NAG Library Routine Document

F07AGF (DGECON)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of *bold italicised* terms and other implementation-dependent details.

1 Purpose

F07AGF (DGECON) estimates the condition number of a real matrix A, where A has been factorized by F07ADF (DGETRF).

2 Specification

SUBROUTINE F07AGF (NORM, N, A, LDA, ANORM, RCOND, WORK, IWORK, INFO)

INTEGER N, LDA, IWORK(N), INFO
REAL (KIND=nag_wp) A(LDA,*), ANORM, RCOND, WORK(4*N)
CHARACTER(1) NORM

The routine may be called by its LAPACK name dgecon.

3 Description

F07AGF (DGECON) estimates the condition number of a real matrix A, in either the 1-norm or the ∞ -norm:

 $\kappa_1(A) = \|A\|_1 \|A^{-1}\|_1$ or $\kappa_\infty(A) = \|A\|_\infty \|A^{-1}\|_\infty$.

Note that $\kappa_{\infty}(A) = \kappa_1(A^{\mathrm{T}})$.

Because the condition number is infinite if A is singular, the routine actually returns an estimate of the **reciprocal** of the condition number.

The routine should be preceded by a call to F06RAF to compute $||A||_1$ or $||A||_{\infty}$, and a call to F07ADF (DGETRF) to compute the *LU* factorization of *A*. The routine then uses Higham's implementation of Hager's method (see Higham (1988)) to estimate $||A^{-1}||_1$ or $||A^{-1}||_{\infty}$.

4 References

Higham N J (1988) FORTRAN codes for estimating the one-norm of a real or complex matrix, with applications to condition estimation *ACM Trans. Math. Software* **14** 381–396

5 Parameters

1: NORM – CHARACTER(1)

On entry: indicates whether $\kappa_1(A)$ or $\kappa_{\infty}(A)$ is estimated. NORM = '1' or 'O' $\kappa_1(A)$ is estimated. NORM = 'I' $\kappa_{\infty}(A)$ is estimated. Constraint: NORM = '1', 'O' or 'I'. Input

2:	N – INTEGER	Input
	On entry: n, the order of the matrix A.	
	Constraint: $N \ge 0$.	
3:	A(LDA,*) – REAL (KIND=nag_wp) array	Input
	Note: the second dimension of the array A must be at least $max(1, N)$.	
	On entry: the LU factorization of A, as returned by F07ADF (DGETRF).	
4:	LDA – INTEGER	Input
	<i>On entry</i> : the first dimension of the array A as declared in the (sub)program from (DGECON) is called.	n which F07AGF
	<i>Constraint</i> : $LDA \ge max(1, N)$.	
5:	ANORM – REAL (KIND=nag_wp)	Input
	On entry: if NORM = '1' or 'O', the 1-norm of the original matrix A.	
	If NORM = 'I', the ∞ -norm of the original matrix A.	
	ANORM may be computed by calling F06RAF with the same value for the parameter NORM.	
	NORM must be computed either before calling F07ADF (DGETRF) or else from a copy of the riginal matrix A (see Section 9).	
	Constraint: ANORM ≥ 0.0 .	
6:	RCOND – REAL (KIND=nag_wp)	Output
	<i>cit</i> : an estimate of the reciprocal of the condition number of A . RCOND is set to zero if exact larity is detected or the estimate underflows. If RCOND is less than <i>machine precision</i> , A is lar to working precision.	
7:	$WORK(4 \times N) - REAL (KIND=nag_wp) array$	Workspace
8:	IWORK(N) - INTEGER array	Workspace
9:	INFO – INTEGER	Output
	On exit: $INFO = 0$ unless the routine detects an error (see Section 6).	

6 Error Indicators and Warnings

Errors or warnings detected by the routine:

INFO < 0

If INFO = -i, the *i*th parameter had an illegal value. An explanatory message is output, and execution of the program is terminated.

7 Accuracy

The computed estimate RCOND is never less than the true value ρ , and in practice is nearly always less than 10ρ , although examples can be constructed where RCOND is much larger.

8 Further Comments

A call to F07AGF (DGECON) involves solving a number of systems of linear equations of the form Ax = b or $A^{T}x = b$; the number is usually 4 or 5 and never more than 11. Each solution involves approximately $2n^{2}$ floating point operations but takes considerably longer than a call to F07AEF

(DGETRS) with one right-hand side, because extra care is taken to avoid overflow when A is approximately singular.

The complex analogue of this routine is F07AUF (ZGECON).

9 Example

This example estimates the condition number in the 1-norm of the matrix A, where

$$A = \begin{pmatrix} 1.80 & 2.88 & 2.05 & -0.89 \\ 5.25 & -2.95 & -0.95 & -3.80 \\ 1.58 & -2.69 & -2.90 & -1.04 \\ -1.11 & -0.66 & -0.59 & 0.80 \end{pmatrix}.$$

Here A is nonsymmetric and must first be factorized by F07ADF (DGETRF). The true condition number in the 1-norm is 152.16.

9.1 Program Text

Program f07agfe

```
F07AGF Example Program Text
1
1
     Mark 24 Release. NAG Copyright 2012.
      .. Use Statements ..
1
     Use nag_library, Only: dgecon, dgetrf, dlange => f06raf, nag_wp, x02ajf
1
      .. Implicit None Statement ..
     Implicit None
1
      .. Parameters ..
     Integer, Parameter
                                       :: nin = 5, nout = 6
                                       :: norm = '1'
     Character (1), Parameter
1
      .. Local Scalars ..
     Real (Kind=nag_wp)
                                       :: anorm, rcond
                                       :: i, info, lda, n
     Integer
1
      .. Local Arrays ..
     Real (Kind=nag_wp), Allocatable :: a(:,:), work(:)
     Integer, Allocatable
                                       :: ipiv(:), iwork(:)
1
      .. Executable Statements ..
     Write (nout,*) 'F07AGF Example Program Results'
1
     Skip heading in data file
     Read (nin,*)
     Read (nin,*) n
     lda = n
     Allocate (a(lda,n),work(4*n),ipiv(n),iwork(n))
     Read A from data file
1
     Read (nin,*)(a(i,1:n),i=1,n)
!
     Compute norm of A
1
     fOGraf is the NAG name equivalent of the LAPACK auxiliary dlange
     anorm = dlange(norm,n,n,a,lda,work)
     Factorize A
1
     The NAG name equivalent of dgetrf is f07adf
1
     Call dgetrf(n,n,a,lda,ipiv,info)
     Write (nout,*)
     If (info==0) Then
1
       Estimate condition number
1
       The NAG name equivalent of dgecon is f07agf
       Call dgecon(norm,n,a,lda,anorm,rcond,work,iwork,info)
       If (rcond>=x02ajf()) Then
```

9.2 Program Data

```
      F07AGF Example Program Data
      .Value of N

      4
      :Value of N

      1.80
      2.88
      2.05
      -0.89

      5.25
      -2.95
      -0.95
      -3.80

      1.58
      -2.69
      -2.90
      -1.04

      -1.11
      -0.66
      -0.59
      0.80
      :End of matrix A
```

9.3 **Program Results**

F07AGF Example Program Results

Estimate of condition number = 1.52E+02