F07 Chapter Contents
F07 Chapter Introduction
NAG Library Manual

# NAG Library Routine DocumentF07WKF (DTFTRI)

Note:  before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

## 1  Purpose

F07WKF (DTFTRI) computes the inverse of a real triangular matrix, stored in Rectangular Full Packed (RFP) format. The RFP storage format is described in Section 3.3.3 in the F07 Chapter Introduction.

## 2  Specification

 SUBROUTINE F07WKF ( TRANSR, UPLO, DIAG, N, A, INFO)
 INTEGER N, INFO REAL (KIND=nag_wp) A(N*(N+1)/2) CHARACTER(1) TRANSR, UPLO, DIAG
The routine may be called by its LAPACK name dtftri.

## 3  Description

F07WKF (DTFTRI) forms the inverse of a real triangular matrix $A$, stored using RFP format. Note that the inverse of an upper (lower) triangular matrix is also upper (lower) triangular.

## 4  References

Du Croz J J and Higham N J (1992) Stability of methods for matrix inversion IMA J. Numer. Anal. 12 1–19
Gustavson F G, Waśniewski J, Dongarra J J and Langou J (2010) Rectangular full packed format for Cholesky's algorithm: factorization, solution, and inversion ACM Trans. Math. Software 37, 2

## 5  Parameters

1:     TRANSR – CHARACTER(1)Input
On entry: specifies whether the RFP representation of $A$ is normal or transposed.
${\mathbf{TRANSR}}=\text{'N'}$
The matrix $A$ is stored in normal RFP format.
${\mathbf{TRANSR}}=\text{'T'}$
The matrix $A$ is stored in transposed RFP format.
Constraint: ${\mathbf{TRANSR}}=\text{'N'}$ or $\text{'T'}$.
2:     UPLO – CHARACTER(1)Input
On entry: specifies whether $A$ is upper or lower triangular.
${\mathbf{UPLO}}=\text{'U'}$
$A$ is upper triangular.
${\mathbf{UPLO}}=\text{'L'}$
$A$ is lower triangular.
Constraint: ${\mathbf{UPLO}}=\text{'U'}$ or $\text{'L'}$.
3:     DIAG – CHARACTER(1)Input
On entry: indicates whether $A$ is a nonunit or unit triangular matrix.
${\mathbf{DIAG}}=\text{'N'}$
$A$ is a nonunit triangular matrix.
${\mathbf{DIAG}}=\text{'U'}$
$A$ is a unit triangular matrix; the diagonal elements are not referenced and are assumed to be $1$.
Constraint: ${\mathbf{DIAG}}=\text{'N'}$ or $\text{'U'}$.
4:     N – INTEGERInput
On entry: $n$, the order of the matrix $A$.
Constraint: ${\mathbf{N}}\ge 0$.
5:     A(${\mathbf{N}}×\left({\mathbf{N}}+1\right)/2$) – REAL (KIND=nag_wp) arrayInput/Output
On entry: the $n$ by $n$ triangular matrix $A$, stored in RFP format.
On exit: $A$ is overwritten by ${A}^{-1}$, in the same storage format as $A$.
6:     INFO – INTEGEROutput
On exit: ${\mathbf{INFO}}=0$ unless the routine detects an error (see Section 6).

## 6  Error Indicators and Warnings

Errors or warnings detected by the routine:
${\mathbf{INFO}}<0$
If ${\mathbf{INFO}}=-i$, the $i$th parameter had an illegal value. An explanatory message is output, and execution of the program is terminated.
${\mathbf{INFO}}>0$
If ${\mathbf{INFO}}=i$, $a\left(i,i\right)$ is exactly zero; $A$ is singular and its inverse cannot be computed.

## 7  Accuracy

The computed inverse $X$ satisfies
 $XA-I≤cnεXA ,$
where $c\left(n\right)$ is a modest linear function of $n$, and $\epsilon$ is the machine precision.
Note that a similar bound for $\left|AX-I\right|$ cannot be guaranteed, although it is almost always satisfied.
The computed inverse satisfies the forward error bound
 $X-A-1≤cnεA-1AX .$
See Du Croz and Higham (1992).

The total number of floating point operations is approximately $\frac{1}{3}{n}^{3}$.
The complex analogue of this routine is F07WXF (ZTFTRI).

## 9  Example

This example computes the inverse of the matrix $A$, where
 $A= 4.30 0.00 0.00 0.00 -3.96 -4.87 0.00 0.00 0.40 0.31 -8.02 0.00 -0.27 0.07 -5.95 0.12$
and is stored using RFP format.

### 9.1  Program Text

Program Text (f07wkfe.f90)

### 9.2  Program Data

Program Data (f07wkfe.d)

### 9.3  Program Results

Program Results (f07wkfe.r)