Markov linear model problems:

minimize yk k2 subject to d ¼ AxþBy,

where A is m by n and B is m by p, with n � m � nþ p. When B ¼ I, the problem reduces to an
ordinary linear least squares problem. When B is square and nonsingular, it is equivalent to a
weighted linear least squares problem:

find x to minimize B�1 d�Axð Þ
�� ��

2
.

F08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – F08

Mark 24 F08.7

The problem has a unique solution on the assumptions that A has full column rank n, and the matrix
A;Bð Þ has full row rank m. Unless B is diagonal, for numerical stability it is generally preferable to

solve a weighted linear least squares problem as a general Gauss–Markov linear model problem.

2.6 Generalized Orthogonal Factorization and Generalized Linear Least Squares
Problems

2.6.1 Generalized QR Factorization

The generalized QR (GQR) factorization of an n by m matrix A and an n by p matrix B is given by the
pair of factorizations

A ¼ QR and B ¼ QTZ,

where Q and Z are respectively n by n and p by p orthogonal matrices (or unitary matrices if A and B are
complex). R has the form

R ¼
! m

m R11

n�m 0
, if n � m,

or

R ¼
�� n m� n

n R11 R12
, if n < m,

where R11 is upper triangular. T has the form

T ¼
�� p� n n

n 0 T12
, if n � p,

or

T ¼
! p

n� p T11

p T21

, if n > p,

where T12 or T21 is upper triangular.

Note that if B is square and nonsingular, the GQR factorization of A and B implicitly gives the QR

factorization of the matrix B�1A:

B�1 ¼ ZT T�1R
� �

without explicitly computing the matrix inverse B�1 or the product B�1A.

The GQR factorization can be used to solve the general (Gauss–Markov) linear model problem (GLM)
(see Section 2.5, but note that A and B are dimensioned differently there as m by n and p by n
respectively). Using the GQR factorization of A and B, we rewrite the equation d ¼ AxþBy as

QTd ¼ QTAxþQTBy
¼ Rxþ TZy.

We partition this as

d1

d2

� �
¼

! m

m R11

n�m 0
xþ

! p� nþm n�m
m T11 T12

n�m 0 T22

y1

y2

� �

where

d1

d2

� �
� QTd, and

y1

y2

� �
� Zy.

Introduction – F08 NAG Library Manual

F08.8 Mark 24

The GLM problem is solved by setting

y1 ¼ 0 and y2 ¼ T�1
22 d2

from which we obtain the desired solutions

x ¼ R�1
11 d1 � T12y2ð Þ and y ¼ ZT 0

y2

� �
.

2.6.2 Generalized RQ Factorization

The generalized RQ (GRQ) factorization of an m by n matrix A and a p by n matrix B is given by the
pair of factorizations

A ¼ RQ, B ¼ ZTQ
where Q and Z are respectively n by n and p by p orthogonal matrices (or unitary matrices if A and B are
complex). R has the form

R ¼
��n�m m

m 0 R12
, if m � n,

or

R ¼
! n

m� n R11

n R21

, if m > n,

where R12 or R21 is upper triangular. T has the form

T ¼
! n

n T11

p� n 0
, if p � n,

or

T ¼
�� p n� p

p T11 T12
, if p < n,

where T11 is upper triangular.

Note that if B is square and nonsingular, the GRQ factorization of A and B implicitly gives the RQ

factorization of the matrix AB�1:

AB�1 ¼ RT�1
� �

ZT

without explicitly computing the matrix B�1 or the product AB�1.

The GRQ factorization can be used to solve the linear equality-constrained least squares problem (LSE)
(see Section 2.5). We use the GRQ factorization of B and A (note that B and A have swapped roles),
written as

B ¼ TQ and A ¼ ZRQ.

We write the linear equality constraints Bx ¼ d as

TQx ¼ d,

which we partition as:

��n� p p

p 0 T12

x1

x2

� �
¼ d where

x1

x2

� �
� Qx.

Therefore x2 is the solution of the upper triangular system

T12x2 ¼ d.

F08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – F08

Mark 24 F08.9

Furthermore,

Ax� ck k2 ¼ ZTAx� ZTc
�� ��

2

¼ RQx� ZTc
�� ��

2

.

We partition this expression as:

! n� p p

n� p R11 R12

pþm� n 0 R22

x1

x2

� �
� c1

c2

� �
,

where
c1

c2

� �
� ZTc.

To solve the LSE problem, we set

R11x1 þR12x2 � c1 ¼ 0

which gives x1 as the solution of the upper triangular system

R11x1 ¼ c1 �R12x2.

Finally, the desired solution is given by

x ¼ QT x1

x2

� �
.

2.6.3 Generalized Singular Value Decomposition (GSVD)

The generalized (or quotient) singular value decomposition of an m by n matrix A and a p by n matrix
B is given by the pair of factorizations

A ¼ U�1 0; R½ 	QT and B ¼ V�2 0; R½ 	QT.

The matrices in these factorizations have the following properties:

– U is m by m, V is p by p, Q is n by n, and all three matrices are orthogonal. If A and B are complex,

these matrices are unitary instead of orthogonal, and QT should be replaced by QH in the pair of
factorizations.

– R is r by r, upper triangular and nonsingular. 0; R½ 	 is r by n (in other words, the 0 is an r by n� r

zero matrix). The integer r is the rank of
A
B

� �
, and satisfies r � n.

– �1 is m by r, �2 is p by r, both are real, non-negative and diagonal, and �T
1�1 þ�T

2�2 ¼ I. Write

�T
1�1 ¼ diag �2

1; . . . ; �2
r

� �
and �T

2�2 ¼ diag �2
1 ; . . . ; �2

r

� �
, where �i and �i lie in the interval from 0 to

1. The ratios �1=�1; . . . ; �r=�r are called the generalized singular values of the pair A, B. If �i ¼ 0,
then the generalized singular value �i=�i is infinite.

�1 and �2 have the following detailed structures, depending on whether m� r � 0 or m� r < 0. In the
first case, m� r � 0, then

�1 ¼

1
CA

0
B@
k l

k I 0
l 0 C

m� k� l 0 0

and �2 ¼
! k l

l 0 S
p� l 0 0

.

Here l is the rank of B, k ¼ r� l, C and S are diagonal matrices satisfying C2 þ S2 ¼ I, and S is
nonsingular. We may also identify �1 ¼ � � � ¼ �k ¼ 1, �kþi ¼ cii, for i ¼ 1; 2; . . . ; l, �1 ¼ � � � ¼ �k ¼ 0,
and �kþi ¼ sii, for i ¼ 1; 2; . . . ; l. Thus, the first k generalized singular values �1=�1; . . . ; �k=�k are
infinite, and the remaining l generalized singular values are finite.

Introduction – F08 NAG Library Manual

F08.10 Mark 24

In the second case, when m� r < 0,

�1 ¼
! k m� k kþ l�m

k I 0 0
m� k 0 C 0

and

�2 ¼

1
CA

0
B@
k m� k kþ l�m

m� k 0 S 0
kþ l�m 0 0 I

p� l 0 0 0

.

Again, l is the rank of B, k ¼ r� l, C and S are diagonal matrices satisfying C2 þ S2 ¼ I, and S is
nonsingular, and we may identify �1 ¼ � � � ¼ �k ¼ 1, �kþi ¼ cii, for i ¼ 1; 2; . . . ;m� k,
�mþ1 ¼ � � � ¼ �r ¼ 0, �1 ¼ � � � ¼ �k ¼ 0, �kþi ¼ sii, for i ¼ 1; 2; . . . ;m� k and �mþ1 ¼ � � � ¼ �r ¼ 1.
Thus, the first k generalized singular values �1=�1; . . . ; �k=�k are infinite, and the remaining l generalized
singular values are finite.

Here are some important special case of the generalized singular value decomposition. First, if B is square
and nonsingular, then r ¼ n and the generalized singular value decomposition of A and B is equivalent to

the singular value decomposition of AB�1, where the singular values of AB�1 are equal to the generalized
singular values of the pair A, B:

AB�1 ¼ U�1RQ
T

� �
V�2RQ

T
� ��1 ¼ U �1�

�1
2

� �
V T.

Second, if the columns of ATBT
� �T

are orthonormal, then r ¼ n, R ¼ I and the generalized singular value

decomposition of A and B is equivalent to the CS (Cosine–Sine) decomposition of ATBT
� �T

:

A
B

� �
¼ U 0

0 V

� �
�1

�2

� �
QT.

Third, the generalized eigenvalues and eigenvectors of ATA� �BTB can be expressed in terms of the
generalized singular value decomposition: Let

X ¼ Q I 0

0 R�1

� �
.

Then

XTATAX ¼ 0 0

0 �T
1�1

� �
and XTBTBX ¼ 0 0

0 �T
2�2

� �
.

Therefore, the columns of X are the eigenvectors of ATA� �BTB, and ‘nontrivial’ eigenvalues are the
squares of the generalized singular values (see also Section 2.8). ‘Trivial’ eigenvalues are those

corresponding to the leading n� r columns of X, which span the common null space of ATA and BTB.
The ‘trivial eigenvalues’ are not well defined.

2.7 Symmetric Eigenvalue Problems

The symmetric eigenvalue problem is to find the eigenvalues, �, and corresponding eigenvectors, z 6¼ 0,
such that

Az ¼ �z, A ¼ AT, where A is real.

For the Hermitian eigenvalue problem we have

Az ¼ �z, A ¼ AH, where A is complex.

For both problems the eigenvalues � are real.

When all eigenvalues and eigenvectors have been computed, we write

A ¼ Z�ZT or A ¼ Z�ZH if complex
� �

,

F08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – F08

Mark 24 F08.11

where � is a diagonal matrix whose diagonal elements are the eigenvalues, and Z is an orthogonal (or
unitary) matrix whose columns are the eigenvectors. This is the classical spectral factorization of A.

The basic task of the symmetric eigenproblem routines is to compute values of � and, optionally,
corresponding vectors z for a given matrix A. This computation proceeds in the following stages.

1. The real symmetric or complex Hermitian matrix A is reduced to real tridiagonal form T . If A is real

symmetric this decomposition is A ¼ QTQT with Q orthogonal and T symmetric tridiagonal. If A is

complex Hermitian, the decomposition is A ¼ QTQH with Q unitary and T , as before, real
symmetric tridiagonal.

2. Eigenvalues and eigenvectors of the real symmetric tridiagonal matrix T are computed. If all

eigenvalues and eigenvectors are computed, this is equivalent to factorizing T as T ¼ S�ST, where S
is orthogonal and � is diagonal. The diagonal entries of � are the eigenvalues of T , which are also
the eigenvalues of A, and the columns of S are the eigenvectors of T ; the eigenvectors of A are the

columns of Z ¼ QS, so that A ¼ Z�ZT (Z�ZH when A is complex Hermitian).

This chapter supports four primary algorithms for computing eigenvalues and eigenvectors of real
symmetric matrices and complex Hermitian matrices. They are:

(i) the divide-and-conquer algorithm;

(ii) the QR algorithm;

(iii) bisection followed by inverse iteration;

(iv) the Relatively Robust Representation (RRR).

The divide-and-conquer algorithm is generally more efficient than the traditional QR algorithm for
computing all eigenvalues and eigenvectors, but the RRR algorithm tends to be fastest of all. For further
information and references see Anderson et al. (1999).

2.8 Generalized Symmetric-definite Eigenvalue Problems

This section is concerned with the solution of the generalized eigenvalue problems Az ¼ �Bz, ABz ¼ �z,
and BAz ¼ �z, where A and B are real symmetric or complex Hermitian and B is positive definite. Each
of these problems can be reduced to a standard symmetric eigenvalue problem, using a Cholesky

factorization of B as either B ¼ LLT or B ¼ UTU (LLH or UHU in the Hermitian case).

With B ¼ LLT, we have

Az ¼ �Bz) L�1AL�T
� �

LTz
� �

¼ � LTz
� �

.

Hence the eigenvalues of Az ¼ �Bz are those of Cy ¼ �y, where C is the symmetric matrix

C ¼ L�1AL�T and y ¼ LTz. In the complex case C is Hermitian with C ¼ L�1AL�H and y ¼ LHz.

Table 1 summarises how each of the three types of problem may be reduced to standard form Cy ¼ �y,
and how the eigenvectors z of the original problem may be recovered from the eigenvectors y of the
reduced problem. The table applies to real problems; for complex problems, transposed matrices must be
replaced by conjugate-transposes.

Type of problem Factorization of B Reduction Recovery of eigenvectors

1. Az ¼ �Bz B ¼ LLT,

B ¼ UTU

C ¼ L�1AL�T,

C ¼ U�TAU�1
z ¼ L�Ty,

z ¼ U�1y

2. ABz ¼ �z B ¼ LLT,

B ¼ UTU

C ¼ LTAL,

C ¼ UAUT
z ¼ L�Ty,

z ¼ U�1y

Introduction – F08 NAG Library Manual

F08.12 Mark 24

3. BAz ¼ �z B ¼ LLT,

B ¼ UTU

C ¼ LTAL,

C ¼ UAUT

z ¼ Ly,

z ¼ UTy

Table 1
Reduction of generalized symmetric-definite eigenproblems to standard problems

When the generalized symmetric-definite problem has been reduced to the corresponding standard problem
Cy ¼ �y, this may then be solved using the routines described in the previous section. No special routines
are needed to recover the eigenvectors z of the generalized problem from the eigenvectors y of the standard
problem, because these computations are simple applications of Level 2 or Level 3 BLAS (see Chapter
F06).

2.9 Packed Storage for Symmetric Matrices

Routines which handle symmetric matrices are usually designed so that they use either the upper or lower
triangle of the matrix; it is not necessary to store the whole matrix. If either the upper or lower triangle is
stored conventionally in the upper or lower triangle of a two-dimensional array, the remaining elements of
the array can be used to store other useful data. However, that is not always convenient, and if it is
important to economize on storage, the upper or lower triangle can be stored in a one-dimensional array of
length n nþ 1ð Þ=2; that is, the storage is almost halved.

This storage format is referred to as packed storage; it is described in Section 3.3.2 in the F07 Chapter
Introduction.

Routines designed for packed storage are usually less efficient, especially on high-performance computers,
so there is a trade-off between storage and efficiency.

2.10 Band Matrices

A band matrix is one whose elements are confined to a relatively small number of subdiagonals or
superdiagonals on either side of the main diagonal. Algorithms can take advantage of bandedness to
reduce the amount of work and storage required. The storage scheme for band matrices is described in
Section 3.3.4 in the F07 Chapter Introduction.

If the problem is the generalized symmetric definite eigenvalue problem Az ¼ �Bz and the matrices A and
B are additionally banded, the matrix C as defined in Section 2.8 is, in general, full. We can reduce the
problem to a banded standard problem by modifying the definition of C thus:

C ¼ XTAX, where X ¼ U�1Q or L�TQ,

where Q is an orthogonal matrix chosen to ensure that C has bandwidth no greater than that of A.

A further refinement is possible when A and B are banded, which halves the amount of work required to

form C. Instead of the standard Cholesky factorization of B as UTU or LLT, we use a split Cholesky
factorization B ¼ STS, where

S ¼ U11

M21 L22

� �

with U11 upper triangular and L22 lower triangular of order approximately n=2; S has the same bandwidth
as B.

2.11 Nonsymmetric Eigenvalue Problems

The nonsymmetric eigenvalue problem is to find the eigenvalues, �, and corresponding eigenvectors,
v 6¼ 0, such that

Av ¼ �v.

More precisely, a vector v as just defined is called a right eigenvector of A, and a vector u 6¼ 0 satisfying

uTA ¼ �uT uHA ¼ �uH when u is complex
� �

is called a left eigenvector of A.

F08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – F08

Mark 24 F08.13

A real matrix A may have complex eigenvalues, occurring as complex conjugate pairs.

This problem can be solved via the Schur factorization of A, defined in the real case as

A ¼ ZTZT,

where Z is an orthogonal matrix and T is an upper quasi-triangular matrix with 1 by 1 and 2 by 2 diagonal
blocks, the 2 by 2 blocks corresponding to complex conjugate pairs of eigenvalues of A. In the complex
case, the Schur factorization is

A ¼ ZTZH,

where Z is unitary and T is a complex upper triangular matrix.

The columns of Z are called the Schur vectors. For each k (1 � k � n), the first k columns of Z form an
orthonormal basis for the invariant subspace corresponding to the first k eigenvalues on the diagonal of T .
Because this basis is orthonormal, it is preferable in many applications to compute Schur vectors rather
than eigenvectors. It is possible to order the Schur factorization so that any desired set of k eigenvalues
occupy the k leading positions on the diagonal of T .

The two basic tasks of the nonsymmetric eigenvalue routines are to compute, for a given matrix A, all n
values of � and, if desired, their associated right eigenvectors v and/or left eigenvectors u, and the Schur
factorization.

These two basic tasks can be performed in the following stages.

1. A general matrix A is reduced to upper Hessenberg form H which is zero below the first subdiagonal.

The reduction may be written A ¼ QHQT with Q orthogonal if A is real, or A ¼ QHQH with Q
unitary if A is complex.

2. The upper Hessenberg matrix H is reduced to Schur form T , giving the Schur factorization

H ¼ STST (for H real) or H ¼ STSH (for H complex). The matrix S (the Schur vectors of H) may
optionally be computed as well. Alternatively S may be postmultiplied into the matrix Q determined
in stage 1, to give the matrix Z ¼ QS, the Schur vectors of A. The eigenvalues are obtained from the
diagonal elements or diagonal blocks of T .

3. Given the eigenvalues, the eigenvectors may be computed in two different ways. Inverse iteration can
be performed on H to compute the eigenvectors of H, and then the eigenvectors can be multiplied by
the matrix Q in order to transform them to eigenvectors of A. Alternatively the eigenvectors of T can
be computed, and optionally transformed to those of H or A if the matrix S or Z is supplied.

The accuracy with which eigenvalues can be obtained can often be improved by balancing a matrix. This
is discussed further in Section 2.14.6 below.

2.12 Generalized Nonsymmetric Eigenvalue Problem

The generalized nonsymmetric eigenvalue problem is to find the eigenvalues, �, and corresponding
eigenvectors, v 6¼ 0, such that

Av ¼ �Bv.

More precisely, a vector v as just defined is called a right eigenvector of the matrix pair A;Bð Þ, and a
vector u 6¼ 0 satisfying

uTA ¼ �uTB uHA ¼ �uHB when u is complex
� �

is called a left eigenvector of the matrix pair A;Bð Þ.
If B is singular then the problem has one or more infinite eigenvalues � ¼ 1, corresponding to Bv ¼ 0.
Note that if A is nonsingular, then the equivalent problem �Av ¼ Bv is perfectly well defined and an
infinite eigenvalue corresponds to � ¼ 0. To deal with both finite (including zero) and infinite eigenvalues,
the routines in this chapter do not compute � explicitly, but rather return a pair of numbers �; �ð Þ such that
if � 6¼ 0

� ¼ �=�

Introduction – F08 NAG Library Manual

F08.14 Mark 24

and if � 6¼ 0 and � ¼ 0 then � ¼ 1. � is always returned as real and non-negative. Of course,
computationally an infinite eigenvalue may correspond to a small � rather than an exact zero.

For a given pair A;Bð Þ the set of all the matrices of the form A� �Bð Þ is called a matrix pencil and �
and v are said to be an eigenvalue and eigenvector of the pencil A� �Bð Þ. If A and B are both singular
and share a common null space then

det A� �Bð Þ � 0

so that the pencil A� �Bð Þ is singular for all �. In other words any � can be regarded as an eigenvalue.
In exact arithmetic a singular pencil will have � ¼ � ¼ 0 for some �; �ð Þ. Computationally if some pair
�; �ð Þ is small then the pencil is singular, or nearly singular, and no reliance can be placed on any of the

computed eigenvalues. Singular pencils can also manifest themselves in other ways; see, in particular,
Sections 2.3.5.2 and 4.11.1.4 of Anderson et al. (1999) for further details.

The generalized eigenvalue problem can be solved via the generalized Schur factorization of the pair
A;Bð Þ defined in the real case as

A ¼ QSZT, B ¼ QTZT,

where Q and Z are orthogonal, T is upper triangular with non-negative diagonal elements and S is upper
quasi-triangular with 1 by 1 and 2 by 2 diagonal blocks, the 2 by 2 blocks corresponding to complex
conjugate pairs of eigenvalues. In the complex case, the generalized Schur factorization is

A ¼ QSZH, B ¼ QTZH,

where Q and Z are unitary and S and T are upper triangular, with T having real non-negative diagonal
elements. The columns of Q and Z are called respectively the left and right generalized Schur vectors and
span pairs of deflating subspaces of A and B, which are a generalization of invariant subspaces.

It is possible to order the generalized Schur factorization so that any desired set of k eigenvalues
correspond to the k leading positions on the diagonals of the pair S; Tð Þ.
The two basic tasks of the generalized nonsymmetric eigenvalue routines are to compute, for a given pair
A;Bð Þ, all n values of � and, if desired, their associated right eigenvectors v and/or left eigenvectors u,

and the generalized Schur factorization.

These two basic tasks can be performed in the following stages.

1. The matrix pair A;Bð Þ is reduced to generalized upper Hessenberg form H;Rð Þ, where H is upper
Hessenberg (zero below the first subdiagonal) and R is upper triangular. The reduction may be

written as A ¼ Q1HZ
T
1 ; B ¼ Q1RZ

T
1 in the real case with Q1 and Z1 orthogonal, and

A ¼ Q1HZ
H
1 ; B ¼ Q1RZ

H
1 in the complex case with Q1 and Z1 unitary.

2. The generalized upper Hessenberg form H;Rð Þ is reduced to the generalized Schur form S; Tð Þ using

the generalized Schur factorization H ¼ Q2SZ
T
2 , R ¼ Q2TZ

T
2 in the real case with Q2 and Z2

orthogonal, and H ¼ Q2SZ
H
2 ; R ¼ Q2TZ

H
2 in the complex case. The generalized Schur vectors of

A;Bð Þ are given by Q ¼ Q1Q2, Z ¼ Z1Z2. The eigenvalues are obtained from the diagonal elements
(or blocks) of the pair S; Tð Þ.

3. Given the eigenvalues, the eigenvectors of the pair S; Tð Þ can be computed, and optionally
transformed to those of H;Rð Þ or A;Bð Þ.

The accuracy with which eigenvalues can be obtained can often be improved by balancing a matrix pair.
This is discussed further in Section 2.14.8 below.

2.13 The Sylvester Equation and the Generalized Sylvester Equation

The Sylvester equation is a matrix equation of the form

AX þXB ¼ C,

where A, B, and C are given matrices with A being m by m, B an n by n matrix and C, and the solution
matrix X, m by n matrices. The solution of a special case of this equation occurs in the computation of
the condition number for an invariant subspace, but a combination of routines in this chapter allows the
solution of the general Sylvester equation.

F08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – F08

Mark 24 F08.15

Routines are also provided for solving a special case of the generalized Sylvester equations

AR� LB ¼ C, DR� LE ¼ F ,

where A;Dð Þ, B;Eð Þ and C;Fð Þ are given matrix pairs, and R and L are the solution matrices.

2.14 Error and Perturbation Bounds and Condition Numbers

In this section we discuss the effects of rounding errors in the solution process and the effects of
uncertainties in the data, on the solution to the problem. A number of the routines in this chapter return
information, such as condition numbers, that allow these effects to be assessed. First we discuss some
notation used in the error bounds of later sections.

The bounds usually contain the factor p nð Þ (or p m; nð Þ), which grows as a function of the matrix
dimension n (or matrix dimensions m and n). It measures how errors can grow as a function of the matrix
dimension, and represents a potentially different function for each problem. In practice, it usually grows
just linearly; p nð Þ � 10n is often true, although generally only much weaker bounds can be actually
proved. We normally describe p nð Þ as a ‘modestly growing’ function of n. For detailed derivations of
various p nð Þ, see Golub and Van Loan (1996) and Wilkinson (1965).

For linear equation (see Chapter F07) and least squares solvers, we consider bounds on the relative error
x� x̂k k= xk k in the computed solution x̂, where x is the true solution. For eigenvalue problems we

consider bounds on the error �i � �̂i
		 		 in the ith computed eigenvalue �̂i, where �i is the true ith

eigenvalue. For singular value problems we similarly consider bounds �i � �̂ij j.
Bounding the error in computed eigenvectors and singular vectors v̂i is more subtle because these vectors
are not unique: even though we restrict v̂ik k2 ¼ 1 and vik k2 ¼ 1, we may still multiply them by arbitrary
constants of absolute value 1. So to avoid ambiguity we bound the angular difference between v̂i and the
true vector vi, so that

	 vi; v̂ið Þ ¼ acute angle between vi and v̂i
¼ arccos vH

i v̂i
		 		. ð2Þ

Here arccos 	ð Þ is in the standard range: 0 � arccos 	ð Þ <
. When 	 vi; v̂ið Þ is small, we can choose a
constant � with absolute value 1 so that �vi � v̂ik k2
 	 vi; v̂ið Þ.
In addition to bounds for individual eigenvectors, bounds can be obtained for the spaces spanned by
collections of eigenvectors. These may be much more accurately determined than the individual
eigenvectors which span them. These spaces are called invariant subspaces in the case of eigenvectors,
because if v is any vector in the space, Av is also in the space, where A is the matrix. Again, we will use

angle to measure the difference between a computed space Ŝ and the true space S:

	 S; Ŝ
� �

¼ acute angle between S and Ŝ

¼ max
s2S
s6¼0

min
ŝ2Ŝ
ŝ6¼0

	 s; ŝð Þ or max
ŝ2Ŝ
ŝ6¼0

min
s2S
s6¼0

	 s; ŝð Þ ð3Þ

	 S; Ŝ
� �

may be computed as follows. Let S be a matrix whose columns are orthonormal and spanS.

Similarly let Ŝ be an orthonormal matrix with columns spanning Ŝ. Then

	 S; Ŝ
� �

¼ arccos�min SHŜ
� �

.

Finally, we remark on the accuracy of the bounds when they are large. Relative errors like x̂� xk k= xk k
and angular errors like 	 v̂i; við Þ are only of interest when they are much less than 1. Some stated bounds
are not strictly true when they are close to 1, but rigorous bounds are much more complicated and supply
little extra information in the interesting case of small errors. These bounds are indicated by using the
symbol �< , or ‘approximately less than’, instead of the usual �. Thus, when these bounds are close to 1
or greater, they indicate that the computed answer may have no significant digits at all, but do not
otherwise bound the error.

A number of routines in this chapter return error estimates and/or condition number estimates directly. In
other cases Anderson et al. (1999) gives code fragments to illustrate the computation of these estimates,

Introduction – F08 NAG Library Manual

F08.16 Mark 24

and a number of the Chapter F08 example programs, for the driver routines, implement these code
fragments.

2.14.1 Least squares problems

The conventional error analysis of linear least squares problems goes as follows. The problem is to find
the x minimizing Ax� bk k2. Let x̂ be the solution computed using one of the methods described above.
We discuss the most common case, where A is overdetermined (i.e., has more rows than columns) and has
full rank.

Then the computed solution x̂ has a small normwise backward error. In other words x̂ minimizes
Aþ Eð Þx̂� bþ fð Þk k2, where

max
Ek k2

Ak k2

;
fk k2

bk k2

� �
� p nð Þ�

and p nð Þ is a modestly growing function of n and � is the machine precision. Let
�2 Að Þ ¼ �max Að Þ=�min Að Þ, ¼ Ax� bk k2, and sin 	ð Þ ¼ = bk k2. Then if p nð Þ� is small enough, the
error x̂� x is bounded by

x� x̂k k2

xk k2
�< p nð Þ� 2�2 Að Þ

cos 	ð Þ þ tan 	ð Þ�2
2 Að Þ

 �
.

If A is rank-deficient, the problem can be regularized by treating all singular values less than a user-
specified threshold as exactly zero. See Golub and Van Loan (1996) for error bounds in this case, as well
as for the underdetermined case.

The solution of the overdetermined, full-rank problem may also be characterised as the solution of the
linear system of equations

I A

AT 0

� �
r
x

� �
¼ b

0

� �
.

By solving this linear system (see Chapter F07) component-wise error bounds can also be obtained Arioli
et al. (1989).

2.14.2 The singular value decomposition

The usual error analysis of the SVD algorithm is as follows (see Golub and Van Loan (1996)).

The computed SVD, Û�̂V̂ T, is nearly the exact SVD of Aþ E, i.e., Aþ E ¼ Û þ �Û
� �

�̂ V̂ þ �V̂
� �

is

the true SVD, so that Û þ �Û and V̂ þ �V̂ are both orthogonal, where Ek k2= Ak k2 � p m; nð Þ�,
�Û
�� �� � p m; nð Þ�, and �V̂

�� �� � p m; nð Þ�. Here p m; nð Þ is a modestly growing function of m and n and �
is the machine precision. Each computed singular value �̂i differs from the true �i by an amount
satisfying the bound

�̂i � �ij j � p m; nð Þ��1.

Thus large singular values (those near �1) are computed to high relative accuracy and small ones may not
be.

The angular difference between the computed left singular vector ûi and the true ui satisfies the
approximate bound

	 ûi; uið Þ �<
p m; nð Þ� Ak k2

gapi

where

gapi ¼ min
j6¼i

�i � �j
		 		

is the absolute gap between �i and the nearest other singular value. Thus, if �i is close to other singular
values, its corresponding singular vector ui may be inaccurate. The same bound applies to the computed

F08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – F08

Mark 24 F08.17

right singular vector v̂i and the true vector vi. The gaps may be easily obtained from the computed
singular values.

Let Ŝ be the space spanned by a collection of computed left singular vectors ûi; i 2 If g, where I is a
subset of the integers from 1 to n. Let S be the corresponding true space. Then

	 Ŝ; S
� �

�<
p m; nð Þ� Ak k2

gapI
.

where

gapI ¼ min �i � �j
		 		 for i 2 I ; j =2 I
�

is the absolute gap between the singular values in I and the nearest other singular value. Thus, a cluster of

close singular values which is far away from any other singular value may have a well determined space Ŝ
even if its individual singular vectors are ill-conditioned. The same bound applies to a set of right singular
vectors v̂i; i 2 If g.
In the special case of bidiagonal matrices, the singular values and singular vectors may be computed much
more accurately (see Demmel and Kahan (1990)). A bidiagonal matrix B has nonzero entries only on the
main diagonal and the diagonal immediately above it (or immediately below it). Reduction of a dense
matrix to bidiagonal form B can introduce additional errors, so the following bounds for the bidiagonal
case do not apply to the dense case.

Using the routines in this chapter, each computed singular value of a bidiagonal matrix is accurate to
nearly full relative accuracy, no matter how tiny it is, so that

�̂i � �ij j � p m; nð Þ��i.
The computed left singular vector ûi has an angular error at most about

	 ûi; uið Þ �<
p m; nð Þ�
relgapi

where

relgapi ¼ min
j 6¼i

�i � �j
		 		= �i þ �j� �

is the relative gap between �i and the nearest other singular value. The same bound applies to the right
singular vector v̂i and vi. Since the relative gap may be much larger than the absolute gap, this error
bound may be much smaller than the previous one. The relative gaps may be easily obtained from the
computed singular values.

2.14.3 The symmetric eigenproblem

The usual error analysis of the symmetric eigenproblem is as follows (see Parlett (1998)).

The computed eigendecomposition Ẑ�̂ẐT is nearly the exact eigendecomposition of Aþ E, i.e.,

Aþ E ¼ Ẑ þ �Ẑ
� �

�̂ Ẑ þ �Ẑ
� �T

is the true eigendecomposition so that Ẑ þ �Ẑ is orthogonal, where

Ek k2= Ak k2 � p nð Þ� and �Ẑ
�� ��

2
� p nð Þ� and p nð Þ is a modestly growing function of n and � is the

machine precision. Each computed eigenvalue �̂i differs from the true �i by an amount satisfying the
bound

�̂i � �i
		 		 � p nð Þ� Ak k2.

Thus large eigenvalues (those near max
i
�ij j ¼ Ak k2) are computed to high relative accuracy and small ones

may not be.

The angular difference between the computed unit eigenvector ẑi and the true zi satisfies the approximate
bound

	 ẑi; zið Þ �<
p nð Þ� Ak k2

gapi

if p nð Þ� is small enough, where

Introduction – F08 NAG Library Manual

F08.18 Mark 24

gapi ¼ min
j6¼i

�i � �j
		 		

is the absolute gap between �i and the nearest other eigenvalue. Thus, if �i is close to other eigenvalues,
its corresponding eigenvector zi may be inaccurate. The gaps may be easily obtained from the computed
eigenvalues.

Let Ŝ be the invariant subspace spanned by a collection of eigenvectors ẑi; i 2 If g, where I is a subset of
the integers from 1 to n. Let S be the corresponding true subspace. Then

	 Ŝ; S
� �

�<
p nð Þ� Ak k2

gapI

where

gapI ¼ min �i � �j
		 		 for i 2 I ; j =2 I
�

is the absolute gap between the eigenvalues in I and the nearest other eigenvalue. Thus, a cluster of close

eigenvalues which is far away from any other eigenvalue may have a well determined invariant subspace Ŝ
even if its individual eigenvectors are ill-conditioned.

In the special case of a real symmetric tridiagonal matrix T , routines in this chapter can compute the
eigenvalues and eigenvectors much more accurately. See Anderson et al. (1999) for further details.

2.14.4 The generalized symmetric-definite eigenproblem

The three types of problem to be considered are A� �B, AB� �I and BA� �I. In each case A and B
are real symmetric (or complex Hermitian) and B is positive definite. We consider each case in turn,
assuming that routines in this chapter are used to transform the generalized problem to the standard
symmetric problem, followed by the solution of the symmetric problem. In all cases

gapi ¼ min
j6¼i

�i � �j
		 		

is the absolute gap between �i and the nearest other eigenvalue.

1. A� �B. The computed eigenvalues �̂i can differ from the true eigenvalues �i by an amount

�̂i � �i
		 		 �< p nð Þ� B�1

�� ��
2
Ak k2.

The angular difference between the computed eigenvector ẑi and the true eigenvector zi is

	 ẑi; zið Þ �<
p nð Þ� B�1

�� ��
2
Ak k2 �2 Bð Þð Þ1=2

gapi
.

2. AB� �I or BA� �I. The computed eigenvalues �̂i can differ from the true eigenvalues �i by an
amount

�̂i � �i
		 		 �< p nð Þ� Bk k2 Ak k2.

The angular difference between the computed eigenvector ẑi and the true eigenvector zi is

	 ẑi; zið Þ �<
p nð Þ� Bk k2 Ak k2 �2 Bð Þð Þ1=2

gapi
.

These error bounds are large when B is ill-conditioned with respect to inversion (�2 Bð Þ is large). It is
often the case that the eigenvalues and eigenvectors are much better conditioned than indicated here. One
way to get tighter bounds is effective when the diagonal entries of B differ widely in magnitude, as for
example with a graded matrix.

1. A� �B. Let D ¼ diag b
�1=2
11 ; . . . ; b�1=2

nn

� �
be a diagonal matrix. Then replace B by DBD and A by

DAD in the above bounds.

F08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – F08

Mark 24 F08.19

2. AB� �I or BA� �I. Let D ¼ diag b
�1=2
11 ; . . . ; b�1=2

nn

� �
be a diagonal matrix. Then replace B by

DBD and A by D�1AD�1 in the above bounds.

Further details can be found in Anderson et al. (1999).

2.14.5 The nonsymmetric eigenproblem

The nonsymmetric eigenvalue problem is more complicated than the symmetric eigenvalue problem. In
this section, we just summarise the bounds. Further details can be found in Anderson et al. (1999).

We let �̂i be the ith computed eigenvalue and �i the ith true eigenvalue. Let v̂i be the corresponding
computed right eigenvector, and vi the true right eigenvector (so Avi ¼ �ivi). If I is a subset of the

integers from 1 to n, we let �I denote the average of the selected eigenvalues: �I ¼
P
i2I
�i

� �
=
P
i2I

1

� �
, and

similarly for �̂I. We also let SI denote the subspace spanned by vi; i 2 If g; it is called a right invariant

subspace because if v is any vector in SI then Av is also in SI . ŜI is the corresponding computed
subspace.

The algorithms for the nonsymmetric eigenproblem are normwise backward stable: they compute the exact
eigenvalues, eigenvectors and invariant subspaces of slightly perturbed matrices Aþ Eð ÞE, where
Ek k � p nð Þ� Ak k. Some of the bounds are stated in terms of Ek k2 and others in terms of Ek kF ; one may

use p nð Þ� for either quantity.

Routines are provided so that, for each (�̂i; v̂i) pair the two values si and sepi, or for a selected subset I of
eigenvalues the values sI and sepI can be obtained, for which the error bounds in Table 2 are true for
sufficiently small Ek k, (which is why they are called asymptotic):

Simple eigenvalue �̂i � �i
		 		 �< Ek k2=si

Eigenvalue cluster �̂I � �I

		 		 �< Ek k2=sI

Eigenvector 	 v̂i; við Þ �< Ek kF=sepi

Invariant subspace 	 ŜI ; SI

� �
�< Ek kF=sepI

Table 2
Asymptotic error bounds for the nonsymmetric eigenproblem

If the problem is ill-conditioned, the asymptotic bounds may only hold for extremely small Ek k. The
global error bounds of Table 3 are guaranteed to hold for all Ek kF < s� sep=4:

Simple eigenvalue �̂i � �i
		 		 � n Ek k2=si Holds for all E

Eigenvalue cluster �̂I � �I

		 		 � 2 Ek k2=sI
Requires Ek kF < sI � sepI=4

Eigenvector 	 v̂i; við Þ � arctan 2 Ek kF= sepi � 4 Ek kF=si
� �� �

Requires Ek kF < si � sepi=4

Invariant subspace 	 ŜI ; SI

� �
� arctan 2 Ek kF= sepI � 4 Ek kF=sI

� �� � Requires Ek kF < sI � sepI=4

Table 3
Global error bounds for the nonsymmetric eigenproblem

2.14.6 Balancing and condition for the nonsymmetric eigenproblem

There are two preprocessing steps one may perform on a matrix A in order to make its eigenproblem
easier. The first is permutation, or reordering the rows and columns to make A more nearly upper

triangular (closer to Schur form): A0 ¼ PAPT, where P is a permutation matrix. If A0 is permutable to

Introduction – F08 NAG Library Manual

F08.20 Mark 24

upper triangular form (or close to it), then no floating point operations (or very few) are needed to reduce it
to Schur form. The second is scaling by a diagonal matrix D to make the rows and columns of A0 more

nearly equal in norm: A00 ¼ DA0D�1. Scaling can make the matrix norm smaller with respect to the
eigenvalues, and so possibly reduce the inaccuracy contributed by roundoff (see Chapter 11 of Wilkinson
and Reinsch (1971)). We refer to these two operations as balancing.

Permuting has no effect on the condition numbers or their interpretation as described previously. Scaling,
however, does change their interpretation and further details can be found in Anderson et al. (1999).

2.14.7 The generalized nonsymmetric eigenvalue problem

The algorithms for the generalized nonsymmetric eigenvalue problem are normwise backward stable: they
compute the exact eigenvalues (as the pairs �; �ð Þ), eigenvectors and deflating subspaces of slightly
perturbed pairs Aþ E;Bþ Fð Þ, where

E;Fð Þk kF � p nð Þ� A;Bð Þk kF .

Asymptotic and global error bounds can be obtained, which are generalizations of those given in Tables 2
and 3. See Section 4.11 of Anderson et al. (1999) for details. Routines are provided to compute estimates
of reciprocal conditions numbers for eigenvalues and eigenspaces.

2.14.8 Balancing the generalized eigenvalue problem

As with the standard nonsymmetric eigenvalue problem, there are two preprocessing steps one may
perform on a matrix pair A;Bð Þ in order to make its eigenproblem easier; permutation and scaling, which
together are referred to as balancing, as indicated in the following two steps.

1. The balancing routine first attempts to permute A and B to block upper triangular form by a similarity
transformation:

PAPT ¼ F ¼
F11 F12 F13

F22 F23

F33

0
@

1
A,

PBPT ¼ G ¼
G11 G12 G13

G22 G23

G33

0
@

1
A,

where P is a permutation matrix, F11, F33, G11 and G33 are upper triangular. Then the diagonal
elements of the matrix F11; G11ð Þ and G33; H33ð Þ are generalized eigenvalues of A;Bð Þ. The rest of
the generalized eigenvalues are given by the matrix pair F22; G22ð Þ. Subsequent operations to
compute the eigenvalues of A;Bð Þ need only be applied to the matrix F22; G22ð Þ; this can save a
significant amount of work if F22; G22ð Þ is smaller than the original matrix pair A;Bð Þ. If no suitable
permutation exists (as is often the case), then there is no gain in efficiency or accuracy.

2. The balancing routine applies a diagonal similarity transformation to F;Gð Þ, to make the rows and
columns of F22; G22ð Þ as close as possible in the norm:

DFD�1 ¼
I

D22

I

0
@

1
A F11 F12 F13

F22 F23

F33

0
@

1
A I

D�1
22

I

0
@

1
A,

DGD�1 ¼
I

D22

I

0
@

1
A G11 G12 G13

G22 G23

G33

0
@

1
A I

D�1
22

I

0
@

1
A.

This transformation usually improves the accuracy of computed generalized eigenvalues and
eigenvectors. However, there are exceptional occasions when this transformation increases the norm
of the pencil; in this case accuracy could be lower with diagonal balancing.See Anderson et al. (1999)
for further details.

F08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – F08

Mark 24 F08.21

2.14.9 Other problems

Error bounds for other problems such as the generalized linear least squares problem and generalized
singular value decomposition can be found in Anderson et al. (1999).

2.15 Block Partitioned Algorithms

A number of the routines in this chapter use what is termed a block partitioned algorithm. This means that
at each major step of the algorithm a block of rows or columns is updated, and much of the computation is
performed by matrix-matrix operations on these blocks. The matrix-matrix operations are performed by
calls to the Level 3 BLAS (see Chapter F06), which are the key to achieving high performance on many
modern computers. In the case of the QR algorithm for reducing an upper Hessenberg matrix to Schur
form, a multishift strategy is used in order to improve performance. See Golub and Van Loan (1996) or
Anderson et al. (1999) for more about block partitioned algorithms and the multishift strategy.

The performance of a block partitioned algorithm varies to some extent with the block size – that is, the
number of rows or columns per block. This is a machine-dependent parameter, which is set to a suitable
value when the library is implemented on each range of machines. You do not normally need to be aware
of what value is being used. Different block sizes may be used for different routines. Values in the range
16 to 64 are typical.

On more conventional machines there is often no advantage from using a block partitioned algorithm, and
then the routines use an unblocked algorithm (effectively a block size of 1), relying solely on calls to the
Level 2 BLAS (see Chapter F06 again).

The only situation in which you need some awareness of the block size is when it affects the amount of
workspace to be supplied to a particular routine. This is discussed in Section 3.4.3.

3 Recommendations on Choice and Use of Available Routines

3.1 Available Routines

The tables in the following sub-sections show the routines which are provided for performing different
computations on different types of matrices. Each entry in the table gives the NAG routine name and the
LAPACK double precision name (see Section 3.2).

Black box (or driver) routines are provided for the solution of most problems. In a number of cases there
are simple drivers, which just return the solution to the problem, as well as expert drivers, which return
additional information, such as condition number estimates, and may offer additional facilities such as
balancing. The following sub-sections give tables for the driver routines.

3.1.1 Driver routines

3.1.1.1 Linear least squares problems (LLS)

Operation real complex

solve LLS using QR or LQ factorization
solve LLS using complete orthogonal factorization
solve LLS using SVD
solve LLS using divide-and-conquer SVD

F08AAF (DGELS)
F08BAF (DGELSY)
F08KAF (DGELSS)
F08KCF (DGELSD)

F08ANF (ZGELS)
F08BNF (ZGELSY)
F08KNF (ZGELSS)
F08KQF (ZGELSD)

3.1.1.2 Generalized linear least squares problems (LSE and GLM)

Operation real complex

solve LSE problem using GRQ
solve GLM problem using GQR

F08ZAF (DGGLSE)
F08ZBF (DGGGLM)

F08ZNF (ZGGLSE)
F08ZPF (ZGGGLM)

Introduction – F08 NAG Library Manual

F08.22 Mark 24

3.1.1.3 Symmetric eigenvalue problems (SEP)

Function and storage scheme real complex

simple driver
divide-and-conquer driver
expert driver
RRR driver

F08FAF (DSYEV)
F08FCF (DSYEVD)
F08FBF (DSYEVX)
F08FDF (DSYEVR)

F08FNF (ZHEEV)
F08FQF (ZHEEVD)
F08FPF (ZHEEVX)
F08FRF (ZHEEVR)

packed storage
simple driver
divide-and-conquer driver
expert driver

F08GAF (DSPEV)
F08GCF (DSPEVD)
F08GBF (DSPEVX)

F08GNF (ZHPEV)
F08GQF (ZHPEVD)
F08GPF (ZHPEVX)

band matrix
simple driver
divide-and-conquer driver
expert driver

F08HAF (DSBEV)
F08HCF (DSBEVD)
F08HBF (DSBEVX)

F08HNF (ZHBEV)
F08HQF (ZHBEVD)
F08HPF (ZHBEVX)

tridiagonal matrix
simple driver
divide-and-conquer driver
expert driver
RRR driver

F08JAF (DSTEV)
F08JCF (DSTEVD)
F08JBF (DSTEVX)
F08JDF (DSTEVR)

3.1.1.4 Nonsymmetric eigenvalue problem (NEP)

Function and storage scheme real complex

simple driver for Schur factorization
expert driver for Schur factorization
simple driver for eigenvalues/vectors
expert driver for eigenvalues/vectors

F08PAF (DGEES)
F08PBF (DGEESX)
F08NAF (DGEEV)
F08NBF (DGEEVX)

F08PNF (ZGEES)
F08PPF (ZGEESX)
F08NNF (ZGEEV)
F08NPF (ZGEEVX)

3.1.1.5 Singular value decomposition (SVD)

Function and storage scheme real complex

simple driver
divide-and-conquer driver
simple driver for one-sided Jacobi SVD
expert driver for one-sided Jacobi SVD

F08KBF (DGESVD)
F08KDF (DGESDD)
F08KJF (DGESVJ)
F08KHF (DGEJSV)

F08KPF (ZGESVD)
F08KRF (ZGESDD)

3.1.1.6 Generalized symmetric definite eigenvalue problems (GSEP)

Function and storage scheme real complex

simple driver
divide-and-conquer driver
expert driver

F08SAF (DSYGV)
F08SCF (DSYGVD)
F08SBF (DSYGVX)

F08SNF (ZHEGV)
F08SQF (ZHEGVD)
F08SPF (ZHEGVX)

packed storage
simple driver
divide-and-conquer driver
expert driver

F08TAF (DSPGV)
F08TCF (DSPGVD)
F08TBF (DSPGVX)

F08TNF (ZHPGV)
F08TQF (ZHPGVD)
F08TPF (ZHPGVX)

F08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – F08

Mark 24 F08.23

band matrix
simple driver
divide-and-conquer driver
expert driver

F08UAF (DSBGV)
F08UCF (DSBGVD)
F08UBF (DSBGVX)

F08UNF (ZHBGV)
F08UQF (ZHBGVD)
F08UPF (ZHBGVX)

3.1.1.7 Generalized nonsymmetric eigenvalue problem (GNEP)

Function and storage scheme real complex

simple driver for Schur factorization
expert driver for Schur factorization
simple driver for eigenvalues/vectors
expert driver for eigenvalues/vectors

F08XAF (DGGES)
F08XBF (DGGESX)
F08WAF (DGGEV)
F08WBF (DGGEVX)

F08XNF (ZGGES)
F08XPF (ZGGESX)
F08WNF (ZGGEV)
F08WPF (ZGGEVX)

3.1.1.8 Generalized singular value decomposition (GSVD)

Function and storage scheme real complex

singular values/vectors F08VAF (DGGSVD) F08VNF (ZGGSVD)

3.1.2 Computational routines

It is possible to solve problems by calling two or more routines in sequence. Some common sequences of
routines are indicated in the tables in the following sub-sections; an asterisk () against a routine name
means that the sequence of calls is illustrated in the example program for that routine.

3.1.2.1 Orthogonal factorizations

Routines are provided for QR factorization (with and without column pivoting), and for LQ, QL and RQ
factorizations (without pivoting only), of a general real or complex rectangular matrix. A routine is also
provided for the RQ factorization of a real or complex upper trapezoidal matrix. (LAPACK refers to this
as the RZ factorization.)

The factorization routines do not form the matrix Q explicitly, but represent it as a product of elementary
reflectors (see Section 3.3.6). Additional routines are provided to generate all or part of Q explicitly if it is
required, or to apply Q in its factored form to another matrix (specifically to compute one of the matrix

products QC, QTC, CQ or CQT with QT replaced by QH if C and Q are complex).

Factorize
without
pivoting

Factorize with
pivoting

Generate
matrix Q

Apply matrix
Q

QR factorization, real matrices F08AEF
(DGEQRF)

F08BFF
(DGEQP3)

F08AFF
(DORGQR)

F08AGF
(DORMQR)

LQ factorization, real matrices F08AHF
(DGELQF)

F08AJF
(DORGLQ)

F08AKF
(DORMLQ)

QL factorization, real matrices F08CEF
(DGEQLF)

F08CFF
(DORGQL)

F08CGF
(DORMQL)

RQ factorization, real matrices F08CHF
(DGERQF)

F08CJF
(DORGRQ)

F08CKF
(DORMRQ)

RQ factorization, real upper trapezoidal matrices F08BHF
(DTZRZF)

F08BKF
(DORMRZ)

QR factorization, complex matrices F08ASF
(ZGEQRF)

F08BTF
(ZGEQP3)

F08ATF
(ZUNGQR)

F08AUF
(ZUNMQR)

LQ factorization, complex matrices F08AVF
(ZGELQF)

F08AWF
(ZUNGLQ)

F08AXF
(ZUNMLQ)

QL factorization, complex matrices F08CSF
(ZGEQLF)

F08CTF
(ZUNGQL)

F08CUF
(ZUNMQL)

RQ factorization, complex matrices F08CVF
(ZGERQF)

F08CWF
(ZUNGRQ)

F08CXF
(ZUNMRQ)

Introduction – F08 NAG Library Manual

F08.24 Mark 24

RQ factorization, complex upper trapezoidal matrices F08BVF
(ZTZRZF)

F08BXF
(ZUNMRZ)

To solve linear least squares problems, as described in Sections 2.2.1 or 2.2.3, routines based on the QR
factorization can be used:

real data, full-rank problem F08AEF*, F06YJF, F08AGF
complex data, full-rank problem F08ASF*, F06ZJF, F08AUF
real data, rank-deficient problem F08BFF*, F06YJF, F08AGF
complex data, rank-deficient problem F08BTF*, F06ZJF, F08AUF

To find the minimum norm solution of under-determined systems of linear equations, as described in
Section 2.2.2, routines based on the LQ factorization can be used:

real data, full-rank problem F08AHF*, F06YJF, F08AKF
complex data, full-rank problem F08AVF*, F06ZJF, F08AXF

3.1.2.2 Generalized orthogonal factorizations

Routines are provided for the generalized QR and RQ factorizations of real and complex matrix pairs.

Factorize

Generalized QR factorization, real matrices F08ZEF (DGGQRF)

Generalized RQ factorization, real matrices F08ZFF (DGGRQF)

Generalized QR factorization, complex matrices F08ZSF (ZGGQRF)

Generalized RQ factorization, complex matrices F08ZTF (ZGGRQF)

3.1.2.3 Singular value problems

Routines are provided to reduce a general real or complex rectangular matrix A to real bidiagonal form B

by an orthogonal transformation A ¼ QBPT (or by a unitary transformation A ¼ QBPH if A is complex).
Different routines allow a full matrix A to be stored conventionally (see Section 3.3.1), or a band matrix to
use band storage (see Section 3.3.4 in the F07 Chapter Introduction).

The routines for reducing full matrices do not form the matrix Q or P explicitly; additional routines are
provided to generate all or part of them, or to apply them to another matrix, as with the routines for
orthogonal factorizations. Explicit generation of Q or P is required before using the bidiagonal QR
algorithm to compute left or right singular vectors of A.

The routines for reducing band matrices have options to generate Q or P if required.

Further routines are provided to compute all or part of the singular value decomposition of a real
bidiagonal matrix; the same routines can be used to compute the singular value decomposition of a real or
complex matrix that has been reduced to bidiagonal form.

Reduce to
bidiagonal
form

Generate
matrix Q
or PT

Apply
matrix Q
or P

Reduce band
matrix to
bidiagonal
form

SVD of
bidiagonal
form (QR
algorithm)

SVD of
bidiagonal
form (divide
and conquer)

real matrices F08KEF
(DGEBRD)

F08KFF
(DORGBR)

F08KGF
(DORMBR)

F08LEF
(DGBBRD)

F08MEF
(DBDSQR)

F08MDF
(DBDSDC)

complex matrices F08KSF
(ZGEBRD)

F08KTF
(ZUNGBR)

F08KUF
(ZUNMBR)

F08LSF
(ZGBBRD)

F08MSF
(ZBDSQR)

Given the singular values, F08FLF (DDISNA) is provided to compute the reciprocal condition numbers for
the left or right singular vectors of a real or complex matrix.

To compute the singular values and vectors of a rectangular matrix, as described in Section 2.3, use the
following sequence of calls:

F08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – F08

Mark 24 F08.25

Rectangular matrix (standard storage)

real matrix, singular values and vectors F08KEF, F08KFF*, F08MEF
complex matrix, singular values and vectors F08KSF, F08KTF*, F08MSF

Rectangular matrix (banded)

real matrix, singular values and vectors F08LEF, F08KFF, F08MEF
complex matrix, singular values and vectors F08LSF, F08KTF, F08MSF

To use the singular value decomposition to solve a linear least squares problem, as described in
Section 2.4, the following routines are required:

real data F06YAF, F08KEF, F08KFF,
F08KGF, F08MEF

complex data F06ZAF, F08KSF, F08KTF,
F08KUF, F08MSF

3.1.2.4 Generalized singular value decomposition

Routines are provided to compute the generalized SVD of a real or complex matrix pair A;Bð Þ in upper
trapezoidal form. Routines are also provided to reduce a general real or complex matrix pair to the
required upper trapezoidal form.

Reduce to trapezoidal form Generalized SVD of trapezoidal form

real matrices F08VEF (DGGSVP) F08YEF (DTGSJA)

complex matrices F08VSF (ZGGSVP) F08YSF (ZTGSJA)

3.1.2.5 Symmetric eigenvalue problems

Routines are provided to reduce a real symmetric or complex Hermitian matrix A to real tridiagonal form

T by an orthogonal similarity transformation A ¼ QTQT (or by a unitary transformation A ¼ QTQH if A
is complex). Different routines allow a full matrix A to be stored conventionally (see Section 3.3.1 in the
F07 Chapter Introduction) or in packed storage (see Section 3.3.2 in the F07 Chapter Introduction); or a
band matrix to use band storage (see Section 3.3.4 in the F07 Chapter Introduction).

The routines for reducing full matrices do not form the matrix Q explicitly; additional routines are
provided to generate Q, or to apply it to another matrix, as with the routines for orthogonal factorizations.
Explicit generation of Q is required before using the QR algorithm to find all the eigenvectors of A;
application of Q to another matrix is required after eigenvectors of T have been found by inverse iteration,
in order to transform them to eigenvectors of A.

The routines for reducing band matrices have an option to generate Q if required.

Reduce to
tridiagonal
form

Generate
matrix Q

Apply matrix
Q

real symmetric matrices F08FEF
(DSYTRD)

F08FFF
(DORGTR)

F08FGF
(DORMTR)

real symmetric matrices (packed storage) F08GEF
(DSPTRD)

F08GFF
(DOPGTR)

F08GGF
(DOPMTR)

real symmetric band matrices F08HEF
(DSBTRD)

complex Hermitian matrices F08FSF
(ZHETRD)

F08FTF
(ZUNGTR)

F08FUF
(ZUNMTR)

Introduction – F08 NAG Library Manual

F08.26 Mark 24

complex Hermitian matrices (packed storage) F08GSF
(ZHPTRD)

F08GTF
(ZUPGTR)

F08GUF
(ZUPMTR)

complex Hermitian band matrices F08HSF
(ZHBTRD)

Given the eigenvalues, F08FLF (DDISNA) is provided to compute the reciprocal condition numbers for
the eigenvectors of a real symmetric or complex Hermitian matrix.

A variety of routines are provided to compute eigenvalues and eigenvectors of the real symmetric
tridiagonal matrix T , some computing all eigenvalues and eigenvectors, some computing selected
eigenvalues and eigenvectors. The same routines can be used to compute eigenvalues and eigenvectors of
a real symmetric or complex Hermitian matrix which has been reduced to tridiagonal form.

Eigenvalues and eigenvectors of real symmetric tridiagonal matrices:

The original (non-reduced) matrix is Real or Complex Hermitian

all eigenvalues (root-free QR algorithm) F08JFF
all eigenvalues (root-free QR algorithm called by divide-and-conquer) F08JCF or F08JHF
all eigenvalues (RRR) F08JLF
selected eigenvalues (bisection) F08JJF

The original (non-reduced) matrix is Real

all eigenvalues and eigenvectors (QR algorithm) F08JEF
all eigenvalues and eigenvectors (divide-and-conquer) F08JCF or F08JHF
all eigenvalues and eigenvectors (RRR) F08JLF
all eigenvalues and eigenvectors (positive definite case) F08JGF
selected eigenvectors (inverse iteration) F08JKF

The original (non-reduced) matrix is Complex Hermitian

all eigenvalues and eigenvectors (QR algorithm) F08JSF
all eigenvalues and eigenvectors (divide and conquer) F08JVF
all eigenvalues and eigenvectors (RRR) F08JYF
all eigenvalues and eigenvectors (positive definite case) F08JUF
selected eigenvectors (inverse iteration) F08JXF

The following sequences of calls may be used to compute various combinations of eigenvalues and
eigenvectors, as described in Section 2.7.

Sequences for computing eigenvalues and eigenvectors

Real Symmetric matrix (standard storage)

all eigenvalues and eigenvectors (using divide-and-conquer) F08FCF
all eigenvalues and eigenvectors (using QR algorithm) F08FEF, F08FFF*, F08JEF
all eigenvalues and eigenvectors (RRR) F08FEF, F08FGF, F08JLF
selected eigenvalues and eigenvectors (bisection and inverse iteration) F08FEF, F08FGF, F08JJF,

F08JKF*

Real Symmetric matrix (packed storage)

all eigenvalues and eigenvectors (using divide-and-conquer) F08GCF
all eigenvalues and eigenvectors (using QR algorithm) F08GEF, F08GFF*, F08JEF
all eigenvalues and eigenvectors (RRR) F08GEF, F08GGF, F08JLF
selected eigenvalues and eigenvectors (bisection and inverse iteration) F08GEF, F08GGF, F08JJF,

F08JKF*

Real Symmetric banded matrix

all eigenvalues and eigenvectors (using divide-and-conquer) F08HCF
all eigenvalues and eigenvectors (using QR algorithm) F08HEF*, F08JEF

F08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – F08

Mark 24 F08.27

Complex Hermitian matrix (standard storage)

all eigenvalues and eigenvectors (using divide-and-conquer) F08FQF
all eigenvalues and eigenvectors (using QR algorithm) F08FSF, F08FTF*, F08JSF
all eigenvalues and eigenvectors (RRR) F08FSF, F08FUF, F08JYF
selected eigenvalues and eigenvectors (bisection and inverse iteration) F08FSF, F08FUF, F08JJF,

F08JXF*

Complex Hermitian matrix (packed storage)

all eigenvalues and eigenvectors (using divide-and-conquer) F08GQF
all eigenvalues and eigenvectors (using QR algorithm) F08GSF, F08GTF*, F08JSF
all eigenvalues and eigenvectors (RRR) F08GSF, F08GUF and F08JYF
selected eigenvalues and eigenvectors (bisection and inverse iteration) F08GSF, F08GUF, F08JJF,

F08JXF*

Complex Hermitian banded matrix

all eigenvalues and eigenvectors (using divide-and-conquer) F08HQF
all eigenvalues and eigenvectors (using QR algorithm) F08HSF*, F08JSF

3.1.2.6 Generalized symmetric-definite eigenvalue problems

Routines are provided for reducing each of the problems Ax ¼ �Bx, ABx ¼ �x or BAx ¼ �x to an
equivalent standard eigenvalue problem Cy ¼ �y. Different routines allow the matrices to be stored either
conventionally or in packed storage. The positive definite matrix B must first be factorized using a routine
from Chapter F07. There is also a routine which reduces the problem Ax ¼ �Bx where A and B are
banded, to an equivalent banded standard eigenvalue problem; this uses a split Cholesky factorization for
which a routine in Chapter F08 is provided.

Reduce to standard
problem

Reduce to standard
problem (packed
storage)

Reduce to standard
problem (band
matrices)

real symmetric matrices F08SEF (DSYGST) F08TEF (DSPGST) F08UEF (DSBGST)

complex Hermitian matrices F08SSF (ZHEGST) F08TSF (ZHPGST) F08USF (ZHBGST)

The equivalent standard problem can then be solved using the routines discussed in Section 3.1.2.5. For
example, to compute all the eigenvalues, the following routines must be called:

real symmetric-definite problem F07FDF, F08SEF*, F08FEF,
F08JFF

real symmetric-definite problem, packed storage F07GDF, F08TEF*, F08GEF,
F08JFF

real symmetric-definite banded problem F08UFF*, F08UEF*, F08HEF,
F08JFF

complex Hermitian-definite problem F07FRF, F08SSF*, F08FSF,
F08JFF

complex Hermitian-definite problem, packed storage F07GRF, F08TSF*, F08GSF,
F08JFF

complex Hermitian-definite banded problem F08UTF*, F08USF*, F08HSF,
F08JFF

If eigenvectors are computed, the eigenvectors of the equivalent standard problem must be transformed
back to those of the original generalized problem, as indicated in Section 2.8; routines from Chapter F06
may be used for this.

Introduction – F08 NAG Library Manual

F08.28 Mark 24

3.1.2.7 Nonsymmetric eigenvalue problems

Routines are provided to reduce a general real or complex matrix A to upper Hessenberg form H by an

orthogonal similarity transformation A ¼ QHQT (or by a unitary transformation A ¼ QHQH if A is
complex).

These routines do not form the matrix Q explicitly; additional routines are provided to generate Q, or to
apply it to another matrix, as with the routines for orthogonal factorizations. Explicit generation of Q is
required before using the QR algorithm on H to compute the Schur vectors; application of Q to another
matrix is needed after eigenvectors of H have been computed by inverse iteration, in order to transform
them to eigenvectors of A.

Routines are also provided to balance the matrix before reducing it to Hessenberg form, as described in
Section 2.14.6. Companion routines are required to transform Schur vectors or eigenvectors of the
balanced matrix to those of the original matrix.

Reduce to
Hessenberg
form

Generate
matrix Q

Apply matrix
Q

Balance Back-
transform
vectors after
balancing

real matrices F08NEF
(DGEHRD)

F08NFF
(DORGHR)

F08NGF
(DORMHR)

F08NHF
(DGEBAL)

F08NJF
(DGEBAK)

complex matrices F08NSF
(ZGEHRD)

F08NTF
(ZUNGHR)

F08NUF
(ZUNMHR)

F08NVF
(ZGEBAL)

F08NWF
(ZGEBAK)

Routines are provided to compute the eigenvalues and all or part of the Schur factorization of an upper
Hessenberg matrix. Eigenvectors may be computed either from the upper Hessenberg form by inverse
iteration, or from the Schur form by back-substitution; these approaches are equally satisfactory for
computing individual eigenvectors, but the latter may provide a more accurate basis for a subspace
spanned by several eigenvectors.

Additional routines estimate the sensitivities of computed eigenvalues and eigenvectors, as discussed in
Section 2.14.5.

Eigenvalues and
Schur
factorization (QR
algorithm)

Eigenvectors
from Hessenberg
form (inverse
iteration)

Eigenvectors
from Schur
factorization

Sensitivities of
eigenvalues and
eigenvectors

real matrices F08PEF
(DHSEQR)

F08PKF
(DHSEIN)

F08QKF
(DTREVC)

F08QLF
(DTRSNA)

complex matrices F08PSF
(ZHSEQR)

F08PXF
(ZHSEIN)

F08QXF
(ZTREVC)

F08QYF
(ZTRSNA)

Finally routines are provided for reordering the Schur factorization, so that eigenvalues appear in any
desired order on the diagonal of the Schur form. The routines F08QFF (DTREXC) and F08QTF
(ZTREXC) simply swap two diagonal elements or blocks, and may need to be called repeatedly to achieve
a desired order. The routines F08QGF (DTRSEN) and F08QUF (ZTRSEN) perform the whole reordering
process for the important special case where a specified cluster of eigenvalues is to appear at the top of the
Schur form; if the Schur vectors are reordered at the same time, they yield an orthonormal basis for the
invariant subspace corresponding to the specified cluster of eigenvalues. These routines can also compute
the sensitivities of the cluster of eigenvalues and the invariant subspace.

F08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – F08

Mark 24 F08.29

Reorder Schur factorization Reorder Schur factorization, find
basis for invariant subspace and
estimate sensitivities

real matrices F08QFF (DTREXC) F08QGF (DTRSEN)

complex matrices F08QTF (ZTREXC) F08QUF (ZTRSEN)

The following sequences of calls may be used to compute various combinations of eigenvalues, Schur
vectors and eigenvectors, as described in Section 2.11:

real matrix, all eigenvalues and Schur factorization F08NEF, F08NFF*, F08PEF
real matrix, all eigenvalues and selected eigenvectors F08NEF, F08NGF, F08PEF,

F08PKF
real matrix, all eigenvalues and eigenvectors (with balancing) F08NHF*, F08NEF, F08NFF,

F08NJF, F08PEF, F08PKF
complex matrix, all eigenvalues and Schur factorization F08NSF, F08NTF*, F08PSF
complex matrix, all eigenvalues and selected eigenvectors F08NSF, F08NUF, F08PSF,

F08PXF*
complex matrix, all eigenvalues and eigenvectors (with balancing) F08NVF*, F08NSF, F08NTF,

F08NWF, F08PSF, F08PXF

3.1.2.8 Generalized nonsymmetric eigenvalue problems

Routines are provided to reduce a real or complex matrix pair A1; R1ð Þ, where A1 is general and R1 is

upper triangular, to generalized upper Hessenberg form by orthogonal transformations A1 ¼ Q1HZ
T
1 ,

R1 ¼ Q1RZ
T
1 , (or by unitary transformations A1 ¼ Q1HZ

H
1 , R ¼ Q1R1Z

H
1 , in the complex case). These

routines can optionally return Q1 and/or Z1. Note that to transform a general matrix pair A;Bð Þ to the

form A1; R1ð Þ a QR factorization of B (B ¼ ~QR1) should first be performed and the matrix A1 obtained

as A1 ¼ ~QTA (see Section 3.1.2.1 above).

Routines are also provided to balance a general matrix pair before reducing it to generalized Hessenberg
form, as described in Section 2.14.8. Companion routines are provided to transform vectors of the
balanced pair to those of the original matrix pair.

Reduce to generalized
Hessenberg form

Balance Backtransform vectors
after balancing

real matrices F08WEF (DGGHRD) F08WHF (DGGBAL) F08WJF (DGGBAK)

complex matrices F08WSF (ZGGHRD) F08WVF (ZGGBAL) F08WWF (ZGGBAK)

Routines are provided to compute the eigenvalues (as the pairs �; �ð Þ) and all or part of the generalized
Schur factorization of a generalized upper Hessenberg matrix pair. Eigenvectors may be computed from
the generalized Schur form by back-substitution.

Additional routines estimate the sensitivities of computed eigenvalues and eigenvectors.

Eigenvalues and
generalized Schur
factorization (QZ
algorithm)

Eigenvectors from
generalized Schur
factorization

Sensitivities of
eigenvalues and
eigenvectors

real matrices F08XEF (DHGEQZ) F08YKF (DTGEVC) F08YLF (DTGSNA)

complex matrices F08XSF (ZHGEQZ) F08YXF (ZTGEVC) F08YYF (ZTGSNA)

Introduction – F08 NAG Library Manual

F08.30 Mark 24

Finally, routines are provided for reordering the generalized Schur factorization so that eigenvalues appear
in any desired order on the diagonal of the generalized Schur form. F08YFF (DTGEXC) and F08YTF
(ZTGEXC) simply swap two diagonal elements or blocks, and may need to be called repeatedly to achieve
a desired order. F08YGF (DTGSEN) and F08YUF (ZTGSEN) perform the whole reordering process for
the important special case where a specified cluster of eigenvalues is to appear at the top of the generalized
Schur form; if the Schur vectors are reordered at the same time, they yield an orthonormal basis for the
deflating subspace corresponding to the specified cluster of eigenvalues. These routines can also compute
the sensitivities of the cluster of eigenvalues and the deflating subspace.

Reorder generalized Schur
factorization

Reorder generalized Schur
factorization, find basis for deflating
subspace and estimate sensitivites

real matrices F08YFF (DTGEXC) F08YGF (DTGSEN)

complex matrices F08YTF (ZTGEXC) F08YUF (ZTGSEN)

The following sequences of calls may be used to compute various combinations of eigenvalues,
generalized Schur vectors and eigenvectors

real matrix pair, all eigenvalues (with balancing) F08AEF, F08AGF, F08WEF,
F08WHF, F08XEF*

real matrix pair, all eigenvalues and generalized Schur factorization F08AEF, F08AFF, F08AGF,
F08WEF, F08XEF

real matrix pair, all eigenvalues and eigenvectors (with balancing) F06QFF, F06QHF, F08AEF,
F08AFF, F08AGF, F08WEF,
F08WHF, F08XEF, F08YKF*,
F08WJF

complex matrix pair, all eigenvalues (with balancing) F08ASF, F08AUF, F08WSF,
F08WVF, F08XSF*

complex matrix pair, all eigenvalues and generalized Schur factorization F08ASF, F08ATF, F08AUF,
F08WSF, F08XSF

complex matrix pair, all eigenvalues and eigenvectors (with balancing) F06TFF, F06THF, F08ASF,
F08ATF, F08AUF, F08WSF,
F08WVF, F08XSF, F08YXF*,
F08WWF

3.1.2.9 The Sylvester equation and the generalized Sylvester equation

Routines are provided to solve the real or complex Sylvester equation AX �XB ¼ C, where A and B are
upper quasi-triangular if real, or upper triangular if complex. To solve the general form of the Sylvester
equation in which A and B are general square matrices, A and B must be reduced to upper (quasi-)
triangular form by the Schur factorization, using routines described in Section 3.1.2.7. For more details,
see the documents for the routines listed below.

Solve the Sylvester equation

real matrices F08QHF (DTRSYL)

complex matrices F08QVF (ZTRSYL)

Routines are also provided to solve the real or complex generalized Sylvester equations

AR� LB ¼ C, DR� LE ¼ F ,

where the pairs A;Dð Þ and B;Eð Þ are in generalized Schur form. To solve the general form of the
generalized Sylvester equation in which A;Dð Þ and B;Eð Þ are general matrix pairs, A;Dð Þ and B;Eð Þ
must first be reduced to generalized Schur form.

F08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – F08

Mark 24 F08.31

Solve the generalized Sylvester equation

real matrices F08YHF (DTGSYL)

complex matrices F08YVF (ZTGSYL)

3.2 NAG Names and LAPACK Names

As well as the NAG routine name (beginning F08), the tables in Section 3.1 show the LAPACK routine
names in double precision.

The routines may be called either by their NAG or LAPACK names. When using the NAG Library, the
double precision form of the LAPACK name must be used (beginning with D- or Z-).

References to Chapter F08 routines in the manual normally include the LAPACK double precision names,
for example F08AEF (DGEQRF). The LAPACK routine names follow a simple scheme (which is similar
to that used for the BLAS in Chapter F06). Each name has the structure XYYZZZ, where the components
have the following meanings:

– the initial letter X indicates the data type (real or complex) and precision:

S – real, single precision (in Fortran 77, REAL)
D – real, double precision (in Fortran 77, DOUBLE PRECISION)
C – complex, single precision (in Fortran 77, COMPLEX)
Z – complex, double precision (in Fortran 77, COMPLEX*16 or DOUBLE COMPLEX)

– the second and third letters YY indicate the type of the matrix A or matrix pair A;Bð Þ (and in some
cases the storage scheme):

BD – bidiagonal
DI – diagonal
GB – general band
GE – general
GG – general pair (B may be triangular)
HG – generalized upper Hessenberg
HS – upper Hessenberg
OP – (real) orthogonal (packed storage)
UP – (complex) unitary (packed storage)
OR – (real) orthogonal
UN – (complex) unitary
PT – symmetric or Hermitian positive definite tridiagonal
SB – (real) symmetric band
HB – (complex) Hermitian band
SP – symmetric (packed storage)
HP – Hermitian (packed storage)
ST – (real) symmetric tridiagonal
SY – symmetric
HE – Hermitian
TG – triangular pair (one may be quasi-triangular)
TR – triangular (or quasi-triangular)

– the last three letters ZZZ indicate the computation performed. For example, QRF is a QR
factorization.

Thus the routine DGEQRF performs a QR factorization of a real general matrix; the corresponding routine
for a complex general matrix is ZGEQRF.

3.3 Matrix Storage Schemes

In this chapter the following storage schemes are used for matrices:

Introduction – F08 NAG Library Manual

F08.32 Mark 24

– conventional storage in a two-dimensional array;

– packed storage for symmetric or Hermitian matrices;

– packed storage for orthogonal or unitary matrices;

– band storage for general, symmetric or Hermitian band matrices;

– storage of bidiagonal, symmetric or Hermitian tridiagonal matrices in two one-dimensional arrays.

These storage schemes are compatible with those used in Chapters F06 and F07, but different schemes for
packed, band and tridiagonal storage are used in a few older routines in Chapters F01, F02, F03 and F04.

3.3.1 Conventional storage

Please see Section 3.3.1 in the F07 Chapter Introduction for full details.

3.3.2 Packed storage

Please see Section 3.3.2 in the F07 Chapter Introduction for full details.

3.3.3 Band storage

Please see Section 3.3.4 in the F07 Chapter Introduction for full details.

3.3.4 Tridiagonal and bidiagonal matrices

A symmetric tridiagonal or bidiagonal matrix is stored in two one-dimensional arrays, one of length n
containing the diagonal elements, and one of length n� 1 containing the off-diagonal elements. (Older
routines in Chapter F02 store the off-diagonal elements in elements 2 : n of a vector of length n.)

3.3.5 Real diagonal elements of complex matrices

Please see Section 3.3.6 in the F07 Chapter Introduction for full details.

3.3.6 Representation of orthogonal or unitary matrices

A real orthogonal or complex unitary matrix (usually denoted Q) is often represented in the NAG Library
as a product of elementary reflectors – also referred to as elementary Householder matrices (usually
denoted Hi). For example,

Q ¼ H1H2 � � �Hk.

You need not be aware of the details, because routines are provided to work with this representation, either

to generate all or part of Q explicitly, or to multiply a given matrix by Q or QT (QH in the complex case)
without forming Q explicitly.

Nevertheless, the following further details may occasionally be useful.

An elementary reflector (or elementary Householder matrix) H of order n is a unitary matrix of the form

H ¼ I � �vvH ð4Þ

where � is a scalar, and v is an n-element vector, with �j j2 vk k2
2 ¼ 2� Re �ð Þ; v is often referred to as the

Householder vector. Often v has several leading or trailing zero elements, but for the purpose of this
discussion assume that H has no such special structure.

There is some redundancy in the representation 4ð Þ, which can be removed in various ways. The
representation used in Chapter F08 and in LAPACK (which differs from those used in some of the routines
in Chapters F01, F02, F04 and F06) sets v1 ¼ 1; hence v1 need not be stored. In real arithmetic,
1 � � � 2, except that � ¼ 0 implies H ¼ I.

In complex arithmetic, � may be complex, and satisfies 1 � Re �ð Þ � 2 and � � 1j j � 1. Thus a complex
H is not Hermitian (as it is in other representations), but it is unitary, which is the important property. The
advantage of allowing � to be complex is that, given an arbitrary complex vector x;H can be computed so
that

F08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – F08

Mark 24 F08.33

HHx ¼ � 1; 0; . . . ; 0ð ÞT

with real �. This is useful, for example, when reducing a complex Hermitian matrix to real symmetric
tridiagonal form, or a complex rectangular matrix to real bidiagonal form.

3.4 Parameter Conventions

3.4.1 Option parameters

Most routines in this chapter have one or more option parameters, of type CHARACTER. The
descriptions in Section 5 of the routine documents refer only to upper case values (for example
UPLO ¼ U or UPLO ¼ L); however in every case, the corresponding lower case characters may be
supplied (with the same meaning). Any other value is illegal.

A longer character string can be passed as the actual parameter, making the calling program more readable,
but only the first character is significant. (This is a feature of Fortran 77.) For example:

CALL SSYTRD (’Upper’,...)

3.4.2 Problem dimensions

It is permissible for the problem dimensions (for example, M or N) to be passed as zero, in which case the
computation (or part of it) is skipped. Negative dimensions are regarded as an error.

3.4.3 Length of work arrays

A number of routines implementing block algorithms require workspace sufficient to hold one block of
rows or columns of the matrix if they are to achieve optimum levels of performance – for example,
workspace of size n� nb, where nb is the optimal block size. In such cases, the actual declared length of
the work array must be passed as a separate argument LWORK, which immediately follows WORK in the
argument-list.

The routine will still perform correctly when less workspace is provided: it simply uses the largest block
size allowed by the amount of workspace supplied, as long as this is likely to give better performance than
the unblocked algorithm. On exit, WORKð1Þ contains the minimum value of LWORK which would allow
the routine to use the optimal block size; this value of LWORK can be used for subsequent runs.

If LWORK indicates that there is insufficient workspace to perform the unblocked algorithm, this is
regarded as an illegal value of LWORK, and is treated like any other illegal parameter value (see
Section 3.4.4).

If you are in doubt how much workspace to supply and are concerned to achieve optimal performance,
supply a generous amount (assume a block size of 64, say), and then examine the value of WORKð1Þ on
exit.

3.4.4 Error-handling and the diagnostic parameter INFO

Routines in this chapter do not use the usual NAG Library error-handling mechanism, involving the
parameter IFAIL. Instead they have a diagnostic parameter INFO. (Thus they preserve complete
compatibility with the LAPACK specification.)

Whereas IFAIL is an Input/Output parameter and must be set before calling a routine, INFO is purely an
Output parameter and need not be set before entry.

INFO indicates the success or failure of the computation, as follows:

INFO ¼ 0: successful termination;

INFO > 0: failure in the course of computation, control returned to the calling program.

If the routine document specifies that the routine may terminate with INFO > 0, then it is essential to test
INFO on exit from the routine. (This corresponds to a soft failure in terms of the usual NAG error-
handling terminology.) No error message is output.

Introduction – F08 NAG Library Manual

F08.34 Mark 24

All routines check that input parameters such as N or LDA or option parameters of type CHARACTER
have permitted values. If an illegal value of the ith parameter is detected, INFO is set to �i, a message is
output, and execution of the program is terminated. (This corresponds to a hard failure in the usual NAG
terminology.) In some implementations, especially when linking to vendor versions of LAPACK,
execution of the program may continue, in which case, it is essential to test INFO on exit from the routine.

F08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – F08

Mark 24 F08.35

4 Decision Trees

The following decision trees are principally for the computation (general purpose) routines. See
Section 3.1.1.1 for tables of the driver (black box) routines.

4.1 General Purpose Routines (eigenvalues and eigenvectors)

Tree 1: Real Symmetric Eigenvalue Problems

Are eigenvalues only
required? yes

Are all the eigenvalues
required? yes Is A tridiagonal? yes F08JCF or F08JFF

no

Is A band matrix? yes
(F08HEF and F08JFF)

or F08HCF

no

Is one triangle of A
stored as a linear array? yes

(F08GEF and F08JFF)
or F08GCF

no

(F08FEF and F08JFF) or
F08FAF or F08FCF

no

Is A tridiagonal? yes
F08JJF

no

Is A a band matrix? yes F08HEF and F08JJF

no

Is one triangle of A
stored as a linear array? yes

F08GEF and F08JJF

no

(F08FEF and F08JJF) or
F08FBF

no

Are all eigenvalues and
eigenvectors required? yes Is A tridiagonal? yes

F08JEF, F08JCF,
F08JHF or F08JLF

no

Is A a band matrix? yes
(F08HEF and F08JEF)

or F08HCF

no

Is one triangle of A
stored as a linear array? yes

(F08GEF, F08GFF and
F08JEF) or F08GCF

no

(F08FEF, F08FFF and
F08JEF) or F08FAF or

F08FCF

no

Is A tridiagonal? yes
F08JJF and F08JKF

no

Is one triangle of A
stored as a linear array? yes

F08GEF, F08JJF,
F08JKF and F08GGF

no

(F08FEF, F08JJF,
F08JKF and F08FGF) or

F08FBF

Introduction – F08 NAG Library Manual

F08.36 Mark 24

Tree 2: Real Generalized Symmetric-definite Eigenvalue Problems

Are eigenvalues only
required? yes

Are all the eigenvalues
required? yes

Are A and B band
matrices? yes

F08UFF, F08UEF,
F08HEF and F08JFF

no

Are A and B stored with
one triangle as a linear
array?

yes
F07GDF, F08TEF,

F08GEF and F08JFF

no

F07FDF, F08SEF,
F08FEF and F08JFF

no

Are A and B band
matrices? yes

F08UFF, F08UEF,
F08HEF and F08JJF

no

Are A and B stored with
one triangle as a linear
array?

yes
F07GDF, F08TEF,

F08GEF and F08JJF

no

F07FDF, F08SEF,
F08GEF and F08JJF

no

Are all eigenvalues and
eigenvectors required? yes

Are A and B stored with
one triangle as a linear
array?

yes

F07GDF, F08TEF,
F08GEF, F08GFF,

F08JEF and F06PLF

no

F07FDF, F08SEF,
F08FEF, F08FFF, F08JEF

and F06YJF

no

Are A and B band
matrices? yes

F08UFF, F08UEF,
F08HEF, F08JKF and

F06YJF

no

Are A and B stored with
one triangle as a linear
array?

yes

F07GDF, F08TEF,
F08GEF, F08JJF, F08JKF,

F08GGF and F06PLF

no

F07FDF, F08SEF,
F08FEF, F08JJF, F08JKF,

F08FGF and F06YJF

Note: the routines for band matrices only handle the problem Ax ¼ �Bx; the other routines handle all
three types of problems (Ax ¼ �Bx, ABx ¼ �x or BAx ¼ �x) except that, if the problem is BAx ¼ �x
and eigenvectors are required, F06PHF must be used instead of F06PLF and F06YFF instead of F06YJF.

F08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – F08

Mark 24 F08.37

Tree 3: Real Nonsymmetric Eigenvalue Problems

Are eigenvalues required? yes Is A an upper Hessenberg matrix? yes
F08PEF

no

F08NAF or F08NBF or (F08NHF,
F08NEF and F08PEF)

no

Is the Schur factorization of A
required? yes Is A an upper Hessenberg matrix? yes

F08PEF

no

F08NBF or (F08NEF, F08NFF,
F08PEF or F08NJF)

no

Are all eigenvectors required? yes Is A an upper Hessenberg matrix? yes
F08PEF or F08QKF

no

F08NAF or F08NBF or (F08NHF,
F08NEF, F08NFF, F08PEF,

F08QKF or F08NJF)

no

Is A an upper Hessenberg matrix? yes F08PEF or F08PKF

no

F08NHF, F08NEF, F08PEF,
F08PKF, F08NGF or F08NJF

Tree 4: Real Generalized Nonsymmetric Eigenvalue Problems

Are eigenvalues only required? yes
Are A and B in generalized upper
Hessenberg form? yes F08XEF

no

F08WHF, F08AEF, F08AGF,
F08WEF and F08XEF

no

Is the generalized Schur
factorization of A and B required? yes

Are A and B in generalized upper
Hessenberg form? yes

F08XEF

no

F08AEF, F08AGF, F06QHF,
F06QFF, F08AFF, F08WEF,

F08XEF and F08YKF

no

Are A and B in generalized upper
Hessenberg form? yes

F08XEF and F08YKF

no

F08WHF, F08AEF, F08AGF,
F06QHF, F06QFF, F08AFF,

F08WEF, F08XEF, F08YKF and
F08WJF

Introduction – F08 NAG Library Manual

F08.38 Mark 24

Tree 5: Complex Hermitian Eigenvalue Problems

Are eigenvalues only
required? yes

Are all the eigenvalues
required? yes Is A a band matrix? yes

(F08HSF and F08JFF)
or F08HQF

no

Is one triangle of A
stored as a linear array? yes

(F08GSF and F08JFF)
or F08GQF

no

(F08FSF and F08JFF) or
F08FQF

no

Is A a band matrix? yes
F08HSF and F08JJF

no

Is one triangle of A
stored as a linear array? yes

F08GSF and F08JJF

no

F08FSF and F08JJF

no

Are all eigenvalues and
eigenvectors required? yes Is A a band matrix? yes

(F08HSF and F08JSF)
or F08HQF

no

Is one triangle of A
stored as a linear array? yes

(F08GSF, F08GTF and
F08JSF) or F08GQF

no

(F08FSF, F08FTF and
F08JSF) or F08FQF

no

Is one triangle of A
stored as a linear array? yes

F08GSF, F08JJF,
F08JXF and F08GUF

no

F08FSF, F08JJF,
F08JXF and F08FUF

F08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – F08

Mark 24 F08.39

Tree 6: Complex Generalized Hermitian-definite Eigenvalue Problems

Are eigenvalues only
required? yes

Are all eigenvalues
required? yes

Are A and B stored with
one triangle as a linear
array?

yes
F07GRF, F08TSF,

F08GSF and F08JFF

no

F07FRF, F08SSF,
F08FSF and F08JFF

no

Are A and B stored with
one triangle as a linear
array?

yes
F07GRF, F08TSF,

F08GSF and F08JJF

no

F07FRF, F08SSF,
F08GSF and F08JJF

no

Are all eigenvalues and
eigenvectors required? yes

Are A and B stored with
one triangle as a linear
array?

yes

F07GRF, F08TSF,
F08GSF, F08GTF and

F06PSF

no

F07FRF, F08SSF,
F08FSF, F08FTF,

F08JSF and F06ZJF

no

Are A and B stored with
one triangle as a linear
array?

yes

F07GRF, F08TSF,
F08GSF, F08JJF,

F08JXF, F08GUF and
F06SLF

no

F07FRF, F08SSF,
F08FSF, F08JJF,

F08JXF, F08FUF and
F06ZJF

Introduction – F08 NAG Library Manual

F08.40 Mark 24

Tree 7: Complex non-Hermitian Eigenvalue Problems

Are eigenvalues only required? yes Is A an upper Hessenberg matrix? yes
F08PSF

no

F08NVF, F08NSF and F08PSF

no

Is the Schur factorization of A
required? yes Is A an upper Hessenberg matrix? yes

F08PSF

no

F08NSF, F08NTF, F08PSF and
F08NWF

no

Are all eigenvectors required? yes Is A an upper Hessenberg matrix? yes
F08PSF and F08QXF

no

F08NVF, F08NSF, F08NTF,
F08PSF, F08QXF and F08NWF

no

Is A an upper Hessenberg matrix? yes F08PSF and F08PXF

no

F08NVF, F08NSF, F08PSF,
F08PXF, F08NUF and F08NWF

Tree 8: Complex Generalized non-Hermitian Eigenvalue Problems

Are eigenvalues only required? yes
Are A and B in generalized upper
Hessenberg form? yes F08XSF

no

F08WVF, F08ASF, F08AUF,
F08WSF and F08XSF

no

Is the generalized Schur
factorization of A and B required? yes

Are A and B in generalized upper
Hessenberg form? yes

F08XSF

no

F08ASF, F08AUF, F06THF,
F06TFF, F08ATF, F08WSF,

F08XSF and F08YXF

no

Are A and B in generalized upper
Hessenberg form? yes

F08XSF and F08YXF

no

F08WVF, F08ASF, F08AUF,
F06THF, F06TFF, F08ATF,

F08WSF, F08XSF, F08YXF and
F08WWF

F08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – F08

Mark 24 F08.41

4.2 General Purpose Routines (singular value decomposition)

Tree 9

Is A a complex matrix? yes Is A banded? yes
F08LSF and F08MSF

no

Are singular values only required? yes
F08KSF and F08MSF

no

F08KSF, F08KTF and F08MSF

no

Is A bidiagonal? yes F08MEF

no

Is A banded? yes
F08LEF and F08MEF

no

Are singular values only required? yes
F08KEF and F08MEF

no

F08KEF, F08KFF and F08MEF

5 Functionality Index

Backtransformation of eigenvectors from those of balanced forms,
complex matrix .. F08NWF (ZGEBAK)
real matrix.. F08NJF (DGEBAK)

Backtransformation of generalized eigenvectors from those of balanced forms,
complex matrix .. F08WWF (ZGGBAK)
real matrix.. F08WJF (DGGBAK)

Balancing,
complex general matrix... F08NVF (ZGEBAL)
complex general matrix pair ... F08WVF (ZGGBAL)
real general matrix... F08NHF (DGEBAL)
real general matrix pair... F08WHF (DGGBAL)

Eigenvalue problems for condensed forms of matrices,
complex Hermitian matrix,

eigenvalues and eigenvectors,
band matrix,

all eigenvalues and eigenvectors by a divide-and-conquer algorithm,
using packed storage ... F08HQF (ZHBEVD)
all eigenvalues and eigenvectors by root-free QR algorithm........... F08HNF (ZHBEV)
all eigenvalues and eigenvectors by root-free QR algorithm or
selected eigenvalues and eigenvectors by bisection and inverse
iteration .. F08HPF (ZHBEVX)

general matrix,
all eigenvalues and eigenvectors by a divide-and-conquer algorithm F08FQF (ZHEEVD)
all eigenvalues and eigenvectors by a divide-and-conquer algorithm,
using packed storage ... F08GQF (ZHPEVD)
all eigenvalues and eigenvectors by root-free QR algorithm........... F08FNF (ZHEEV)
all eigenvalues and eigenvectors by root-free QR algorithm, using
packed storage ... F08GNF (ZHPEV)

Introduction – F08 NAG Library Manual

F08.42 Mark 24

all eigenvalues and eigenvectors by root-free QR algorithm or
selected eigenvalues and eigenvectors by bisection and inverse
iteration .. F08FPF (ZHEEVX)
all eigenvalues and eigenvectors by root-free QR algorithm or
selected eigenvalues and eigenvectors by bisection and inverse
iteration, using packed storage ... F08GPF (ZHPEVX)
all eigenvalues and eigenvectors using Relatively Robust
Representations or selected eigenvalues and eigenvectors by
bisection and inverse iteration .. F08FRF (ZHEEVR)

eigenvalues only,
band matrix,

all eigenvalues by the Pal–Walker–Kahan variant of the QL or QR
algorithm .. F08HNF (ZHBEV)
all eigenvalues by the Pal–Walker–Kahan variant of the QL or QR
algorithm, or selected eigenvalues by bisection F08HPF (ZHBEVX)
all eigenvalues by the Pal–Walker–Kahan variant of the QL or QR
algorithm, using packed storage ... F08HQF (ZHBEVD)

general matrix,
all eigenvalues by the Pal–Walker–Kahan variant of the QL or QR
algorithm .. F08FNF (ZHEEV)
all eigenvalues by the Pal–Walker–Kahan variant of the QL or QR
algorithm, or selected eigenvalues by bisection F08FPF (ZHEEVX)
all eigenvalues by the Pal–Walker–Kahan variant of the QL or QR
algorithm, or selected eigenvalues by bisection, using packed
storage .. F08GPF (ZHPEVX)
all eigenvalues by the Pal–Walker–Kahan variant of the QL or QR
algorithm, using packed storage ... F08GNF (ZHPEV)

complex upper Hessenberg matrix, reduced from complex general matrix,
eigenvalues and Schur factorization .. F08PSF (ZHSEQR)
selected right and/or left eigenvectors by inverse iteration F08PXF (ZHSEIN)

real bidiagonal matrix,
singular value decomposition,

after reduction from complex general matrix .. F08MSF (ZBDSQR)
after reduction from real general matrix .. F08MEF (DBDSQR)
after reduction from real general matrix, using divide-and-conquer F08MDF (DBDSDC)

real symmetric matrix,
eigenvalues and eigenvectors,

band matrix,
all eigenvalues and eigenvectors by a divide-and-conquer algorithm F08HCF (DSBEVD)
all eigenvalues and eigenvectors by root-free QR algorithm........... F08HAF (DSBEV)
all eigenvalues and eigenvectors by root-free QR algorithm or
selected eigenvalues and eigenvectors by bisection and inverse
iteration .. F08HBF (DSBEVX)

general matrix,
all eigenvalues and eigenvectors by a divide-and-conquer algorithm F08FCF (DSYEVD)
all eigenvalues and eigenvectors by a divide-and-conquer algorithm,
using packed storage ... F08GCF (DSPEVD)
all eigenvalues and eigenvectors by root-free QR algorithm........... F08FAF (DSYEV)
all eigenvalues and eigenvectors by root-free QR algorithm, using
packed storage ... F08GAF (DSPEV)
all eigenvalues and eigenvectors by root-free QR algorithm or
selected eigenvalues and eigenvectors by bisection and inverse
iteration .. F08FBF (DSYEVX)
all eigenvalues and eigenvectors by root-free QR algorithm or
selected eigenvalues and eigenvectors by bisection and inverse
iteration, using packed storage ... F08GBF (DSPEVX)
all eigenvalues and eigenvectors using Relatively Robust
Representations or selected eigenvalues and eigenvectors by
bisection and inverse iteration .. F08FDF (DSYEVR)

F08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – F08

Mark 24 F08.43

eigenvalues only,
band matrix,

all eigenvalues by the Pal–Walker–Kahan variant of the QL or QR
algorithm .. F08HAF (DSBEV)
all eigenvalues by the Pal–Walker–Kahan variant of the QL or QR
algorithm, or selected eigenvalues by bisection F08HBF (DSBEVX)

general matrix,
all eigenvalues by the Pal–Walker–Kahan variant of the QL or QR
algorithm .. F08FAF (DSYEV)
all eigenvalues by the Pal–Walker–Kahan variant of the QL or QR
algorithm, or selected eigenvalues by bisection F08FBF (DSYEVX)
all eigenvalues by the Pal–Walker–Kahan variant of the QL or QR
algorithm, or selected eigenvalues by bisection, using packed
storage .. F08GBF (DSPEVX)
all eigenvalues by the Pal–Walker–Kahan variant of the QL or QR
algorithm, using packed storage ... F08GAF (DSPEV)

real symmetric tridiagonal matrix,
eigenvalues and eigenvectors,

after reduction from complex Hermitian matrix,
all eigenvalues and eigenvectors .. F08JSF (ZSTEQR)
all eigenvalues and eigenvectors, positive definite matrix................ F08JUF (ZPTEQR)
all eigenvalues and eigenvectors, using divide-and-conquer F08JVF (ZSTEDC)
all eigenvalues and eigenvectors, using Relatively Robust
Representations .. F08JYF (ZSTEGR)
selected eigenvectors by inverse iteration.. F08JXF (ZSTEIN)

all eigenvalues and eigenvectors .. F08JEF (DSTEQR)
all eigenvalues and eigenvectors, by divide-and-conquer F08JHF (DSTEDC)
all eigenvalues and eigenvectors, positive definite matrix...................... F08JGF (DPTEQR)
all eigenvalues and eigenvectors, using Relatively Robust
Representations .. F08JLF (DSTEGR)
all eigenvalues and eigenvectors by a divide-and-conquer algorithm.... F08JCF (DSTEVD)
all eigenvalues and eigenvectors by root-free QR algorithm................. F08JAF (DSTEV)
all eigenvalues and eigenvectors by root-free QR algorithm or selected
eigenvalues and eigenvectors by bisection and inverse iteration F08JBF (DSTEVX)
all eigenvalues and eigenvectors using Relatively Robust
Representations or selected eigenvalues and eigenvectors by bisection
and inverse iteration .. F08JDF (DSTEVR)
selected eigenvectors by inverse iteration.. F08JKF (DSTEIN)

eigenvalues only,
all eigenvalues by root-free QR algorithm.. F08JFF (DSTERF)
all eigenvalues by the Pal–Walker–Kahan variant of the QL or QR
algorithm .. F08JAF (DSTEV)
all eigenvalues by the Pal–Walker–Kahan variant of the QL or QR
algorithm, or selected eigenvalues by bisection F08JBF (DSTEVX)
selected eigenvalues by bisection ... F08JJF (DSTEBZ)

real upper Hessenberg matrix, reduced from real general matrix,
eigenvalues and Schur factorization .. F08PEF (DHSEQR)
selected right and/or left eigenvectors by inverse iteration F08PKF (DHSEIN)

Eigenvalue problems for nonsymmetric matrices,
complex matrix,

all eigenvalues, Schur form, Schur vectors and reciprocal condition
numbers... F08PPF (ZGEESX)
all eigenvalues, Schur form and Schur vectors .. F08PNF (ZGEES)
all eigenvalues and left/right eigenvectors .. F08NNF (ZGEEV)
all eigenvalues and left/right eigenvectors, plus balancing transformation
and reciprocal condition numbers.. F08NPF (ZGEEVX)

Introduction – F08 NAG Library Manual

F08.44 Mark 24

real matrix,
all eigenvalues, real Schur form, Schur vectors and reciprocal condition
numbers... F08PBF (DGEESX)
all eigenvalues, real Schur form and Schur vectors F08PAF (DGEES)
all eigenvalues and left/right eigenvectors .. F08NAF (DGEEV)
all eigenvalues and left/right eigenvectors, plus balancing transformation
and reciprocal condition numbers .. F08NBF (DGEEVX)

Eigenvalues and generalized Schur factorization,
complex generalized upper Hessenberg form .. F08XSF (ZHGEQZ)
real generalized upper Hessenberg form.. F08XEF (DHGEQZ)

General Gauss–Markov linear model,
solves a complex general Gauss–Markov linear model problem..................... F08ZPF (ZGGGLM)
solves a real general Gauss–Markov linear model problem............................. F08ZBF (DGGGLM)

Generalized eigenvalue problems for condensed forms of matrices,
complex Hermitian-definite eigenproblems,

banded matrices,
all eigenvalues and eigenvectors by a divide-and-conquer algorithm.... F08UQF (ZHBGVD)
all eigenvalues and eigenvectors by reduction to tridiagonal form F08UNF (ZHBGV)
selected eigenvalues and eigenvectors by reduction to tridiagonal form F08UPF (ZHBGVX)

general matrices,
all eigenvalues and eigenvectors by a divide-and-conquer algorithm.... F08SQF (ZHEGVD)
all eigenvalues and eigenvectors by a divide-and-conquer algorithm,
packed storage format ... F08TQF (ZHPGVD)
all eigenvalues and eigenvectors by reduction to tridiagonal form F08SNF (ZHEGV)
all eigenvalues and eigenvectors by reduction to tridiagonal form,
packed storage format ... F08TNF (ZHPGV)
selected eigenvalues and eigenvectors by reduction to tridiagonal form F08SPF (ZHEGVX)
selected eigenvalues and eigenvectors by reduction to tridiagonal form,
packed storage format ... F08TPF (ZHPGVX)

real symmetric-definite eigenproblems,
banded matrices,

all eigenvalues and eigenvectors by a divide-and-conquer algorithm.... F08UCF (DSBGVD)
all eigenvalues and eigenvectors by reduction to tridiagonal form F08UAF (DSBGV)
selected eigenvalues and eigenvectors by reduction to tridiagonal form F08UBF (DSBGVX)

general matrices,
all eigenvalues and eigenvectors by a divide-and-conquer algorithm.... F08SCF (DSYGVD)
all eigenvalues and eigenvectors by a divide-and-conquer algorithm,
packed storage format ... F08TCF (DSPGVD)
all eigenvalues and eigenvectors by reduction to tridiagonal form F08SAF (DSYGV)
all eigenvalues and eigenvectors by reduction to tridiagonal form,
packed storage format ... F08TAF (DSPGV)
selected eigenvalues and eigenvectors by reduction to tridiagonal form F08SBF (DSYGVX)
selected eigenvalues and eigenvectors by reduction to tridiagonal form,
packed storage format ... F08TBF (DSPGVX)

Generalized eigenvalue problems for nonsymmetric matrix pairs,
complex nonsymmetric matrix pairs,

all eigenvalues, generalized Schur form, Schur vectors and reciprocal
condition numbers .. F08XPF (ZGGESX)
all eigenvalues, generalized Schur form and Schur vectors F08XNF (ZGGES)
all eigenvalues and left/right eigenvectors .. F08WNF (ZGGEV)
all eigenvalues and left/right eigenvectors, plus the balancing
transformation and reciprocal condition numbers... F08WPF (ZGGEVX)

real nonsymmetric matrix pairs,
all eigenvalues, generalized real Schur form and left/right Schur vectors . F08XAF (DGGES)

F08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – F08

Mark 24 F08.45

all eigenvalues, generalized real Schur form and left/right Schur vectors,
plus reciprocal condition numbers... F08XBF (DGGESX)
all eigenvalues and left/right eigenvectors .. F08WAF (DGGEV)
all eigenvalues and left/right eigenvectors, plus the balancing
transformation and reciprocal condition numbers... F08WBF (DGGEVX)

Generalized QR factorization,
complex matrices ... F08ZSF (ZGGQRF)
real matrices... F08ZEF (DGGQRF)

Generalized RQ factorization,
complex matrices ... F08ZTF (ZGGRQF)
real matrices... F08ZFF (DGGRQF)

Generalized singular value decomposition,
after reduction from complex general matrix,

complex triangular or trapezoidal matrix pair .. F08YSF (ZTGSJA)
after reduction from real general matrix,

real triangular or trapezoidal matrix pair .. F08YEF (DTGSJA)
complex matrix pair .. F08VNF (ZGGSVD)
real matrix pair .. F08VAF (DGGSVD)
reduction of a pair of general matrices to triangular or trapezoidal form,

complex matrices .. F08VSF (ZGGSVP)
real matrices.. F08VEF (DGGSVP)

least squares problems,
complex matrices,

apply orthogonal matrix ... F08BXF (ZUNMRZ)
minimum norm solution using a complete orthogonal factorization........... F08BNF (ZGELSY)
minimum norm solution using the singular value decomposition............... F08KNF (ZGELSS)
minimum norm solution using the singular value decomposition (divide-
and-conquer) ... F08KQF (ZGELSD)
reduction of upper trapezoidal matrix to upper triangular form F08BVF (ZTZRZF)

real matrices,
apply orthogonal matrix ... F08BKF (DORMRZ)
minimum norm solution using a complete orthogonal factorization........... F08BAF (DGELSY)
minimum norm solution using the singular value decomposition............... F08KAF (DGELSS)
minimum norm solution using the singular value decomposition (divide-
and-conquer) ... F08KCF (DGELSD)
reduction of upper trapezoidal matrix to upper triangular form F08BHF (DTZRZF)

least squares problems with linear equality constraints,
complex matrices,

minimum norm solution subject to linear equality constraints using a
generalized RQ factorization ... F08ZNF (ZGGLSE)

real matrices,
minimum norm solution subject to linear equality constraints using a
generalized RQ factorization ... F08ZAF (DGGLSE)

Left and right eigenvectors of a pair of matrices,
complex upper triangular matrices ... F08YXF (ZTGEVC)
real quasi-triangular matrices .. F08YKF (DTGEVC)

LQ factorization and related operations,
complex matrices,

apply unitary matrix ... F08AXF (ZUNMLQ)
factorization... F08AVF (ZGELQF)
form all or part of unitary matrix ... F08AWF (ZUNGLQ)

Introduction – F08 NAG Library Manual

F08.46 Mark 24

real matrices,
apply orthogonal matrix ... F08AKF (DORMLQ)
factorization... F08AHF (DGELQF)
form all or part of orthogonal matrix ... F08AJF (DORGLQ)

Operations on eigenvectors of a real symmetric or complex Hermitian matrix, or
singular vectors of a general matrix,

estimate condition numbers... F08FLF (DDISNA)

Operations on generalized Schur factorization of a general matrix pair,
complex matrix,

estimate condition numbers of eigenvalues and/or eigenvectors F08YYF (ZTGSNA)
re-order Schur factorization ... F08YTF (ZTGEXC)
re-order Schur factorization, compute generalized eigenvalues and
condition numbers .. F08YUF (ZTGSEN)

real matrix,
estimate condition numbers of eigenvalues and/or eigenvectors F08YLF (DTGSNA)
re-order Schur factorization ... F08YFF (DTGEXC)
re-order Schur factorization, compute generalized eigenvalues and
condition numbers .. F08YGF (DTGSEN)

Operations on Schur factorization of a general matrix,
complex matrix,

compute left and/or right eigenvectors.. F08QXF (ZTREVC)
estimate sensitivities of eigenvalues and/or eigenvectors............................. F08QYF (ZTRSNA)
re-order Schur factorization ... F08QTF (ZTREXC)
re-order Schur factorization, compute basis of invariant subspace, and
estimate sensitivities ... F08QUF (ZTRSEN)

real matrix,
compute left and/or right eigenvectors.. F08QKF (DTREVC)
estimate sensitivities of eigenvalues and/or eigenvectors............................. F08QLF (DTRSNA)
re-order Schur factorization ... F08QFF (DTREXC)
re-order Schur factorization, compute basis of invariant subspace, and
estimate sensitivities ... F08QGF (DTRSEN)

Overdetermined and underdetermined linear systems,
complex matrices,

solves an overdetermined or undetermined complex linear system F08ANF (ZGELS)
real matrices,

solves an overdetermined or undetermined real linear system.................... F08AAF (DGELS)

QL factorization and related operations,
complex matrices,

apply unitary matrix ... F08CUF (ZUNMQL)
factorization... F08CSF (ZGEQLF)
form all or part of unitary matrix ... F08CTF (ZUNGQL)

real matrices,
apply orthogonal matrix ... F08CGF (DORMQL)
factorization... F08CEF (DGEQLF)
form all or part of orthogonal matrix ... F08CFF (DORGQL)

QR factorization and related operations,
complex matrices,

apply unitary matrix ... F08AUF (ZUNMQR)
factorization... F08ASF (ZGEQRF)
factorization,

with column pivoting, using BLAS-3.. F08BTF (ZGEQP3)
factorization, with column pivoting... F08BSF (ZGEQPF)
form all or part of unitary matrix ... F08ATF (ZUNGQR)

F08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – F08

Mark 24 F08.47

real matrices,
apply orthogonal matrix ... F08AGF (DORMQR)
factorization... F08AEF (DGEQRF)
factorization,

with column pivoting, using BLAS-3.. F08BFF (DGEQP3)
factorization, with column pivoting... F08BEF (DGEQPF)
form all or part of orthogonal matrix ... F08AFF (DORGQR)

Reduction of a pair of general matrices to generalized upper Hessenberg form,
orthogonal reduction, real matrices .. F08WEF (DGGHRD)
unitary reduction, complex matrices... F08WSF (ZGGHRD)

Reduction of eigenvalue problems to condensed forms, and related operations,
complex general matrix to upper Hessenberg form,

apply orthogonal matrix ... F08NUF (ZUNMHR)
form orthogonal matrix .. F08NTF (ZUNGHR)
reduce to Hessenberg form.. F08NSF (ZGEHRD)

complex Hermitian band matrix to real symmetric tridiagonal form............... F08HSF (ZHBTRD)
complex Hermitian matrix to real symmetric tridiagonal form,

apply unitary matrix ... F08FUF (ZUNMTR)
apply unitary matrix, packed storage .. F08GUF (ZUPMTR)
form unitary matrix .. F08FTF (ZUNGTR)
form unitary matrix, packed storage ... F08GTF (ZUPGTR)
reduce to tridiagonal form ... F08FSF (ZHETRD)
reduce to tridiagonal form, packed storage .. F08GSF (ZHPTRD)

complex rectangular band matrix to real upper bidiagonal form..................... F08LSF (ZGBBRD)
complex rectangular matrix to real bidiagonal form,

apply unitary matrix ... F08KUF (ZUNMBR)
form unitary matrix .. F08KTF (ZUNGBR)
reduce to bidiagonal form.. F08KSF (ZGEBRD)

real general matrix to upper Hessenberg form,
apply orthogonal matrix ... F08NGF (DORMHR)
form orthogonal matrix .. F08NFF (DORGHR)
reduce to Hessenberg form.. F08NEF (DGEHRD)

real rectangular band matrix to upper bidiagonal form F08LEF (DGBBRD)
real rectangular matrix to bidiagonal form,

apply orthogonal matrix ... F08KGF (DORMBR)
form orthogonal matrix .. F08KFF (DORGBR)
reduce to bidiagonal form.. F08KEF (DGEBRD)

real symmetric band matrix to symmetric tridiagonal form F08HEF (DSBTRD)
real symmetric matrix to symmetric tridiagonal form,

apply orthogonal matrix ... F08FGF (DORMTR)
apply orthogonal matrix, packed storage .. F08GGF (DOPMTR)
form orthogonal matrix .. F08FFF (DORGTR)
form orthogonal matrix, packed storage ... F08GFF (DOPGTR)
reduce to tridiagonal form ... F08FEF (DSYTRD)
reduce to tridiagonal form, packed storage .. F08GEF (DSPTRD)

Reduction of generalized eigenproblems to standard eigenproblems,
complex Hermitian-definite banded generalized eigenproblem Ax ¼ �Bx F08USF (ZHBGST)
complex Hermitian-definite generalized eigenproblem Ax ¼ �Bx, ABx ¼ �x
or BAx ¼ �x... F08SSF (ZHEGST)
complex Hermitian-definite generalized eigenproblem Ax ¼ �Bx, ABx ¼ �x
or BAx ¼ �x, packed storage.. F08TSF (ZHPGST)
real symmetric-definite banded generalized eigenproblem Ax ¼ �Bx F08UEF (DSBGST)
real symmetric-definite generalized eigenproblem Ax ¼ �Bx, ABx ¼ �x or
BAx ¼ �x ... F08SEF (DSYGST)
real symmetric-definite generalized eigenproblem Ax ¼ �Bx, ABx ¼ �x or
BAx ¼ �x, packed storage... F08TEF (DSPGST)

Introduction – F08 NAG Library Manual

F08.48 Mark 24

RQ factorization and related operations,
complex matrices,

apply unitary matrix ... F08CXF (ZUNMRQ)
factorization... F08CVF (ZGERQF)
form all or part of unitary matrix ... F08CWF (ZUNGRQ)

real matrices,
apply orthogonal matrix ... F08CKF (DORMRQ)
factorization... F08CHF (DGERQF)
form all or part of orthogonal matrix ... F08CJF (DORGRQ)

Singular value decomposition,
complex matrix,

using a divide-and-conquer algorithm... F08KRF (ZGESDD)
using bidiagonal QR iteration ... F08KPF (ZGESVD)

real matrix,
preconditioned Jacobi SVD using fast scaled rotations and de Rijks
pivoting ... F08KHF (DGEJSV)
using a divide-and-conquer algorithm... F08KDF (DGESDD)
using bidiagonal QR iteration ... F08KBF (DGESVD)
using fast scaled rotation and de Rijks pivoting.. F08KJF (DGESVJ)

Solve generalized Sylvester equation,
complex matrices ... F08YVF (ZTGSYL)
real matrices... F08YHF (DTGSYL)

Solve reduced form of Sylvester matrix equation,
complex matrices ... F08QVF (ZTRSYL)
real matrices... F08QHF (DTRSYL)

Split Cholesky factorization,
complex Hermitian positive definite band matrix ... F08UTF (ZPBSTF)
real symmetric positive definite band matrix .. F08UFF (DPBSTF)

6 Auxiliary Routines Associated with Library Routine Parameters

F08PAZ nagf_lapack_dgees_dummy_select
See the description of the argument SELECT in F08PAF (DGEES) and F08PBF (DGEESX).

F08PNZ nagf_lapack_zgees_dummy_select
See the description of the argument SELECT in F08PNF (ZGEES) and F08PPF (ZGEESX).

F08XAZ nagf_lapack_dgges_dummy_selctg
See the description of the argument SELCTG in F08XAF (DGGES) and F08XBF (DGGESX).

F08XNZ nagf_lapack_zgges_dummy_selctg
See the description of the argument SELCTG in F08XNF (ZGGES) and F08XPF (ZGGESX).

7 Routines Withdrawn or Scheduled for Withdrawal

None.

8 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users’ Guide (3rd Edition) SIAM,
Philadelphia

Arioli M, Duff I S and de Rijk P P M (1989) On the augmented system approach to sparse least-squares
problems Numer. Math. 55 667–684

F08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – F08

Mark 24 F08.49

Demmel J W and Kahan W (1990) Accurate singular values of bidiagonal matrices SIAM J. Sci. Statist.
Comput. 11 873–912

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

Moler C B and Stewart G W (1973) An algorithm for generalized matrix eigenproblems SIAM J. Numer.
Anal. 10 241–256

Parlett B N (1998) The Symmetric Eigenvalue Problem SIAM, Philadelphia

Stewart G W and Sun J-G (1990) Matrix Perturbation Theory Academic Press, London

Ward R C (1981) Balancing the generalized eigenvalue problem SIAM J. Sci. Stat. Comp. 2 141–152

Wilkinson J H (1965) The Algebraic Eigenvalue Problem Oxford University Press, Oxford

Wilkinson J H and Reinsch C (1971) Handbook for Automatic Computation II, Linear Algebra Springer–
Verlag

Introduction – F08 NAG Library Manual

F08.50 (last) Mark 24

	F08 Chapter Introduction
	1 Scope of the Chapter
	2 Background to the Problems
	2.1 Linear Least Squares Problems
	2.2 Orthogonal Factorizations and Least Squares Problems
	2.2.1 QR factorization
	2.2.2 LQ factorization
	2.2.3 QR factorization with column pivoting
	2.2.4 Complete orthogonal factorization
	2.2.5 Other factorizations

	2.3 The Singular Value Decomposition
	2.4 The Singular Value Decomposition and Least Squares Problems
	2.5 Generalized Linear Least Squares Problems
	2.6 Generalized Orthogonal Factorization and Generalized Linear Least Squares Problems
	2.6.1 Generalized QR Factorization
	2.6.2 Generalized RQ Factorization
	2.6.3 Generalized Singular Value Decomposition (GSVD)

	2.7 Symmetric Eigenvalue Problems
	2.8 Generalized Symmetric-definite Eigenvalue Problems
	2.9 Packed Storage for Symmetric Matrices
	2.10 Band Matrices
	2.11 Nonsymmetric Eigenvalue Problems
	2.12 Generalized Nonsymmetric Eigenvalue Problem
	2.13 The Sylvester Equation and the Generalized Sylvester Equation
	2.14 Error and Perturbation Bounds and Condition Numbers
	2.14.1 Least squares problems
	2.14.2 The singular value decomposition
	2.14.3 The symmetric eigenproblem
	2.14.4 The generalized symmetric-definite eigenproblem
	2.14.5 The nonsymmetric eigenproblem
	2.14.6 Balancing and condition for the nonsymmetric eigenproblem
	2.14.7 The generalized nonsymmetric eigenvalue problem
	2.14.8 Balancing the generalized eigenvalue problem
	2.14.9 Other problems

	2.15 Block Partitioned Algorithms

	3 Recommendations on Choice and Use of Available Routines
	3.1 Available Routines
	3.1.1 Driver routines
	3.1.1.1 Linear least squares problems (LLS)
	3.1.1.2 Generalized linear least squares problems (LSE and GLM)
	3.1.1.3 Symmetric eigenvalue problems (SEP)
	3.1.1.4 Nonsymmetric eigenvalue problem (NEP)
	3.1.1.5 Singular value decomposition (SVD)
	3.1.1.6 Generalized symmetric definite eigenvalue problems (GSEP)
	3.1.1.7 Generalized nonsymmetric eigenvalue problem (GNEP)
	3.1.1.8 Generalized singular value decomposition (GSVD)

	3.1.2 Computational routines
	3.1.2.1 Orthogonal factorizations
	3.1.2.2 Generalized orthogonal factorizations
	3.1.2.3 Singular value problems
	3.1.2.4 Generalized singular value decomposition
	3.1.2.5 Symmetric eigenvalue problems
	3.1.2.6 Generalized symmetric-definite eigenvalue problems
	3.1.2.7 Nonsymmetric eigenvalue problems
	3.1.2.8 Generalized nonsymmetric eigenvalue problems
	3.1.2.9 The Sylvester equation and the generalized Sylvester equation

	3.2 NAG Names and LAPACK Names
	3.3 Matrix Storage Schemes
	3.3.1 Conventional storage
	3.3.2 Packed storage
	3.3.3 Band storage
	3.3.4 Tridiagonal and bidiagonal matrices
	3.3.5 Real diagonal elements of complex matrices
	3.3.6 Representation of orthogonal or unitary matrices

	3.4 Parameter Conventions
	3.4.1 Option parameters
	3.4.2 Problem dimensions
	3.4.3 Length of work arrays
	3.4.4 Error-handling and the diagnostic parameter INFO

	4 Decision Trees
	4.1 General Purpose Routines (eigenvalues and eigenvectors)
	4.2 General Purpose Routines (singular value decomposition)

	5 Functionality Index
	6 Auxiliary Routines Associated with Library Routine Parameters
	7 Routines Withdrawn or Scheduled for Withdrawal
	8 References

	NAG Fortran Library Manual, Mark 24
	Copyright Statement
	Foreword
	Introduction
	Essential Introduction
	NAG Fortran Library specific documentation
	 NAG Fortran Library News

	NAG SMP Library specific documentation
	Introduction to the NAG Library for SMP & Multicore
	 NAG Library for SMP & Multicore News
	Tuned and Enhanced Routines in the

	Thread Safety
	Routines Withdrawn or Scheduled for Withdrawal
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements
	Indexes

	Implementation-specific Details for Users
	Chapters of the Library
	A00 - Library Identification
	A00 Chapter Introduction

	A02 - Complex Arithmetic
	A02 Chapter Introduction

	C02 - Zeros of Polynomials
	C02 Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	C05 Chapter Introduction

	C06 - Summation of Series
	C06 Chapter Introduction

	C09 - Wavelet Transforms
	C09 Chapter Introduction

	D01 - Quadrature
	D01 Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 Chapter Introduction

	D03 - Partial Differential Equations
	D03 Chapter Introduction

	D04 - Numerical Differentiation
	D04 Chapter Introduction

	D05 - Integral Equations
	D05 Chapter Introduction

	D06 - Mesh Generation
	D06 Chapter Introduction

	E01 - Interpolation
	E01 Chapter Introduction

	E02 - Curve and Surface Fitting
	E02 Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	E04 Chapter Introduction

	E05 - Global Optimization of a Function
	E05 Chapter Introduction

	F - Linear Algebra
	F Chapter Introduction

	F01 - Matrix Operations, Including Inversion
	F01 Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	F02 Chapter Introduction

	F03 - Determinants
	F03 Chapter Introduction

	F04 - Simultaneous Linear Equations
	F04 Chapter Introduction

	F05 - Orthogonalization
	F05 Chapter Introduction

	F06 - Linear Algebra Support Routines
	F06 Chapter Introduction

	F07 - Linear Equations (LAPACK)
	F07 Chapter Introduction

	F08 - Least Squares and Eigenvalue Problems (LAPACK)
	F08 Chapter Introduction

	F11 - Large Scale Linear Systems
	F11 Chapter Introduction

	F12 - Large Scale Eigenproblems
	F12 Chapter Introduction

	F16 - Further Linear Algebra Support Routines
	F16 Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	G01 Chapter Introduction

	G02 - Correlation and Regression Analysis
	G02 Chapter Introduction

	G03 - Multivariate Methods
	G03 Chapter Introduction

	G04 - Analysis of Variance
	G04 Chapter Introduction

	G05 - Random Number Generators
	G05 Chapter Introduction

	G07 - Univariate Estimation
	G07 Chapter Introduction

	G08 - Nonparametric Statistics
	G08 Chapter Introduction

	G10 - Smoothing in Statistics
	G10 Chapter Introduction

	G11 - Contingency Table Analysis
	G11 Chapter Introduction

	G12 - Survival Analysis
	G12 Chapter Introduction

	G13 - Time Series Analysis
	G13 Chapter Introduction

	H - Operations Research
	H Chapter Introduction

	M01 - Sorting and Searching
	M01 Chapter Introduction

	S - Approximations of Special Functions
	S Chapter Introduction

	X01 - Mathematical Constants
	X01 Chapter Introduction

	X02 - Machine Constants
	X02 Chapter Introduction

	X03 - Inner Products
	X03 Chapter Introduction

	X04 - Input/Output Utilities
	X04 Chapter Introduction

	X05 - Date and Time Utilities
	X05 Chapter Introduction

	X07 - IEEE Arithmetic
	X07 Chapter Introduction

