
NAG Library Routine Document

D03EBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D03EBF uses the Strongly Implicit Procedure to calculate the solution to a system of simultaneous
algebraic equations of five-point molecule form on a two-dimensional topologically-rectangular mesh.
(‘Topological’ means that a polar grid, for example r; �ð Þ, can be used, being equivalent to a rectangular
box.)

2 Specification

SUBROUTINE D03EBF (N1, N2, LDA, A, B, C, D, E, Q, T, APARAM, ITMAX,
ITCOUN, ITUSED, NDIR, IXN, IYN, CONRES, CONCHN,
RESIDS, CHNGS, WRKSP1, WRKSP2, WRKSP3, IFAIL)

&
&

INTEGER N1, N2, LDA, ITMAX, ITCOUN, ITUSED, NDIR, IXN, IYN,
IFAIL

&

REAL (KIND=nag_wp) A(LDA,N2), B(LDA,N2), C(LDA,N2), D(LDA,N2),
E(LDA,N2), Q(LDA,N2), T(LDA,N2), APARAM, CONRES,
CONCHN, RESIDS(ITMAX), CHNGS(ITMAX),
WRKSP1(LDA,N2), WRKSP2(LDA,N2), WRKSP3(LDA,N2)

&
&
&

3 Description

Given a set of simultaneous equations

Mt ¼ q ð1Þ
(which could be nonlinear) derived, for example, from a finite difference representation of a two-
dimensional elliptic partial differential equation and its boundary conditions, the routine determines the
values of the dependent variable t. q is a known vector of length n1 � n2 and M is a square n1 � n2ð Þ
by n1 � n2ð Þ matrix.

The equations must be of five-diagonal form:

aijti;j�1 þ bijti�1;j þ cijtij þ dijtiþ1;j þ eijti;jþ1 ¼ qij

for i ¼ 1; 2; . . . ; n1 and j ¼ 1; 2; . . . ; n2, provided cij 6¼ 0:0. Indeed, if cij ¼ 0:0, then the equation is
assumed to be

tij ¼ qij:

For example, if n1 ¼ 3 and n2 ¼ 2, the equations take the form:

c11 d11 e11
b21 c21 d21 e21

b31 c31 e31
a12 c12 d12

a22 b22 c22 d22
a32 b32 c32

2
666664

3
777775

t11
t21
t31
t12
t22
t32

2
666664

3
777775
¼

q11
q21
q31
q12
q22
q32

2
666664

3
777775
:

The system is solved iteratively, from a starting approximation t 1ð Þ, by the formulae

D03 – Partial Differential Equations D03EBF

Mark 26 D03EBF.1

r nð Þ ¼ q �Mt nð Þ

Ms nð Þ ¼ r nð Þ

t nþ1ð Þ ¼ t nð Þ þ s nð Þ:

Thus r nð Þ is the residual of the nth approximate solution t nð Þ, and s nð Þ is the update change vector. The
calling program supplies an initial approximation for the values of the dependent variable in the array T,
the coefficients of the five-point molecule system of equations in the arrays A, B, C, D and E, and the
source terms in the array Q. The routine derives the residual of the latest approximate solution and then
uses the approximate LU factorization of the Strongly Implicit Procedure with the necessary
acceleration argument adjustment by calling D03UAF at each iteration. D03EBF combines the newly
derived change with the old approximation to obtain the new approximate solution for t. The new
solution is checked for convergence against the user-supplied convergence criteria and if these have not
been achieved the iterative cycle is repeated. Convergence is based on both the maximum absolute
normalized residuals (calculated with reference to the previous approximate solution as these are
calculated at the commencement of each iteration) and on the maximum absolute change made to the
values of t.

Problems in topologically non-rectangular regions can be solved using the routine by surrounding the
region by a circumscribing topological rectangle. The equations for the nodal values external to the
region of interest are set to zero (i.e., cij ¼ tij ¼ 0) and the boundary conditions are incorporated into
the equations for the appropriate nodes.

If there is no better initial approximation when starting the iterative cycle, an array of all zeros can be
used as the initial approximation.

The routine can be used to solve linear elliptic equations in which case the arrays A, B, C, D, E and Q
are constants and for which a single call provides the required solution. It can also be used to solve
nonlinear elliptic equations in which case some or all of these arrays may require updating during the
progress of the iterations as more accurate solutions are derived. The routine will then have to be called
repeatedly in an outer iterative cycle. Dependent on the nonlinearity, some under relaxation of the
coefficients and/or source terms may be needed during their recalculation using the new estimates of the
solution.

The routine can also be used to solve each step of a time-dependent parabolic equation in two space
dimensions. The solution at each time step can be expressed in terms of an elliptic equation if the
Crank–Nicolson or other form of implicit time integration is used.

Neither diagonal dominance, nor positive-definiteness, of the matrix M formed from the arrays A, B, C,
D, E is necessary to ensure convergence.

For problems in which the solution is not unique in the sense that an arbitrary constant can be added to
the solution, for example Laplace's equation with all Neumann boundary conditions, an argument is
incorporated so that the solution can be rescaled by subtracting a specified nodal value from the whole
solution t after the completion of every iteration to keep rounding errors to a minimum for those cases
when the convergence is slow.

4 References

Jacobs D A H (1972) The strongly implicit procedure for the numerical solution of parabolic and
elliptic partial differential equations Note RD/L/N66/72 Central Electricity Research Laboratory

Stone H L (1968) Iterative solution of implicit approximations of multi-dimensional partial differential
equations SIAM J. Numer. Anal. 5 530–558

D03EBF NAG Library Manual

D03EBF.2 Mark 26

5 Arguments

1: N1 – INTEGER Input

On entry: the number of nodes in the first coordinate direction, n1.

Constraint: N1 > 1.

2: N2 – INTEGER Input

On entry: the number of nodes in the second coordinate direction, n2.

Constraint: N2 > 1.

3: LDA – INTEGER Input

On entry: the first dimension of the arrays A, B, C, D, E, Q, T, WRKSP1, WRKSP2 and
WRKSP3 as declared in the (sub)program from which D03EBF is called.

Constraint: LDA � N1.

4: AðLDA;N2Þ – REAL (KIND=nag_wp) array Input

On entry: Aði; jÞ must contain the coefficient of the ‘southerly’ term involving ti;j�1 in the i; jð Þth
equation of the system (1), for i ¼ 1; 2; . . . ;N1 and j ¼ 1; 2; . . . ;N2. The elements of A, for
j ¼ 1, must be zero after incorporating the boundary conditions, since they involve nodal values
from outside the rectangle.

5: BðLDA;N2Þ – REAL (KIND=nag_wp) array Input

On entry: Bði; jÞ must contain the coefficient of the ‘westerly’ term involving ti�1;j in the i; jð Þth
equation of the system (1), for i ¼ 1; 2; . . . ;N1 and j ¼ 1; 2; . . . ;N2. The elements of B, for
i ¼ 1, must be zero after incorporating the boundary conditions, since they involve nodal values
from outside the rectangle.

6: CðLDA;N2Þ – REAL (KIND=nag_wp) array Input

On entry: Cði; jÞ must contain the coefficient of the ‘central’ term involving tij in the i; jð Þth
equation of the system (1), for i ¼ 1; 2; . . . ;N1 and j ¼ 1; 2; . . . ;N2. The elements of C are
checked to ensure that they are nonzero. If any element is found to be zero, the corresponding
algebraic equation is assumed to be tij ¼ qij . This feature can be used to define the equations for
nodes at which, for example, Dirichlet boundary conditions are applied, or for nodes external to
the problem of interest, by setting Cði; jÞ ¼ 0:0 at appropriate points, and the corresponding value
of Qði; jÞ to the appropriate value, namely the prescribed value of Tði; jÞ in the Dirichlet case or
zero at an external point.

7: DðLDA;N2Þ – REAL (KIND=nag_wp) array Input

On entry: Dði; jÞ must contain the coefficient of the ‘easterly’ term involving tiþ1;j in the i; jð Þth
equation of the system (1), for i ¼ 1; 2; . . . ;N1 and j ¼ 1; 2; . . . ;N2. The elements of D, for
i ¼ N1, must be zero after incorporating the boundary conditions, since they involve nodal values
from outside the rectangle.

8: EðLDA;N2Þ – REAL (KIND=nag_wp) array Input

On entry: Eði; jÞ must contain the coefficient of the ‘northerly’ term involving ti;jþ1 in the i; jð Þth
equation of the system (1), for i ¼ 1; 2; . . . ;N1 and j ¼ 1; 2; . . . ;N2. The elements of E, for
j ¼ N2 must be zero after incorporating the boundary conditions, since they involve nodal values
from outside the rectangle.

9: QðLDA;N2Þ – REAL (KIND=nag_wp) array Input

On entry: Qði; jÞ must contain qij , for i ¼ 1; 2; . . . ;N1 and j ¼ 1; 2; . . . ;N2, i.e., the source term
values at the nodal points for the system (1).

D03 – Partial Differential Equations D03EBF

Mark 26 D03EBF.3

10: TðLDA;N2Þ – REAL (KIND=nag_wp) array Input/Output

On entry: Tði; jÞ must contain the element tij of the approximate solution to the equations
supplied by the calling program as an initial starting value, for i ¼ 1; 2; . . . ;N1 and
j ¼ 1; 2; . . . ;N2.

If no better approximation is known, an array of zeros can be used.

On exit: the solution derived by the routine.

11: APARAM – REAL (KIND=nag_wp) Input

On entry: the iteration acceleration factor. A value of 1:0 is adequate for most typical problems.
However, if convergence is slow, the value can be reduced, typically to 0:2 or 0:1. If divergence
is obtained, the value can be increased, typically to 2:0, 5:0 or 10:0.

Constraint: 0:0 < APARAM � N1� 1ð Þ2 þ N2� 1ð Þ2
� �

=2:0.

12: ITMAX – INTEGER Input

On entry: the maximum number of iterations to be used by the routine in seeking the solution. A
reasonable value might be 30 if N1 ¼ N2 ¼ 10 or 100 if N1 ¼ N2 ¼ 50.

13: ITCOUN – INTEGER Input/Output

On entry: on the first call of D03EBF, ITCOUN must be set to 0. On subsequent entries, its value
must be unchanged from the previous call.

On exit: its value is increased by the number of iterations used on this call (namely ITUSED). It
therefore stores the accumulated number of iterations actually used. For subsequent calls for the
same problem, i.e., with the same N1 and N2 but possibly different coefficients and/or source
terms, as occur with nonlinear systems or with time-dependent systems, ITCOUN is the
accumulated number of iterations. This applies to the second and subsequent calls to D03EBF. In
this way a suitable cycling of the sequence of iteration arguments is obtained in the calls to
D03UAF.

14: ITUSED – INTEGER Output

On exit: the number of iterations actually used on that call.

15: NDIR – INTEGER Input

On entry: indicates whether or not the system of equations has a unique solution. For systems
which have a unique solution, NDIR must be set to any nonzero value. For systems derived from,
for example, Laplace's equation with all Neumann boundary conditions, i.e., problems in which
an arbitrary constant can be added to the solution, NDIR should be set to 0 and the values of the
next two arguments must be specified. For such problems the routine subtracts the value of the
function derived at the node (IXN, IYN) from the whole solution after each iteration to reduce
the possibility of large rounding errors. You must also ensure that for such problems the
appropriate consistency condition on the source terms Q is satisfied.

16: IXN – INTEGER Input

On entry: is ignored unless NDIR is equal to zero, in which case it must specify the first index of
the nodal point at which the solution is to be set to zero. The node should not correspond to a
corner node, or to a node external to the region of interest.

17: IYN – INTEGER Input

On entry: is ignored unless NDIR is equal to zero, in which case it must specify the second index
of the nodal point at which the solution is to be set to zero. The node should not correspond to a
corner node, or to a node external to the region of interest.

D03EBF NAG Library Manual

D03EBF.4 Mark 26

18: CONRES – REAL (KIND=nag_wp) Input

On entry: the convergence criterion to be used on the maximum absolute value of the normalized
residual vector components. The latter is defined as the residual of the algebraic equation divided
by the central coefficient when the latter is not equal to 0:0, and defined as the residual when the
central coefficient is zero.

Clearly CONRES should not be less than a reasonable multiple of the machine precision.

19: CONCHN – REAL (KIND=nag_wp) Input

On entry: the convergence criterion to be used on the maximum absolute value of the change
made at each iteration to the elements of the array T, namely the dependent variable. Clearly
CONCHN should not be less than a reasonable multiple of the machine precision multiplied by
the maximum value of T attained.

Convergence is achieved when both the convergence criteria are satisfied. You can therefore set
convergence on either the residual or on the change, or (as is recommended) on a requirement
that both are below prescribed limits.

20: RESIDSðITMAXÞ – REAL (KIND=nag_wp) array Output

On exit: the maximum absolute value of the residuals calculated at the ith iteration, for
i ¼ 1; 2; . . . ; ITUSED. If you want to know the maximum absolute residual of the solution which
is returned you must calculate this in the calling program. The sequence of values RESIDS
indicates the rate of convergence.

21: CHNGSðITMAXÞ – REAL (KIND=nag_wp) array Output

On exit: the maximum absolute value of the changes made to the components of the dependent
variable T at the ith iteration, for i ¼ 1; 2; . . . ; ITUSED. The sequence of values CHNGS
indicates the rate of convergence.

22: WRKSP1ðLDA;N2Þ – REAL (KIND=nag_wp) array Workspace
23: WRKSP2ðLDA;N2Þ – REAL (KIND=nag_wp) array Workspace
24: WRKSP3ðLDA;N2Þ – REAL (KIND=nag_wp) array Workspace

25: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N1 < 2,
or N2 < 2.

D03 – Partial Differential Equations D03EBF

Mark 26 D03EBF.5

IFAIL ¼ 2

On entry, LDA < N1.

IFAIL ¼ 3

On entry, APARAM � 0:0.

IFAIL ¼ 4

On entry, APARAM > N1� 1ð Þ2 þ N2� 1ð Þ2
� �

=2:0.

IFAIL ¼ 5

Convergence was not achieved after ITMAX iterations.

IFAIL ¼ �99

An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399

Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999

Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The improvement in accuracy for each iteration depends on the size of the system and on the condition
of the update matrix characterised by the five-diagonal coefficient arrays. The ultimate accuracy
obtainable depends on the above factors and on the machine precision. The rate of convergence
obtained with the Strongly Implicit Procedure is not always smooth because of the cyclic use of nine
acceleration arguments. The convergence may become slow with very large problems, for example
when N1 ¼ N2 ¼ 60. The final accuracy may be judged approximately from the rate of convergence
determined from the sequence of values returned in CHNGS and the magnitude of the maximum
absolute value of the change vector on the last iteration stored in CHNGSðITUSEDÞ.

8 Parallelism and Performance

D03EBF is not threaded in any implementation.

9 Further Comments

The time taken per iteration is approximately proportional to N1� N2.

Convergence may not always be obtained when the problem is very large and/or the coefficients of the
equations have widely disparate values. The latter case is often associated with a near ill-conditioned
matrix.

10 Example

This example solves Laplace's equation in a rectangle with a non-uniform grid spacing in the x and y
coordinate directions and with Dirichlet boundary conditions specifying the function on the perimeter of
the rectangle equal to

D03EBF NAG Library Manual

D03EBF.6 Mark 26

e 1:0þxð Þ=y n2ð Þ � cos y=y n2ð Þð Þ:

10.1 Program Text

Program d03ebfe

! D03EBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: d03ebf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: two = 2.0_nag_wp
Real (Kind=nag_wp), Parameter :: zero = 0.0_nag_wp
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: aparam, conchn, conres
Integer :: i, ifail, itcoun, itmax, itused, &

ixn, iyn, j, lda, n1, n2, ndir
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), c(:,:), chngs(:), &
d(:,:), e(:,:), q(:,:), resids(:), &
t(:,:), wrksp1(:,:), wrksp2(:,:), &
wrksp3(:,:), x(:), y(:)

! .. Intrinsic Procedures ..
Intrinsic :: cos, exp

! .. Executable Statements ..
Write (nout,*) ’D03EBF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n1, n2, itmax
lda = n1
Allocate (a(lda,n2),b(lda,n2),c(lda,n2),chngs(itmax),d(lda,n2), &

e(lda,n2),q(lda,n2),resids(itmax),t(lda,n2),wrksp1(lda,n2), &
wrksp2(lda,n2),wrksp3(lda,n2),x(n1),y(n2))

Read (nin,*) x(1:n1)
Read (nin,*) y(1:n2)
Read (nin,*) conres, conchn
Read (nin,*) ndir
aparam = one
itcoun = 0

! Set up difference equation coefficients, source terms and
! initial conditions.

a(1:n1,1:n2) = zero
b(1:n1,1:n2) = zero
c(1:n1,1:n2) = zero
d(1:n1,1:n2) = zero
e(1:n1,1:n2) = zero
q(1:n1,1:n2) = zero
t(1:n1,1:n2) = zero

! Non-zero specification for internal nodes
Do j = 2, n2 - 1

Do i = 2, n1 - 1
a(i,j) = two/((y(j)-y(j-1))*(y(j+1)-y(j-1)))
e(i,j) = two/((y(j+1)-y(j))*(y(j+1)-y(j-1)))
b(i,j) = two/((x(i)-x(i-1))*(x(i+1)-x(i-1)))
d(i,j) = two/((x(i+1)-x(i))*(x(i+1)-x(i-1)))
c(i,j) = -a(i,j) - b(i,j) - d(i,j) - e(i,j)

End Do
End Do

! Non-zero specification for boundary nodes
q(1:n1,1) = exp((x(1:n1)+one)/y(n2))*cos(y(1)/y(n2))

D03 – Partial Differential Equations D03EBF

Mark 26 D03EBF.7

q(1:n1,n2) = exp((x(1:n1)+one)/y(n2))*cos(y(n2)/y(n2))
q(1,1:n2) = exp((x(1)+one)/y(n2))*cos(y(1:n2)/y(n2))
q(n1,1:n2) = exp((x(n1)+one)/y(n2))*cos(y(1:n2)/y(n2))

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call d03ebf(n1,n2,lda,a,b,c,d,e,q,t,aparam,itmax,itcoun,itused,ndir,ixn, &

iyn,conres,conchn,resids,chngs,wrksp1,wrksp2,wrksp3,ifail)

Write (nout,*) ’Iteration Maximum Maximum’
Write (nout,*) ’ number residual change’
Write (nout,99999)(i,resids(i),chngs(i),i=1,itused)
Write (nout,*)
Write (nout,*) ’Table of calculated function values’
Write (nout,*)
Write (nout,99998)(i,i=1,6)
Write (nout,*) ’ J’
Do j = 1, n2

Write (nout,99997) j, (t(i,j),i=1,n1)
End Do

99999 Format (2X,I2,10X,E11.4,4X,E11.4)
99998 Format (1X,’ I’,1X,6(I4,7X))
99997 Format (1X,I2,1X,6(F9.3,2X))

End Program d03ebfe

10.2 Program Data

D03EBF Example Program Data
6 10 18 : n1, n2, itmax
0.0 1.0 3.0 6.0 10.0 15.0 : x
0.0 1.0 3.0 6.0 10.0
15.0 21.0 28.0 36.0 45.0 : y
0.1E-5 0.1E-5 : conres, conchn
1 : ndir

10.3 Program Results

D03EBF Example Program Results

Iteration Maximum Maximum
number residual change
1 0.1427E+01 0.1427E+01
2 0.6671E-02 0.2176E-01
3 0.8422E-03 0.1621E-02
4 0.7635E-04 0.1810E-03
5 0.5434E-05 0.1199E-04
6 0.6471E-06 0.1245E-05
7 0.5467E-07 0.1081E-06

Table of calculated function values

I 1 2 3 4 5 6
J
1 1.022 1.045 1.093 1.168 1.277 1.427
2 1.022 1.045 1.093 1.168 1.277 1.427
3 1.020 1.043 1.091 1.166 1.274 1.424
4 1.013 1.036 1.083 1.158 1.266 1.414
5 0.997 1.020 1.066 1.140 1.246 1.392
6 0.966 0.988 1.033 1.104 1.207 1.348
7 0.913 0.934 0.976 1.044 1.141 1.274
8 0.831 0.850 0.888 0.950 1.038 1.160
9 0.712 0.728 0.762 0.814 0.890 0.994

10 0.552 0.565 0.591 0.631 0.690 0.771

D03EBF NAG Library Manual

D03EBF.8 Mark 26

Example Program
Solution to Laplace’s Equation

using the Strongly Implicit Procedure on a Five-point Molecule Discretisation

 0 5 10 15 20 25 30 35 40 45Y 0
 2

 4
 6

 8
 10

 12
 14

 16

X

 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4
 1.5

U

D03 – Partial Differential Equations D03EBF

Mark 26 D03EBF.9 (last)

	D03EBF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Jacobs (1972)
	Stone (1968)

	5 Arguments
	N1
	N2
	LDA
	A
	B
	C
	D
	E
	Q
	T
	APARAM
	ITMAX
	ITCOUN
	ITUSED
	NDIR
	IXN
	IYN
	CONRES
	CONCHN
	RESIDS
	CHNGS
	WRKSP1
	WRKSP2
	WRKSP3
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Fortran Library Manual, Mark 26.1
	Copyright Statement
	Foreword
	Introduction
	How to Use the NAG Library and its Documentation
	Mark 26.1 NAG Fortran Library News
	Implementation-specific Details for Users
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Code Contributors
	Support from NAG
	Index

	Chapters of the Library
	A00 - Library Identification
	A00 Chapter Contents
	A00 Chapter Introduction

	A02 - Complex Arithmetic
	A02 Chapter Contents
	A02 Chapter Introduction

	C02 - Zeros of Polynomials
	C02 Chapter Contents
	C02 Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	C05 Chapter Contents
	C05 Chapter Introduction

	C06 - Summation of Series
	C06 Chapter Contents
	C06 Chapter Introduction

	C09 - Wavelet Transforms
	C09 Chapter Contents
	C09 Chapter Introduction

	D01 - Quadrature
	D01 Chapter Contents
	D01 Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 Chapter Contents
	D02 Chapter Introduction
	D02M-N Sub-chapter Introduction

	D03 - Partial Differential Equations
	D03 Chapter Contents
	D03 Chapter Introduction

	D04 - Numerical Differentiation
	D04 Chapter Contents
	D04 Chapter Introduction

	D05 - Integral Equations
	D05 Chapter Contents
	D05 Chapter Introduction

	D06 - Mesh Generation
	D06 Chapter Contents
	D06 Chapter Introduction

	E01 - Interpolation
	E01 Chapter Contents
	E01 Chapter Introduction

	E02 - Curve and Surface Fitting
	E02 Chapter Contents
	E02 Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	E04 Chapter Contents
	E04 Chapter Introduction

	E05 - Global Optimization of a Function
	E05 Chapter Contents
	E05 Chapter Introduction

	F - Linear Algebra
	F Chapter Contents
	F Chapter Introduction

	F01 - Matrix Operations, Including Inversion
	F01 Chapter Contents
	F01 Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	F02 Chapter Contents
	F02 Chapter Introduction

	F03 - Determinants
	F03 Chapter Contents
	F03 Chapter Introduction

	F04 - Simultaneous Linear Equations
	F04 Chapter Contents
	F04 Chapter Introduction

	F05 - Orthogonalization
	F05 Chapter Contents
	F05 Chapter Introduction

	F06 - Linear Algebra Support Routines
	F06 Chapter Contents
	F06 Chapter Introduction

	F07 - Linear Equations (LAPACK)
	F07 Chapter Contents
	F07 Chapter Introduction

	F08 - Least Squares and Eigenvalue Problems (LAPACK)
	F08 Chapter Contents
	F08 Chapter Introduction

	F11 - Large Scale Linear Systems
	F11 Chapter Contents
	F11 Chapter Introduction

	F12 - Large Scale Eigenproblems
	F12 Chapter Contents
	F12 Chapter Introduction

	F16 - Further Linear Algebra Support Routines
	F16 Chapter Contents
	F16 Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	G01 Chapter Contents
	G01 Chapter Introduction

	G02 - Correlation and Regression Analysis
	G02 Chapter Contents
	G02 Chapter Introduction

	G03 - Multivariate Methods
	G03 Chapter Contents
	G03 Chapter Introduction

	G04 - Analysis of Variance
	G04 Chapter Contents
	G04 Chapter Introduction

	G05 - Random Number Generators
	G05 Chapter Contents
	G05 Chapter Introduction

	G07 - Univariate Estimation
	G07 Chapter Contents
	G07 Chapter Introduction

	G08 - Nonparametric Statistics
	G08 Chapter Contents
	G08 Chapter Introduction

	G10 - Smoothing in Statistics
	G10 Chapter Contents
	G10 Chapter Introduction

	G11 - Contingency Table Analysis
	G11 Chapter Contents
	G11 Chapter Introduction

	G12 - Survival Analysis
	G12 Chapter Contents
	G12 Chapter Introduction

	G13 - Time Series Analysis
	G13 Chapter Contents
	G13 Chapter Introduction

	G22 - Linear Model Specification
	G22 Chapter Contents
	G22 Chapter Introduction

	H - Operations Research
	H Chapter Contents
	H Chapter Introduction

	M01 - Sorting and Searching
	M01 Chapter Contents
	M01 Chapter Introduction

	S - Approximations of Special Functions
	S Chapter Contents
	S Chapter Introduction

	X01 - Mathematical Constants
	X01 Chapter Contents
	X01 Chapter Introduction

	X02 - Machine Constants
	X02 Chapter Contents
	X02 Chapter Introduction

	X03 - Inner Products
	X03 Chapter Contents
	X03 Chapter Introduction

	X04 - Input/Output Utilities
	X04 Chapter Contents
	X04 Chapter Introduction

	X05 - Date and Time Utilities
	X05 Chapter Contents
	X05 Chapter Introduction

	X06 - OpenMP Utilities
	X06 Chapter Contents
	X06 Chapter Introduction

	X07 - IEEE Arithmetic
	X07 Chapter Contents
	X07 Chapter Introduction

