NAG Library Routine Document
 D03MAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

D03MAF places a triangular mesh over a given two-dimensional region. The region may have any shape, including one with holes.

2 Specification

```
SUBROUTINE DO3MAF (H, M, N, NB, NPTS, PLACES, INDX, SDINDX, ISIN, DIST,
        SDDIST, IFAIL)
INTEGER M, N, NB, NPTS, INDX(4,SDINDX), SDINDX, ISIN, &
    SDDIST, IFAIL
REAL (KIND=nag_wp) H, PLACES(2,SDINDX), DIST(4,SDDIST)
EXTERNAL ISIN
```


3 Description

D03MAF begins with a uniform triangular grid as shown in Figure 1 and assumes that the region to be triangulated lies within the rectangle given by the inequalities

$$
0<x<\sqrt{3}(m-1) h, \quad 0<y<(n-1) h
$$

This rectangle is drawn in bold in Figure 1. The region is specified by the ISIN which must determine whether any given point (x, y) lies in the region. The uniform grid is processed column-wise, with $\left(x_{1}, y_{1}\right)$ preceding $\left(x_{2}, y_{2}\right)$ if $x_{1}<x_{2}$ or $x_{1}=x_{2}, y_{1}<y_{2}$. Points near the boundary are moved onto it and points well outside the boundary are omitted. The direction of movement is chosen to avoid pathologically thin triangles. The points accepted are numbered in exactly the same order as the corresponding points of the uniform grid were scanned. The output consists of the x, y coordinates of all grid points and integers indicating whether they are internal and to which other points they are joined by triangle sides.

The mesh size h must be chosen small enough for the essential features of the region to be apparent from testing all points of the original uniform grid for being inside the region. For instance if any hole is within $2 h$ of another hole or the outer boundary then a triangle may be found with all vertices within $\frac{1}{2} h$ of a boundary. Such a triangle is taken to be external to the region so the effect will be to join the hole to another hole or to the external region.
Further details of the algorithm are given in the references.

Figure 1

4 References

Reid J K (1970) Fortran subroutines for the solutions of Laplace's equation over a general routine in two dimensions Harwell Report TP422

Reid J K (1972) On the construction and convergence of a finite-element solution of Laplace's equation J. Instr. Math. Appl. 9 1-13

5 Arguments

1: H - REAL (KIND=nag_wp) Input
On entry: h, the required length for the sides of the triangles of the uniform mesh.
2: M - INTEGER Input
3: N - INTEGER Input
On entry: values m and n such that all points (x, y) inside the region satisfy the inequalities

$$
\begin{aligned}
& 0 \leq x \leq \sqrt{3}(m-1) h \\
& 0 \leq y \leq(n-1) h
\end{aligned}
$$

Constraint: $\mathrm{M}=\mathrm{N}>2$.

4: NB - INTEGER
Input
On entry: the number of times a triangle side is bisected to find a point on the boundary. A value of 10 is adequate for most purposes (see Section 7).
Constraint: $\mathrm{NB} \geq 1$.
5: NPTS - INTEGER
Output
On exit: the number of points in the triangulation.
6: PLACES (2, SDINDX) - REAL (KIND=nag_wp) array
Output
On exit: the x and y coordinates respectively of the i th point of the triangulation.
7: $\quad \operatorname{INDX}(4$, SDINDX $)$ - INTEGER array
Output
On exit: $\operatorname{INDX}(1, i)$ contains i if point i is inside the region and $-i$ if it is on the boundary. For each triangle side between points i and j with $j>i$, $\operatorname{INDX}(k, i), k>1$, contains j or $-j$ according to whether point j is internal or on the boundary. There can never be more than three such points. If there are less, then some values $\operatorname{INDX}(k, i), k>1$, are zero.

8: SDINDX - INTEGER
Input
On entry: the second dimension of the arrays PLACES and INDX as declared in the (sub) program from which D03MAF is called.
Constraint: SDINDX \geq NPTS.
9: ISIN - INTEGER FUNCTION, supplied by the user.
ISIN must return the value 1 if the given point (X, Y) lies inside the region, and 0 if it lies outside.

```
The specification of ISIN is:
FUNCTION ISIN (X, Y)
INTEGER ISIN
REAL (KIND=nag_wp) X, Y
```

```
1: X - REAL (KIND=nag_wp) Input
2: Y - REAL (KIND=nag_wp) Input
    On entry: the coordinates of the given point.
```

ISIN must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub) program from which D03MAF is called. Arguments denoted as Input must not be changed by this procedure.

10: DIST(4, SDDIST) - REAL (KIND=nag_wp) array Workspace
11: SDDIST - INTEGER Input
On entry: the second dimension of the array DIST as declared in the (sub)program from which D03MAF is called.

Constraint: $\operatorname{SDDIST} \geq 4 \mathrm{~N}$.
12: IFAIL - INTEGER
Input/Output
On entry: IFAIL must be set to $0,-1$ or 1 . If you are unfamiliar with this argument you should refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this argument, the recommended value is 0 . When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL $=0$ unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL $=0$ or -1 , explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors or warnings detected by the routine:
IFAIL $=1$
SDINDX is too small.
IFAIL $=2$
A point inside the region violates one of the constraints (see arguments M and N).
IFAIL $=3$
SDDIST is too small.
IFAIL $=4$
$\mathrm{M} \leq 2$.
IFAIL $=5$

$$
\mathrm{N} \leq 2
$$

IFAIL $=6$

$$
\mathrm{NB} \leq 0 .
$$

IFAIL $=-99$
An unexpected error has been triggered by this routine. Please contact NAG.
See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
IFAIL $=-399$
Your licence key may have expired or may not have been installed correctly.
See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
IFAIL $=-999$
Dynamic memory allocation failed.
See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Points are moved onto the boundary by bisecting a triangle side NB times. The accuracy is therefore $h \times 2^{-N B}$.

8 Parallelism and Performance

D03MAF is not threaded in any implementation.

9 Further Comments

The time taken is approximately proportional to $m \times n$.

10 Example

The following program triangulates the circle with centre (7.0, 7.0) and radius 6.0 using a basic grid size $h=4.0$.

10.1 Program Text

```
DO3MAF Example Program Text
Mark 26 Release. NAG Copyright 2016.
Module dO3mafe_mod
    DO3MAF Example Program Module:
            Parameters and User-defined Routines
    .. Use Statements ..
    Use nag_library, Only: nag_wp
        .. Implicit None Statement ..
        Implicit None
        .. Accessibility Statements ..
        Private
        Public :: isin
    .. Parameters ..
    Real (Kind=nag_wp), Parameter :: rad = 6.0_nag_wp
    Real (Kind=nag_wp), Parameter :: xmid = 7.0__nag_wp
    Real (Kind=nag_wp), Parameter :: ymid = 7.0_nag_wp
    Integer, Parameter, Public :: nin = 5, nout = 6
Contains
    Function isin(x,y)
            Circular domain
            .. Function Return Value ..
            Integer :: isin
            .. Scalar Arguments ..
```

```
    Real (Kind=nag_wp), Intent (In) :: x, y
!
    .. Executable Statements ..
    If ((x-xmid)**2+(y-ymid)**2<=rad**2) Then
        isin = 1
    Else
        isin = 0
        End If
        Return
    End Function isin
    End Module dO3mafe_mod
    Program dO3mafe
    DO3MAF Example Main Program
    .. Use Statements ..
    Use nag_library, Only: dO3maf, nag_wp
    Use dO3mafe_mod, Only: isin, nin, nout
! .. Implicit None Statement ..
    Implicit None
! .. Local Scalars ..
    Real (Kind=nag_wp) :: h
    Integer :: i, ifail, m, n, nb, npts, sddist, &
        sdindx
! .. Local Arrays ..
    Real (Kind=nag_wp), Allocatable :: dist(:,:), places(:,:)
    Integer, Allocatable :: indx(:,:)
! .. Executable Statements ..
    Write (nout,*) 'DO3MAF Example Program Results'
    Write (nout,*)
! Skip heading in data file
    Read (nin,*)
    Read (nin,*) sddist, sdindx
    Allocate (dist(4,sddist),places(2,sdindx),indx(4,sdindx))
    Read (nin,*) h
    Read (nin,*) m, n, nb
    ifail: behaviour on error exit
        =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
    ifail = 0
    Call dO3maf(h,m,n,nb,npts,places,indx,sdindx,isin,dist,sddist,ifail)
    Write (nout,*) ' I X(I) Y(I)'
    Do i = 1, npts
        Write (nout,99999) i, places(1,i), places(2,i)
    End Do
    Write (nout,*)
    Write (nout,*) 'INDX'
    Write (nout,99998)(indx(1:4,i),i=1,npts)
99999 Format (1X,I3,2F10.6)
99998 Format (1X,4I5)
    End Program dO3mafe
```


10.2 Program Data

```
DO3MAF Example Program Data
    20100 : sddist, sdindx
    4.0 : h
    3 10 : m, n, nb
```


10.3 Program Results

D03MAF	Example Program R	
I	X(I)	$Y(I)$
1	1.013182	6.584961
2	1.412366	9.184570
3	2.268242	3.309570

4	3.464102	8.000000
5	3.584195	11.930664
6	6.928203	1.001953
7	6.928203	6.000000
8	6.928203	10.000000
9	6.928203	12.998047
10	11.686269	3.252930
11	10.392305	8.000000
12	10.392305	11.947266
13	12.978541	6.506836
14	12.562443	9.252930

INDX			
-1	-3	4	-2
-2	4	-5	0
-3	-6	7	4
4	7	8	-5
-5	8	-9	0
-6	0	-10	7
7	-10	11	8
8	11	-12	-9
-9	-12	0	0
-10	0	-13	11
11	-13	-14	-12
-12	-14	0	0
-13	0	0	-14
-14	0	0	0

Example Program
Triangulation of a Circle
with centre $(7,7)$ and radius 6 using grid size $=4$

