NAG Library Routine Document F08QLF (DTRSNA)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

F08QLF (DTRSNA) estimates condition numbers for specified eigenvalues and/or right eigenvectors of a real upper quasi-triangular matrix.

2 Specification

```
SUBROUTINE FO8QLF (JOB, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR, LDVR, S,
        SEP, MM, M, WORK, LDWORK, IWORK, INFO)
INTEGER N, LDT, LDVL, LDVR, MM, M, LDWORK, IWORK(*), INFO
REAL (KIND=nag_wp) T(LDT,*), VL(LDVL,*), VR(LDVR,*), S(*), SEP(*),
MHARACTER(1) JOB, HOWMN
```

The routine may be called by its LAPACK name dtrsna.

3 Description

F08QLF (DTRSNA) estimates condition numbers for specified eigenvalues and/or right eigenvectors of a real upper quasi-triangular matrix T in canonical Schur form. These are the same as the condition numbers of the eigenvalues and right eigenvectors of an original matrix $A=Z T Z^{\mathrm{T}}$ (with orthogonal Z), from which T may have been derived.

F08QLF (DTRSNA) computes the reciprocal of the condition number of an eigenvalue λ_{i} as

$$
s_{i}=\frac{\left|v^{\mathrm{H}} u\right|}{\|u\|_{E}\|v\|_{E}},
$$

where u and v are the right and left eigenvectors of T, respectively, corresponding to λ_{i}. This reciprocal condition number always lies between zero (i.e., ill-conditioned) and one (i.e., well-conditioned).
An approximate error estimate for a computed eigenvalue λ_{i} is then given by

$$
\frac{\epsilon\|T\|}{s_{i}}
$$

where ϵ is the machine precision.
To estimate the reciprocal of the condition number of the right eigenvector corresponding to λ_{i}, the routine first calls F08QFF (DTREXC) to reorder the eigenvalues so that λ_{i} is in the leading position:

$$
T=Q\left(\begin{array}{cc}
\lambda_{i} & c^{\mathrm{T}} \\
0 & T_{22}
\end{array}\right) Q^{\mathrm{T}}
$$

The reciprocal condition number of the eigenvector is then estimated as $s e p_{i}$, the smallest singular value of the matrix $\left(T_{22}-\lambda_{i} I\right)$. This number ranges from zero (i.e., ill-conditioned) to very large (i.e., wellconditioned).

An approximate error estimate for a computed right eigenvector u corresponding to λ_{i} is then given by

$$
\frac{\epsilon\|T\|}{\operatorname{sep}_{i}}
$$

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

5 Parameters

1: JOB - CHARACTER(1)
Input
On entry: indicates whether condition numbers are required for eigenvalues and/or eigenvectors.
$\mathrm{JOB}=$ ' E '
Condition numbers for eigenvalues only are computed.
$\mathrm{JOB}=\mathrm{V}^{\prime}$
Condition numbers for eigenvectors only are computed.
$\mathrm{JOB}=$ 'B'
Condition numbers for both eigenvalues and eigenvectors are computed.
Constraint: $\mathrm{JOB}=\mathrm{E}^{\mathrm{E}}$, 'V' or 'B'.
2: HOWMNY - CHARACTER(1)
Input
On entry: indicates how many condition numbers are to be computed.
HOWMNY = 'A'
Condition numbers for all eigenpairs are computed.
HOWMNY = 'S'
Condition numbers for selected eigenpairs (as specified by SELECT) are computed.
Constraint: HOWMNY = 'A' or 'S'.
3: $\operatorname{SELECT}(*)$ - LOGICAL array Input
Note: the dimension of the array SELECT must be at least $\max (1, \mathrm{~N})$ if HOWMNY $=$ ' S ', and at least 1 otherwise.

On entry: specifies the eigenpairs for which condition numbers are to be computed if HOWMNY $=$ 'S'. To select condition numbers for the eigenpair corresponding to the real eigenvalue λ_{j}, $\operatorname{SELECT}(j)$ must be set .TRUE.. To select condition numbers corresponding to a complex conjugate pair of eigenvalues λ_{j} and $\lambda_{j+1}, \operatorname{SELECT}(j)$ and/or $\operatorname{SELECT}(j+1)$ must be set to .TRUE..

If HOWMNY $=$ ' A ', SELECT is not referenced.
4: N - INTEGER Input
On entry: n, the order of the matrix T.
Constraint: $\mathrm{N} \geq 0$.
5: $\mathrm{T}(\mathrm{LDT}, *)$ - REAL (KIND=nag_wp) array
Input
Note: the second dimension of the array T must be at least $\max (1, \mathrm{~N})$.
On entry: the n by n upper quasi-triangular matrix T in canonical Schur form, as returned by F08PEF (DHSEQR).

6: LDT - INTEGER
Input
On entry: the first dimension of the array T as declared in the (sub)program from which F08QLF (DTRSNA) is called.
Constraint: LDT $\geq \max (1, \mathrm{~N})$.

7: $\quad \mathrm{VL}(\mathrm{LDVL}, *)$ - REAL (KIND=nag_wp) array
Input
Note: the second dimension of the array VL must be at least $\max (1, \mathrm{MM})$ if $\mathrm{JOB}=$ ' E ' or ' B ' and at least 1 if $\mathrm{JOB}=\mathrm{V}$ '.

On entry: if $\mathrm{JOB}=$ ' E ' or 'B', VL must contain the left eigenvectors of T (or of any matrix $Q T Q^{\mathrm{T}}$ with Q orthogonal) corresponding to the eigenpairs specified by HOWMNY and SELECT. The eigenvectors must be stored in consecutive columns of VL, as returned by F08PKF (DHSEIN) or F08QKF (DTREVC).

If $\mathrm{JOB}={ }^{\prime} \mathrm{V}^{\prime}$, VL is not referenced.
8: LDVL - INTEGER
Input
On entry: the first dimension of the array VL as declared in the (sub)program from which F08QLF (DTRSNA) is called.
Constraints:

$$
\begin{aligned}
\text { if } \mathrm{JOB} & =\text { 'E' or 'B', LDVL } \geq \max (1, \mathrm{~N}) ; \\
\text { if } \mathrm{JOB} & ={ }^{\prime} \mathrm{V}^{\prime}, \mathrm{LDVL} \geq 1 . \\
9: \quad \mathrm{VR}(\mathrm{LDVR}, *) & - \text { REAL }\left(\mathrm{KIND}=\text { nag_wp }^{2}\right) \text { array }
\end{aligned}
$$

Input
Note: the second dimension of the array VR must be at least $\max (1, \mathrm{MM})$ if JOB $=$ ' E ' or ' B^{\prime} and at least 1 if $\mathrm{JOB}=\mathrm{V}$ '.

On entry: if $\mathrm{JOB}={ }^{\prime} \mathrm{E}$ ' or ' B ', VR must contain the right eigenvectors of T (or of any matrix $Q T Q^{\mathrm{T}}$ with Q orthogonal) corresponding to the eigenpairs specified by HOWMNY and SELECT. The eigenvectors must be stored in consecutive columns of VR, as returned by F08PKF (DHSEIN) or F08QKF (DTREVC).
If $\mathrm{JOB}=\mathrm{V}$ ', VR is not referenced.
10: LDVR - INTEGER
Input
On entry: the first dimension of the array VR as declared in the (sub)program from which F08QLF (DTRSNA) is called.
Constraints:

$$
\begin{aligned}
& \text { if } \mathrm{JOB}=\text { ' } \mathrm{E} \text { ' or 'B', } \operatorname{LDVR} \geq \max (1, \mathrm{~N}) \text {; } \\
& \text { if } \mathrm{JOB}=\text { 'V', LDVR } \geq 1 .
\end{aligned}
$$

11: $\quad \mathrm{S}(*)$ - REAL (KIND=nag_wp) array
Output
Note: the dimension of the array S must be at least $\max (1, M M)$ if $J O B=$ ' E^{\prime} or ' B ' and at least 1 if $\mathrm{JOB}=\mathrm{V}$ '.

On exit: the reciprocal condition numbers of the selected eigenvalues if $\mathrm{JOB}=$ ' E ' or ' B ', stored in consecutive elements of the array. Thus $\mathrm{S}(j), \operatorname{SEP}(j)$ and the j th columns of VL and VR all correspond to the same eigenpair (but not in general the j th eigenpair unless all eigenpairs have been selected). For a complex conjugate pair of eigenvalues, two consecutive elements of S are set to the same value.

S is not referenced if $\mathrm{JOB}={ }^{\prime} \mathrm{V}$ '.

12 :
$\operatorname{SEP}(*)$ - REAL (KIND=nag_wp) array
Output
Note: the dimension of the array SEP must be at least $\max (1, \mathrm{MM})$ if $\mathrm{JOB}={ }^{\prime} \mathrm{V}$ ' or ' B ' and at least 1 if $\mathrm{JOB}=$ ' E '.

On exit: the estimated reciprocal condition numbers of the selected right eigenvectors if $\mathrm{JOB}={ }^{\prime} \mathrm{V}^{\prime}$ or ' B ', stored in consecutive elements of the array. For a complex eigenvector, two consecutive elements of SEP are set to the same value. If the eigenvalues cannot be reordered to compute $\operatorname{SEP}(j)$, then $\operatorname{SEP}(j)$ is set to zero; this can only occur when the true value would be very small anyway.

If $\mathrm{JOB}={ }^{\prime} \mathrm{E}$ ', SEP is not referenced.

13: MM - INTEGER
Input
On entry: the number of elements in the arrays S and SEP, and the number of columns in the arrays VL and VR (if used). The precise number required, m, is n if HOWMNY $=$ ' A^{\prime}; if HOWMNY $=$ 'S', m is obtained by counting 1 for each selected real eigenvalue, and 2 for each selected complex conjugate pair of eigenvalues (see SELECT), in which case $0 \leq m \leq n$.

Constraint: $\mathrm{MM} \geq \mathrm{M}$.
14: M - INTEGER
Output
On exit: m, the number of elements of S and/or SEP actually used to store the estimated condition numbers. If HOWMNY $=$ ' A ', M is set to n.

15: WORK(LDWORK,*) - REAL (KIND=nag_wp) array
Workspace
Note: the second dimension of the array WORK must be at least $\max (1, \mathrm{~N}+6)$ if $\mathrm{JOB}=$ ' V ' or ' B^{\prime} and at least 1 if $\mathrm{JOB}={ }^{\prime} \mathrm{E}$ '.

If $\mathrm{JOB}=\mathrm{E}^{\mathrm{E}}$ ', WORK is not referenced.
16: LDWORK - INTEGER
Input
On entry: the first dimension of the array WORK as declared in the (sub)program from which F08QLF (DTRSNA) is called.
Constraints:

$$
\begin{aligned}
& \text { if } \mathrm{JOB}={ }^{\prime} \mathrm{V} \text { ' or 'B', LDWORK } \geq \max (1, \mathrm{~N}) \text {; } \\
& \text { if } \mathrm{JOB}=\text { ' } \mathrm{E} \text { ', LDWORK } \geq 1 .
\end{aligned}
$$

17: $\operatorname{IWORK}(*)$ - INTEGER array
Workspace
Note: the dimension of the array IWORK must be at least $\max (1,2 \times(\mathrm{N}-1))$.
18: INFO - INTEGER
Output
On exit: INFO $=0$ unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO <0
If $\mathrm{INFO}=-i$, argument i had an illegal value. An explanatory message is output, and execution of the program is terminated.

7 Accuracy

The computed values $s e p_{i}$ may over estimate the true value, but seldom by a factor of more than 3 .

8 Further Comments

For a description of canonical Schur form, see the document for F08PEF (DHSEQR).
The complex analogue of this routine is F08QYF (ZTRSNA).

9 Example

This example computes approximate error estimates for all the eigenvalues and right eigenvectors of the matrix T, where

$$
T=\left(\begin{array}{rrrr}
0.7995 & -0.1144 & 0.0060 & 0.0336 \\
0.0000 & -0.0994 & 0.2478 & 0.3474 \\
0.0000 & -0.6483 & -0.0994 & 0.2026 \\
0.0000 & 0.0000 & 0.0000 & -0.1007
\end{array}\right) .
$$

9.1 Program Text

```
        Program f08qlfe
    F08QLF Example Program Text
    Mark 24 Release. NAG Copyright 2012.
    Use nag_library, Only: dlange => f06raf, dtrevc, dtrsna, nag_wp, x02ajf
! .. Implicit None Statement ..
    Implicit None
! .. Parameters ..
    Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..
    Real (Kind=nag_wp) :: eps, tnorm
    Integer :: i, info, ldt, ldvl, ldvr, ldwork, m, n
    .. Local Arrays .
    Real (Kind=nag_wp), Allocatable :: s(:), sep(:), t(:,:), vl(:,:), &
    vr(:,:), work(:,:)
    Integer, Allocatable :: iwork(:)
    Logical :: select(1)
    .. Executable Statements ..
    Write (nout,*) 'FO8QLF Example Program Results'
    Write (nout,*)
    Skip heading in data file
    Read (nin,*)
    Read (nin,*) n
    ldt = n
    ldvl = n
    ldvr = n
    ldwork = n
    Allocate (s(n),sep(n),t(ldt,n),vl(ldvl,n),vr(ldvr,n),work(ldwork,n+6), &
        iwork(2*n-1))
! Read T from data file
    Read (nin,*)(t(i,1:n),i=1,n)
! Calculate the left and right eigenvectors of T
! The NAG name equivalent of dtrevc is f08qkf
    Call dtrevc('Both','All',select,n,t,ldt,vl,ldvl,vr,ldvr,n,m,work,info)
    Estimate condition numbers for all the eigenvalues and right
    eigenvectors of T
    The NAG name equivalent of dtrsna is f08qlf
    Call dtrsna('Both','All',select,n,t,ldt,vl,ldvl,vr,ldvr,s,sep,n,m,work, &
        ldwork,iwork,info)
    Print condition numbers of eigenvalues and right eigenvectors
    Write (nout,*) 'S'
    Write (nout,99999) s(1:m)
    Write (nout,*)
    Write (nout,*) 'SEP'
    Write (nout,99999) sep(1:m)
! Calculate approximate error estimates (using the 1-norm)
    eps = x02ajf()
```

```
! fO6raf is the NAG name equivalent of the LAPACK auxiliary dlange
    tnorm = dlange('1-norm',n,n,t,ldt,work)
    Write (nout,*)
    Write (nout,*) 'Approximate error estimates for eigenvalues ', &
    'of T (machine-dependent)'
    Write (nout,99999)(eps*tnorm/s(i),i=1,m)
    Write (nout,*)
    Write (nout,*) 'Approximate error estimates for right ', &
    'eigenvectors of T (machine-dependent)'
    Write (nout,99999)(eps*tnorm/sep(i),i=1,m)
99999 Format ((3X,1P,7E11.1))
    End Program f08qlfe
```


9.2 Program Data

F08QLF Example Program Data				:Value of N
0.7995	-0.1144	0.0060	0.0336	
0.0000	-0.0994	0.2478	0.3474	
0.0000	-0.6483	-0.0994	0.2026	
0.0000	0.0000	0.0000	-0.1007	:End of matrix T

9.3 Program Results

```
FO8QLF Example Program Results
S
```

9.9E-01
7.0E-01
7.0E-01
$5.7 \mathrm{E}-01$

```
SEP
\(6.3 \mathrm{E}-01\) 3.7E-01 3.7E-01 3.1E-01
Approximate error estimates for eigenvalues of \(T\) (machine-dependent)
\(9.6 \mathrm{E}-17\) 1.4E-16 1.4E-16 \(1.7 \mathrm{E}-16\)
Approximate error estimates for right eigenvectors of \(T\) (machine-dependent)
\(1.5 \mathrm{E}-16 \quad 2.6 \mathrm{E}-16 \quad 2.6 \mathrm{E}-16 \quad 3.1 \mathrm{E}-16\)
```

