
NAG Library Routine Document

D03PLF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D03PLF integrates a system of linear or nonlinear convection-diffusion equations in one space
dimension, with optional source terms and scope for coupled ordinary differential equations (ODEs).
The system must be posed in conservative form. Convection terms are discretized using a sophisticated
upwind scheme involving a user-supplied numerical flux function based on the solution of a Riemann
problem at each mesh point. The method of lines is employed to reduce the partial differential equations
(PDEs) to a system of ODEs, and the resulting system is solved using a backward differentiation
formula (BDF) method or a Theta method.

2 Specification

SUBROUTINE D03PLF (NPDE, TS, TOUT, PDEDEF, NUMFLX, BNDARY, U, NPTS, X,
NCODE, ODEDEF, NXI, XI, NEQN, RTOL, ATOL, ITOL, NORM,
LAOPT, ALGOPT, RSAVE, LRSAVE, ISAVE, LISAVE, ITASK,
ITRACE, IND, IFAIL)

&
&
&

INTEGER NPDE, NPTS, NCODE, NXI, NEQN, ITOL, LRSAVE,
ISAVE(LISAVE), LISAVE, ITASK, ITRACE, IND, IFAIL

&

REAL (KIND=nag_wp) TS, TOUT, U(NEQN), X(NPTS), XI(*), RTOL(*), ATOL(*),
ALGOPT(30), RSAVE(LRSAVE)

&

CHARACTER(1) NORM, LAOPT
EXTERNAL PDEDEF, NUMFLX, BNDARY, ODEDEF

3 Description

D03PLF integrates the system of convection-diffusion equations in conservative form:

XNPDE
j¼1

Pi;j
@Uj

@t
þ @Fi

@x
¼ Ci

@Di

@x
þ Si; ð1Þ

or the hyperbolic convection-only system:

@Ui

@t
þ @Fi

@x
¼ 0; ð2Þ

for i ¼ 1; 2; . . . ;NPDE; a � x � b; t � t0, where the vector U is the set of PDE solution values

U x; tð Þ ¼ U1 x; tð Þ; . . . ; UNPDE x; tð Þ½ �T:
The optional coupled ODEs are of the general form

Ri t; V ; _V ; �; U�; U�
x; U

�
t

� � ¼ 0; i ¼ 1; 2; . . . ;NCODE; ð3Þ
where the vector V is the set of ODE solution values

V tð Þ ¼ V1 tð Þ; . . . ; VNCODE tð Þ½ �T;
_V denotes its derivative with respect to time, and Ux is the spatial derivative of U .

In (1), Pi;j, Fi and Ci depend on x, t, U and V ; Di depends on x, t, U , Ux and V ; and Si depends on x,
t, U , V and linearly on _V . Note that Pi;j, Fi, Ci and Si must not depend on any space derivatives, and

Pi;j, Fi, Ci and Di must not depend on any time derivatives. In terms of conservation laws, Fi,
Ci@Di

@x
and Si are the convective flux, diffusion and source terms respectively.
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In (3), � represents a vector of n� spatial coupling points at which the ODEs are coupled to the PDEs.
These points may or may not be equal to PDE spatial mesh points. U�, U�

x and U�
t are the functions U ,

Ux and Ut evaluated at these coupling points. Each Ri may depend only linearly on time derivatives.
Hence (3) may be written more precisely as

R ¼ L�M _V �NU�
t ; ð4Þ

where R ¼ R1; . . . ; RNCODE½ �T, L is a vector of length NCODE, M is an NCODE by NCODE matrix, N
is an NCODE by n� � NPDE

� �
matrix and the entries in L, M and N may depend on t, �, U�, U�

x and
V . In practice you only need to supply a vector of information to define the ODEs and not the matrices
L, M and N . (See Section 5 for the specification of ODEDEF.)

The integration in time is from t0 to tout, over the space interval a � x � b, where a ¼ x1 and b ¼ xNPTS

are the leftmost and rightmost points of a user-defined mesh x1; x2; . . . ; xNPTS. The initial values of the
functions U x; tð Þ and V tð Þ must be given at t ¼ t0.

The PDEs are approximated by a system of ODEs in time for the values of Ui at mesh points using a
spatial discretization method similar to the central-difference scheme used in D03PCF/D03PCA,
D03PHF/D03PHA and D03PPF/D03PPA, but with the flux Fi replaced by a numerical flux, which is a
representation of the flux taking into account the direction of the flow of information at that point (i.e.,
the direction of the characteristics). Simple central differencing of the numerical flux then becomes a
sophisticated upwind scheme in which the correct direction of upwinding is automatically achieved.

The numerical flux vector, F̂i say, must be calculated by you in terms of the left and right values of the
solution vector U (denoted by UL and UR respectively), at each mid-point of the mesh
xj�1

2
¼ xj�1 þ xj

� �
=2 , for j ¼ 2; 3; . . . ;NPTS. The left and right values are calculated by D03PLF

from two adjacent mesh points using a standard upwind technique combined with a Van Leer slope-
limiter (see LeVeque (1990)). The physically correct value for F̂i is derived from the solution of the
Riemann problem given by

@Ui

@t
þ @Fi

@y
¼ 0; ð5Þ

where y ¼ x� xj�1
2
, i.e., y ¼ 0 corresponds to x ¼ xj�1

2
, with discontinuous initial values U ¼ UL for

y < 0 and U ¼ UR for y > 0, using an approximate Riemann solver. This applies for either of the
systems (1) or (2); the numerical flux is independent of the functions Pi;j, Ci, Di and Si. A description
of several approximate Riemann solvers can be found in LeVeque (1990) and Berzins et al. (1989).
Roe's scheme (see Roe (1981)) is perhaps the easiest to understand and use, and a brief summary
follows. Consider the system of PDEs Ut þ Fx ¼ 0 or equivalently Ut þAUx ¼ 0. Provided the system
is linear in U , i.e., the Jacobian matrix A does not depend on U , the numerical flux F̂ is given by

F̂ ¼ 1
2 FL þ FRð Þ � 1

2

XNPDE
k¼1

�k �kj jek; ð6Þ

where FL (FR) is the flux F calculated at the left (right) value of U , denoted by UL (UR); the �k are the
eigenvalues of A; the ek are the right eigenvectors of A; and the �k are defined by

UR � UL ¼
XNPDE
k¼1

�kek: ð7Þ

An example is given in Section 10 and in the D03PFF documentation.

If the system is nonlinear, Roe's scheme requires that a linearized Jacobian is found (see Roe (1981)).

The functions Pi;j, Ci, Di and Si (but not Fi) must be specified in PDEDEF. The numerical flux F̂i

must be supplied in a separate NUMFLX. For problems in the form (2), the actual argument D03PLP
may be used for PDEDEF. D03PLP is included in the NAG Library and sets the matrix with entries Pi;j

to the identity matrix, and the functions Ci, Di and Si to zero.

The boundary condition specification has sufficient flexibility to allow for different types of problems.
For second-order problems, i.e., Di depending on Ux, a boundary condition is required for each PDE at
both boundaries for the problem to be well-posed. If there are no second-order terms present, then the
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continuous PDE problem generally requires exactly one boundary condition for each PDE, that is
NPDE boundary conditions in total. However, in common with most discretization schemes for first-
order problems, a numerical boundary condition is required at the other boundary for each PDE. In
order to be consistent with the characteristic directions of the PDE system, the numerical boundary
conditions must be derived from the solution inside the domain in some manner (see below). You must
supply both types of boundary condition, i.e., a total of NPDE conditions at each boundary point.

The position of each boundary condition should be chosen with care. In simple terms, if information is
flowing into the domain then a physical boundary condition is required at that boundary, and a
numerical boundary condition is required at the other boundary. In many cases the boundary conditions
are simple, e.g., for the linear advection equation. In general you should calculate the characteristics of
the PDE system and specify a physical boundary condition for each of the characteristic variables
associated with incoming characteristics, and a numerical boundary condition for each outgoing
characteristic.

A common way of providing numerical boundary conditions is to extrapolate the characteristic
variables from the inside of the domain (note that when using banded matrix algebra the fixed
bandwidth means that only linear extrapolation is allowed, i.e., using information at just two interior
points adjacent to the boundary). For problems in which the solution is known to be uniform (in space)
towards a boundary during the period of integration then extrapolation is unnecessary; the numerical
boundary condition can be supplied as the known solution at the boundary. Another method of
supplying numerical boundary conditions involves the solution of the characteristic equations associated
with the outgoing characteristics. Examples of both methods can be found in Section 10 and in the
D03PFF documentation.

The boundary conditions must be specified in BNDARY in the form

GL
i x; t; U; V ; _V
� � ¼ 0 at x ¼ a; i ¼ 1; 2; . . . ;NPDE; ð8Þ

at the left-hand boundary, and

GR
i x; t; U; V ; _V
� � ¼ 0 at x ¼ b; i ¼ 1; 2; . . . ;NPDE; ð9Þ

at the right-hand boundary.

Note that spatial derivatives at the boundary are not passed explicitly to BNDARY, but they can be
calculated using values of U at and adjacent to the boundaries if required. However, it should be noted
that instabilities may occur if such one-sided differencing opposes the characteristic direction at the
boundary.

The algebraic-differential equation system which is defined by the functions Ri must be specified in
ODEDEF. You must also specify the coupling points � (if any) in the array XI.

The problem is subject to the following restrictions:

(i) In (1), _Vj tð Þ, for j ¼ 1; 2; . . . ;NCODE, may only appear linearly in the functions Si, for
i ¼ 1; 2; . . . ;NPDE, with a similar restriction for GL

i and GR
i ;

(ii) Pi;j, Fi, Ci and Si must not depend on any space derivatives; and Pi;j, Fi, Ci and Di must not
depend on any time derivatives;

(iii) t0 < tout, so that integration is in the forward direction;

(iv) The evaluation of the terms Pi;j, Ci, Di and Si is done by calling the PDEDEF at a point
approximately midway between each pair of mesh points in turn. Any discontinuities in these
functions must therefore be at one or more of the mesh points x1; x2; . . . ; xNPTS;

(v) At least one of the functions Pi;j must be nonzero so that there is a time derivative present in the
PDE problem.

In total there are NPDE� NPTSþ NCODE ODEs in the time direction. This system is then integrated
forwards in time using a BDF or Theta method, optionally switching between Newton's method and
functional iteration (see Berzins et al. (1989)).

For further details of the scheme, see Pennington and Berzins (1994) and the references therein.
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5 Arguments

1: NPDE – INTEGER Input

On entry: the number of PDEs to be solved.

Constraint: NPDE � 1.

2: TS – REAL (KIND=nag_wp) Input/Output

On entry: the initial value of the independent variable t.

On exit: the value of t corresponding to the solution values in U. Normally TS ¼ TOUT.

Constraint: TS < TOUT.

3: TOUT – REAL (KIND=nag_wp) Input

On entry: the final value of t to which the integration is to be carried out.

4: PDEDEF – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

PDEDEF must evaluate the functions Pi;j, Ci, Di and Si which partially define the system of
PDEs. Pi;j and Ci may depend on x, t, U and V ; Di may depend on x, t, U , Ux and V ; and Si

may depend on x, t, U , V and linearly on _V . PDEDEF is called approximately midway between
each pair of mesh points in turn by D03PLF. The actual argument D03PLP may be used for
PDEDEF for problems in the form (2). (D03PLP is included in the NAG Library.)

The specification of PDEDEF is:

SUBROUTINE PDEDEF (NPDE, T, X, U, UX, NCODE, V, VDOT, P, C, D, S,
IRES)

&

INTEGER NPDE, NCODE, IRES
REAL (KIND=nag_wp) T, X, U(NPDE), UX(NPDE), V(NCODE),

VDOT(NCODE), P(NPDE,NPDE), C(NPDE), D(NPDE),
S(NPDE)

&
&

1: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

2: T – REAL (KIND=nag_wp) Input

On entry: the current value of the independent variable t.
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3: X – REAL (KIND=nag_wp) Input

On entry: the current value of the space variable x.

4: UðNPDEÞ – REAL (KIND=nag_wp) array Input

On entry: UðiÞ contains the value of the component Ui x; tð Þ, for i ¼ 1; 2; . . . ;NPDE.

5: UXðNPDEÞ – REAL (KIND=nag_wp) array Input

On entry: UXðiÞ contains the value of the component
@Ui x; tð Þ

@x
, for i ¼ 1; 2; . . . ;NPDE.

6: NCODE – INTEGER Input

On entry: the number of coupled ODEs in the system.

7: VðNCODEÞ – REAL (KIND=nag_wp) array Input

On entry: if NCODE > 0, VðiÞ contains the value of the component Vi tð Þ, for
i ¼ 1; 2; . . . ;NCODE.

8: VDOTðNCODEÞ – REAL (KIND=nag_wp) array Input

On entry: if NCODE > 0, VDOTðiÞ contains the value of component _Vi tð Þ, for
i ¼ 1; 2; . . . ;NCODE.

Note: _Vi tð Þ, for i ¼ 1; 2; . . . ;NCODE, may only appear linearly in Sj , for
j ¼ 1; 2; . . . ;NPDE.

9: PðNPDE;NPDEÞ – REAL (KIND=nag_wp) array Output

On exit: Pði; jÞ must be set to the value of Pi;j x; t; U; Vð Þ, for i ¼ 1; 2; . . . ;NPDE and
j ¼ 1; 2; . . . ;NPDE.

10: CðNPDEÞ – REAL (KIND=nag_wp) array Output

On exit: CðiÞ must be set to the value of Ci x; t; U; Vð Þ, for i ¼ 1; 2; . . . ;NPDE.

11: DðNPDEÞ – REAL (KIND=nag_wp) array Output

On exit: DðiÞ must be set to the value of Di x; t; U; Ux; Vð Þ, for i ¼ 1; 2; . . . ;NPDE.

12: SðNPDEÞ – REAL (KIND=nag_wp) array Output

On exit: SðiÞ must be set to the value of Si x; t; U; V ; _V
� �

, for i ¼ 1; 2; . . . ;NPDE.

13: IRES – INTEGER Input/Output

On entry: set to �1 or 1.

On exit: should usually remain unchanged. However, you may set IRES to force the
integration routine to take certain actions as described below:

IRES ¼ 2
Indicates to the integrator that control should be passed back immediately to the
calling subroutine with the error indicator set to IFAIL ¼ 6.

IRES ¼ 3
Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set IRES ¼ 3 when a physically
meaningless input or output value has been generated. If you consecutively set
IRES ¼ 3, then D03PLF returns to the calling subroutine with the error indicator
set to IFAIL ¼ 4.
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PDEDEF must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D03PLF is called. Arguments denoted as Input must not be changed by this
procedure.

5: NUMFLX – SUBROUTINE, supplied by the user. External Procedure

NUMFLX must supply the numerical flux for each PDE given the left and right values of the
solution vector U. NUMFLX is called approximately midway between each pair of mesh points
in turn by D03PLF.

The specification of NUMFLX is:

SUBROUTINE NUMFLX (NPDE, T, X, NCODE, V, ULEFT, URIGHT, FLUX,
IRES)

&

INTEGER NPDE, NCODE, IRES
REAL (KIND=nag_wp) T, X, V(NCODE), ULEFT(NPDE), URIGHT(NPDE),

FLUX(NPDE)
&

1: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

2: T – REAL (KIND=nag_wp) Input

On entry: the current value of the independent variable t.

3: X – REAL (KIND=nag_wp) Input

On entry: the current value of the space variable x.

4: NCODE – INTEGER Input

On entry: the number of coupled ODEs in the system.

5: VðNCODEÞ – REAL (KIND=nag_wp) array Input

On entry: if NCODE > 0, VðiÞ contains the value of the component Vi tð Þ, for
i ¼ 1; 2; . . . ;NCODE.

6: ULEFTðNPDEÞ – REAL (KIND=nag_wp) array Input

On entry: ULEFTðiÞ contains the left value of the component Ui xð Þ, for
i ¼ 1; 2; . . . ;NPDE.

7: URIGHTðNPDEÞ – REAL (KIND=nag_wp) array Input

On entry: URIGHTðiÞ contains the right value of the component Ui xð Þ, for
i ¼ 1; 2; . . . ;NPDE.

8: FLUXðNPDEÞ – REAL (KIND=nag_wp) array Output

On exit: FLUXðiÞ must be set to the numerical flux F̂i, for i ¼ 1; 2; . . . ;NPDE.

9: IRES – INTEGER Input/Output

On entry: set to �1 or 1.

On exit: should usually remain unchanged. However, you may set IRES to force the
integration routine to take certain actions as described below:

IRES ¼ 2
Indicates to the integrator that control should be passed back immediately to the
calling subroutine with the error indicator set to IFAIL ¼ 6.
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IRES ¼ 3
Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set IRES ¼ 3 when a physically
meaningless input or output value has been generated. If you consecutively set
IRES ¼ 3, then D03PLF returns to the calling subroutine with the error indicator
set to IFAIL ¼ 4.

NUMFLX must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D03PLF is called. Arguments denoted as Input must not be changed
by this procedure.

6: BNDARY – SUBROUTINE, supplied by the user. External Procedure

BNDARY must evaluate the functions GL
i and GR

i which describe the physical and numerical
boundary conditions, as given by (8) and (9).

The specification of BNDARY is:

SUBROUTINE BNDARY (NPDE, NPTS, T, X, U, NCODE, V, VDOT, IBND, G,
IRES)

&

INTEGER NPDE, NPTS, NCODE, IBND, IRES
REAL (KIND=nag_wp) T, X(NPTS), U(NPDE,NPTS), V(NCODE),

VDOT(NCODE), G(NPDE)
&

1: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

2: NPTS – INTEGER Input

On entry: the number of mesh points in the interval a; b½ �.

3: T – REAL (KIND=nag_wp) Input

On entry: the current value of the independent variable t.

4: XðNPTSÞ – REAL (KIND=nag_wp) array Input

On entry: the mesh points in the spatial direction. Xð1Þ corresponds to the left-hand
boundary, a, and XðNPTSÞ corresponds to the right-hand boundary, b.

5: UðNPDE;NPTSÞ – REAL (KIND=nag_wp) array Input

On entry: Uði; jÞ contains the value of the component Ui x; tð Þ at x ¼ XðjÞ, for
i ¼ 1; 2; . . . ;NPDE and j ¼ 1; 2; . . . ;NPTS.

Note: if banded matrix algebra is to be used then the functions GL
i and GR

i may depend
on the value of Ui x; tð Þ at the boundary point and the two adjacent points only.

6: NCODE – INTEGER Input

On entry: the number of coupled ODEs in the system.

7: VðNCODEÞ – REAL (KIND=nag_wp) array Input

On entry: if NCODE > 0, VðiÞ contains the value of the component Vi tð Þ, for
i ¼ 1; 2; . . . ;NCODE.

8: VDOTðNCODEÞ – REAL (KIND=nag_wp) array Input

On entry: if NCODE > 0, VDOTðiÞ contains the value of component _Vi tð Þ, for
i ¼ 1; 2; . . . ;NCODE.
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Note: _Vi tð Þ, for i ¼ 1; 2; . . . ;NCODE, may only appear linearly in GL
j and GR

j , for
j ¼ 1; 2; . . . ;NPDE.

9: IBND – INTEGER Input

On entry: specifies which boundary conditions are to be evaluated.

IBND ¼ 0
BNDARY must evaluate the left-hand boundary condition at x ¼ a.

IBND 6¼ 0
BNDARY must evaluate the right-hand boundary condition at x ¼ b.

10: GðNPDEÞ – REAL (KIND=nag_wp) array Output

On exit: GðiÞ must contain the ith component of either GL
i or GR

i in (8) and (9),
depending on the value of IBND, for i ¼ 1; 2; . . . ;NPDE.

11: IRES – INTEGER Input/Output

On entry: set to �1 or 1.

On exit: should usually remain unchanged. However, you may set IRES to force the
integration routine to take certain actions as described below:

IRES ¼ 2
Indicates to the integrator that control should be passed back immediately to the
calling subroutine with the error indicator set to IFAIL ¼ 6.

IRES ¼ 3
Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set IRES ¼ 3 when a physically
meaningless input or output value has been generated. If you consecutively set
IRES ¼ 3, then D03PLF returns to the calling subroutine with the error indicator
set to IFAIL ¼ 4.

BNDARY must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D03PLF is called. Arguments denoted as Input must not be changed
by this procedure.

7: UðNEQNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the initial values of the dependent variables defined as follows:

UðNPDE� j � 1ð Þ þ iÞ contain Ui xj ; t0
� �

, for i ¼ 1; 2; . . . ;NPDE and j ¼ 1; 2; . . . ;NPTS,
and

UðNPTS� NPDEþ kÞ contain Vk t0ð Þ, for k ¼ 1; 2; . . . ;NCODE.

On exit: the computed solution Ui xj ; t
� �

, for i ¼ 1; 2; . . . ;NPDE and j ¼ 1; 2; . . . ;NPTS, and
Vk tð Þ, for k ¼ 1; 2; . . . ;NCODE, all evaluated at t ¼ TS.

8: NPTS – INTEGER Input

On entry: the number of mesh points in the interval a; b½ �.
Constraint: NPTS � 3.

9: XðNPTSÞ – REAL (KIND=nag_wp) array Input

On entry: the mesh points in the space direction. Xð1Þ must specify the left-hand boundary, a,
and XðNPTSÞ must specify the right-hand boundary, b.

Constraint: Xð1Þ < Xð2Þ < � � � < XðNPTSÞ.
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10: NCODE – INTEGER Input

On entry: the number of coupled ODE components.

Constraint: NCODE � 0.

11: ODEDEF – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

ODEDEF must evaluate the functions R, which define the system of ODEs, as given in (4).

If you wish to compute the solution of a system of PDEs only (i.e., NCODE ¼ 0), ODEDEF
must be the dummy routine D03PEK. (D03PEK is included in the NAG Library.)

The specification of ODEDEF is:

SUBROUTINE ODEDEF (NPDE, T, NCODE, V, VDOT, NXI, XI, UCP, UCPX,
UCPT, R, IRES)

&

INTEGER NPDE, NCODE, NXI, IRES
REAL (KIND=nag_wp) T, V(NCODE), VDOT(NCODE), XI(NXI),

UCP(NPDE,*), UCPX(NPDE,*), UCPT(NPDE,*),
R(NCODE)

&
&

1: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

2: T – REAL (KIND=nag_wp) Input

On entry: the current value of the independent variable t.

3: NCODE – INTEGER Input

On entry: the number of coupled ODEs in the system.

4: VðNCODEÞ – REAL (KIND=nag_wp) array Input

On entry: if NCODE > 0, VðiÞ contains the value of the component Vi tð Þ, for
i ¼ 1; 2; . . . ;NCODE.

5: VDOTðNCODEÞ – REAL (KIND=nag_wp) array Input

On entry: if NCODE > 0, VDOTðiÞ contains the value of component _Vi tð Þ, for
i ¼ 1; 2; . . . ;NCODE.

6: NXI – INTEGER Input

On entry: the number of ODE/PDE coupling points.

7: XIðNXIÞ – REAL (KIND=nag_wp) array Input

On entry: if NXI > 0, XIðiÞ contains the ODE/PDE coupling point, �i, for
i ¼ 1; 2; . . . ;NXI.

8: UCPðNPDE; �Þ – REAL (KIND=nag_wp) array Input

On entry: if NXI > 0, UCPði; jÞ contains the value of Ui x; tð Þ at the coupling point
x ¼ �j , for i ¼ 1; 2; . . . ;NPDE and j ¼ 1; 2; . . . ;NXI.

9: UCPXðNPDE; �Þ – REAL (KIND=nag_wp) array Input

On entry: if NXI > 0, UCPXði; jÞ contains the value of
@Ui x; tð Þ

@x
at the coupling point

x ¼ �j , for i ¼ 1; 2; . . . ;NPDE and j ¼ 1; 2; . . . ;NXI.
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10: UCPTðNPDE; �Þ – REAL (KIND=nag_wp) array Input

On entry: if NXI > 0, UCPTði; jÞ contains the value of
@Ui

@t
at the coupling point x ¼ �j ,

for i ¼ 1; 2; . . . ;NPDE and j ¼ 1; 2; . . . ;NXI.

11: RðNCODEÞ – REAL (KIND=nag_wp) array Output

On exit: RðiÞ must contain the ith component of R, for i ¼ 1; 2; . . . ;NCODE, where R
is defined as

R ¼ L�M _V �NU�
t ; ð10Þ

or

R ¼ �M _V �NU�
t : ð11Þ

The definition of R is determined by the input value of IRES.

12: IRES – INTEGER Input/Output

On entry: the form of R that must be returned in the array R.

IRES ¼ 1
Equation (10) must be used.

IRES ¼ �1
Equation (11) must be used.

On exit: should usually remain unchanged. However, you may reset IRES to force the
integration routine to take certain actions, as described below:

IRES ¼ 2
Indicates to the integrator that control should be passed back immediately to the
calling (sub)routine with the error indicator set to IFAIL ¼ 6.

IRES ¼ 3
Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set IRES ¼ 3 when a physically
meaningless input or output value has been generated. If you consecutively set
IRES ¼ 3, then D03PLF returns to the calling subroutine with the error indicator
set to IFAIL ¼ 4.

ODEDEF must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D03PLF is called. Arguments denoted as Input must not be changed
by this procedure.

12: NXI – INTEGER Input

On entry: the number of ODE/PDE coupling points.

Constraints:

if NCODE ¼ 0, NXI ¼ 0;
if NCODE > 0, NXI � 0.

13: XIð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array XI must be at least max 1;NXIð Þ.
On entry: XIðiÞ, for i ¼ 1; 2; . . . ;NXI, must be set to the ODE/PDE coupling points.

Constraint: Xð1Þ � XIð1Þ < XIð2Þ < � � � < XIðNXIÞ � XðNPTSÞ.
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14: NEQN – INTEGER Input

On entry: the number of ODEs in the time direction.

Constraint: NEQN ¼ NPDE� NPTSþ NCODE.

15: RTOLð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array RTOL must be at least 1 if ITOL ¼ 1 or 2 and at least NEQN if
ITOL ¼ 3 or 4.

On entry: the relative local error tolerance.

Constraint: RTOLðiÞ � 0:0 for all relevant i.

16: ATOLð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array ATOL must be at least 1 if ITOL ¼ 1 or 3 and at least NEQN if
ITOL ¼ 2 or 4.

On entry: the absolute local error tolerance.

Constraint: ATOLðiÞ � 0:0 for all relevant i.

Note: corresponding elements of RTOL and ATOL cannot both be 0:0.

17: ITOL – INTEGER Input

On entry: a value to indicate the form of the local error test. If ei is the estimated local error for
UðiÞ, for i ¼ 1; 2; . . . ;NEQN, and k k denotes the norm, then the error test to be satisfied is
eik k < 1:0. ITOL indicates to D03PLF whether to interpret either or both of RTOL and ATOL as
a vector or scalar in the formation of the weights wi used in the calculation of the norm (see the
description of NORM):

ITOL RTOL ATOL wi

1 scalar scalar RTOLð1Þ � UðiÞj j þ ATOLð1Þ
2 scalar vector RTOLð1Þ � UðiÞj j þ ATOLðiÞ
3 vector scalar RTOLðiÞ � UðiÞj j þ ATOLð1Þ
4 vector vector RTOLðiÞ � UðiÞj j þ ATOLðiÞ

Constraint: 1 � ITOL � 4.

18: NORM – CHARACTER(1) Input

On entry: the type of norm to be used.

NORM ¼ 1
Averaged L1 norm.

NORM ¼ 2
Averaged L2 norm.

If Unorm denotes the norm of the vector U of length NEQN, then for the averaged L1 norm

Unorm ¼ 1

NEQN

XNEQN
i¼1

UðiÞ=wi;

and for the averaged L2 norm

Unorm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

NEQN

XNEQN
i¼1

UðiÞ=wið Þ2
vuut :

See the description of ITOL for the formulation of the weight vector w.

Constraint: NORM ¼ 1 or 2 .
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19: LAOPT – CHARACTER(1) Input

On entry: the type of matrix algebra required.

LAOPT ¼ F
Full matrix methods to be used.

LAOPT ¼ B
Banded matrix methods to be used.

LAOPT ¼ S
Sparse matrix methods to be used.

Constraint: LAOPT ¼ F , B or S .

Note: you are recommended to use the banded option when no coupled ODEs are present
(NCODE ¼ 0). Also, the banded option should not be used if the boundary conditions involve
solution components at points other than the boundary and the immediately adjacent two points.

20: ALGOPTð30Þ – REAL (KIND=nag_wp) array Input

On entry: may be set to control various options available in the integrator. If you wish to employ
all the default options, then ALGOPTð1Þ should be set to 0:0. Default values will also be used for
any other elements of ALGOPT set to zero. The permissible values, default values, and meanings
are as follows:

ALGOPTð1Þ
Selects the ODE integration method to be used. If ALGOPTð1Þ ¼ 1:0, a BDF method is
used and if ALGOPTð1Þ ¼ 2:0, a Theta method is used. The default is ALGOPTð1Þ ¼ 1:0.

If ALGOPTð1Þ ¼ 2:0, then ALGOPTðiÞ, for i ¼ 2; 3; 4, are not used.

ALGOPTð2Þ
Specifies the maximum order of the BDF integration formula to be used. ALGOPTð2Þ may
be 1:0, 2:0, 3:0, 4:0 or 5:0. The default value is ALGOPTð2Þ ¼ 5:0.

ALGOPTð3Þ
Specifies what method is to be used to solve the system of nonlinear equations arising on
each step of the BDF method. If ALGOPTð3Þ ¼ 1:0 a modified Newton iteration is used
and if ALGOPTð3Þ ¼ 2:0 a functional iteration method is used. If functional iteration is
selected and the integrator encounters difficulty, then there is an automatic switch to the
modified Newton iteration. The default value is ALGOPTð3Þ ¼ 1:0.

ALGOPTð4Þ
Specifies whether or not the Petzold error test is to be employed. The Petzold error test
results in extra overhead but is more suitable when algebraic equations are present, such as
Pi;j ¼ 0:0, for j ¼ 1; 2; . . . ;NPDE, for some i or when there is no _Vi tð Þ dependence in the
coupled ODE system. If ALGOPTð4Þ ¼ 1:0, then the Petzold test is used. If
ALGOPTð4Þ ¼ 2:0, then the Petzold test is not used. The default value is
ALGOPTð4Þ ¼ 1:0.

If ALGOPTð1Þ ¼ 1:0, then ALGOPTðiÞ, for i ¼ 5; 6; 7, are not used.

ALGOPTð5Þ
Specifies the value of Theta to be used in the Theta integration method.
0:51 � ALGOPTð5Þ � 0:99. The default value is ALGOPTð5Þ ¼ 0:55.

ALGOPTð6Þ
Specifies what method is to be used to solve the system of nonlinear equations arising on
each step of the Theta method. If ALGOPTð6Þ ¼ 1:0, a modified Newton iteration is used
and if ALGOPTð6Þ ¼ 2:0, a functional iteration method is used. The default value is
ALGOPTð6Þ ¼ 1:0.

ALGOPTð7Þ
Specifies whether or not the integrator is allowed to switch automatically between
modified Newton and functional iteration methods in order to be more efficient. If
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ALGOPTð7Þ ¼ 1:0, then switching is allowed and if ALGOPTð7Þ ¼ 2:0, then switching is
not allowed. The default value is ALGOPTð7Þ ¼ 1:0.

ALGOPTð11Þ
Specifies a point in the time direction, tcrit, beyond which integration must not be
attempted. The use of tcrit is described under the argument ITASK. If ALGOPTð1Þ 6¼ 0:0, a
value of 0:0 for ALGOPTð11Þ, say, should be specified even if ITASK subsequently
specifies that tcrit will not be used.

ALGOPTð12Þ
Specifies the minimum absolute step size to be allowed in the time integration. If this
option is not required, ALGOPTð12Þ should be set to 0:0.

ALGOPTð13Þ
Specifies the maximum absolute step size to be allowed in the time integration. If this
option is not required, ALGOPTð13Þ should be set to 0:0.

ALGOPTð14Þ
Specifies the initial step size to be attempted by the integrator. If ALGOPTð14Þ ¼ 0:0, then
the initial step size is calculated internally.

ALGOPTð15Þ
Specifies the maximum number of steps to be attempted by the integrator in any one call.
If ALGOPTð15Þ ¼ 0:0, then no limit is imposed.

ALGOPTð23Þ
Specifies what method is to be used to solve the nonlinear equations at the initial point to
initialize the values of U , Ut, V and _V . If ALGOPTð23Þ ¼ 1:0, a modified Newton
iteration is used and if ALGOPTð23Þ ¼ 2:0, functional iteration is used. The default value
is ALGOPTð23Þ ¼ 1:0.

ALGOPTð29Þ and ALGOPTð30Þ are used only for the sparse matrix algebra option, i.e.,
LAOPT ¼ S .

ALGOPTð29Þ
Governs the choice of pivots during the decomposition of the first Jacobian matrix. It
should lie in the range 0:0 < ALGOPTð29Þ < 1:0, with smaller values biasing the
algorithm towards maintaining sparsity at the expense of numerical stability. If
ALGOPTð29Þ lies outside the range then the default value is used. If the routines regard
the Jacobian matrix as numerically singular, then increasing ALGOPTð29Þ towards 1:0
may help, but at the cost of increased fill-in. The default value is ALGOPTð29Þ ¼ 0:1.

ALGOPTð30Þ
Used as the relative pivot threshold during subsequent Jacobian decompositions (see
ALGOPTð29Þ) below which an internal error is invoked. ALGOPTð30Þ must be greater
than zero, otherwise the default value is used. If ALGOPTð30Þ is greater than 1:0 no check
is made on the pivot size, and this may be a necessary option if the Jacobian matrix is
found to be numerically singular (see ALGOPTð29Þ). The default value is
ALGOPTð30Þ ¼ 0:0001.

21: RSAVEðLRSAVEÞ – REAL (KIND=nag_wp) array Communication Array

If IND ¼ 0, RSAVE need not be set on entry.

If IND ¼ 1, RSAVE must be unchanged from the previous call to the routine because it contains
required information about the iteration.

22: LRSAVE – INTEGER Input

On entry: the dimension of the array RSAVE as declared in the (sub)program from which
D03PLF is called. Its size depends on the type of matrix algebra selected.

If LAOPT ¼ F , LRSAVE � NEQN� NEQNþ NEQNþ nwkres þ lenode.

If LAOPT ¼ B , LRSAVE � 3�mlu þ 1ð Þ � NEQNþ nwkres þ lenode.

D03 – Partial Differential Equations D03PLF

Mark 26 D03PLF.13



If LAOPT ¼ S , LRSAVE � 4� NEQNþ 11� NEQN=2þ 1þ nwkres þ lenode.

Where

mlu is the lower or upper half bandwidths such that
mlu ¼ 3� NPDE� 1, for PDE problems only (no coupled ODEs); or
mlu ¼ NEQN� 1, for coupled PDE/ODE problems.

nwkres ¼
NPDE� 2� NPTSþ 6� NXIþ 3� NPDEþ 26ð Þ þ NXIþ NCODEþ 7� NPTSþ 2; when NCODE > 0 and NXI > 0;
NPDE� 2� NPTSþ 3� NPDEþ 32ð Þ þ NCODEþ 7� NPTSþ 3; when NCODE > 0 and NXI ¼ 0;
NPDE� 2� NPTSþ 3� NPDEþ 32ð Þ þ 7� NPTSþ 4; when NCODE ¼ 0:

8<
:

lenode ¼ 6þ int ALGOPTð2Þð Þð Þ � NEQNþ 50; when the BDF method is used; or
9� NEQNþ 50; when the Theta method is used:

�

Note: when LAOPT ¼ S , the value of LRSAVE may be too small when supplied to the
integrator. An estimate of the minimum size of LRSAVE is printed on the current error message
unit if ITRACE > 0 and the routine returns with IFAIL ¼ 15.

23: ISAVEðLISAVEÞ – INTEGER array Communication Array

If IND ¼ 0, ISAVE need not be set.

If IND ¼ 1, ISAVE must be unchanged from the previous call to the routine because it contains
required information about the iteration. In particular the following components of the array
ISAVE concern the efficiency of the integration:

ISAVEð1Þ
Contains the number of steps taken in time.

ISAVEð2Þ
Contains the number of residual evaluations of the resulting ODE system used. One such
evaluation involves evaluating the PDE functions at all the mesh points, as well as one
evaluation of the functions in the boundary conditions.

ISAVEð3Þ
Contains the number of Jacobian evaluations performed by the time integrator.

ISAVEð4Þ
Contains the order of the BDF method last used in the time integration, if applicable.
When the Theta method is used, ISAVEð4Þ contains no useful information.

ISAVEð5Þ
Contains the number of Newton iterations performed by the time integrator. Each iteration
involves residual evaluation of the resulting ODE system followed by a back-substitution
using the LU decomposition of the Jacobian matrix.

24: LISAVE – INTEGER Input

On entry: the dimension of the array ISAVE as declared in the (sub)program from which D03PLF
is called. Its size depends on the type of matrix algebra selected:

if LAOPT ¼ F , LISAVE � 24;

if LAOPT ¼ B , LISAVE � NEQNþ 24;

if LAOPT ¼ S , LISAVE � 25� NEQNþ 24.

Note: when using the sparse option, the value of LISAVE may be too small when supplied to the
integrator. An estimate of the minimum size of LISAVE is printed on the current error message
unit if ITRACE > 0 and the routine returns with IFAIL ¼ 15.

25: ITASK – INTEGER Input

On entry: the task to be performed by the ODE integrator.

ITASK ¼ 1
Normal computation of output values U at t ¼ TOUT (by overshooting and interpolating).
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ITASK ¼ 2
Take one step in the time direction and return.

ITASK ¼ 3
Stop at first internal integration point at or beyond t ¼ TOUT.

ITASK ¼ 4
Normal computation of output values U at t ¼ TOUT but without overshooting t ¼ tcrit
where tcrit is described under the argument ALGOPT.

ITASK ¼ 5
Take one step in the time direction and return, without passing tcrit, where tcrit is described
under the argument ALGOPT.

Constraint: ITASK ¼ 1, 2, 3, 4 or 5.

26: ITRACE – INTEGER Input

On entry: the level of trace information required from D03PLF and the underlying ODE solver.
ITRACE may take the value �1, 0, 1, 2 or 3.

ITRACE ¼ �1
No output is generated.

ITRACE ¼ 0
Only warning messages from the PDE solver are printed on the current error message unit
(see X04AAF).

ITRACE > 0
Output from the underlying ODE solver is printed on the current advisory message unit
(see X04ABF). This output contains details of Jacobian entries, the nonlinear iteration and
the time integration during the computation of the ODE system.

If ITRACE < �1, then �1 is assumed and similarly if ITRACE > 3, then 3 is assumed.

The advisory messages are given in greater detail as ITRACE increases. You are advised to set
ITRACE ¼ 0, unless you are experienced with Sub-chapter D02M–N.

27: IND – INTEGER Input/Output

On entry: indicates whether this is a continuation call or a new integration.

IND ¼ 0
Starts or restarts the integration in time.

IND ¼ 1
Continues the integration after an earlier exit from the routine. In this case, only the
arguments TOUT and IFAIL should be reset between calls to D03PLF.

Constraint: IND ¼ 0 or 1.

On exit: IND ¼ 1.

28: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, TS � TOUT,
or TOUT� TS is too small,
or ITASK 6¼ 1, 2, 3, 4 or 5,
or at least one of the coupling points defined in array XI is outside the interval

[Xð1Þ;XðNPTSÞ],
or the coupling points are not in strictly increasing order,
or NPTS < 3,
or NPDE < 1,
or LAOPT 6¼ F , `B' or `S',
or ITOL 6¼ 1, 2, 3 or 4,
or IND 6¼ 0 or 1,
or mesh points XðiÞ are badly ordered,
or LRSAVE or LISAVE are too small,
or NCODE and NXI are incorrectly defined,
or IND ¼ 1 on initial entry to D03PLF,
or NEQN 6¼ NPDE� NPTSþ NCODE,
or an element of RTOL or ATOL < 0:0,
or corresponding elements of RTOL and ATOL are both 0:0,
or NORM 6¼ 1 or 2.

IFAIL ¼ 2

The underlying ODE solver cannot make any further progress, with the values of ATOL and
RTOL, across the integration range from the current point t ¼ TS. The components of U contain
the computed values at the current point t ¼ TS.

IFAIL ¼ 3

In the underlying ODE solver, there were repeated error test failures on an attempted step, before
completing the requested task, but the integration was successful as far as t ¼ TS. The problem
may have a singularity, or the error requirement may be inappropriate. Incorrect specification of
boundary conditions may also result in this error.

IFAIL ¼ 4

In setting up the ODE system, the internal initialization routine was unable to initialize the
derivative of the ODE system. This could be due to the fact that IRES was repeatedly set to 3 in
one of PDEDEF, NUMFLX, BNDARY or ODEDEF, when the residual in the underlying ODE
solver was being evaluated. Incorrect specification of boundary conditions may also result in this
error.

IFAIL ¼ 5

In solving the ODE system, a singular Jacobian has been encountered. Check the problem
formulation.

IFAIL ¼ 6

When evaluating the residual in solving the ODE system, IRES was set to 2 in at least one of
PDEDEF, NUMFLX, BNDARY or ODEDEF. Integration was successful as far as t ¼ TS.
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IFAIL ¼ 7

The values of ATOL and RTOL are so small that the routine is unable to start the integration in
time.

IFAIL ¼ 8

In either, PDEDEF, NUMFLX, BNDARY or ODEDEF, IRES was set to an invalid value.

IFAIL ¼ 9 (D02NNF)

A serious error has occurred in an internal call to the specified routine. Check the problem
specification and all arguments and array dimensions. Setting ITRACE ¼ 1 may provide more
information. If the problem persists, contact NAG.

IFAIL ¼ 10

The required task has been completed, but it is estimated that a small change in ATOL and RTOL
is unlikely to produce any change in the computed solution. (Only applies when you are not
operating in one step mode, that is when ITASK 6¼ 2 or 5.)

IFAIL ¼ 11

An error occurred during Jacobian formulation of the ODE system (a more detailed error
description may be directed to the current advisory message unit when ITRACE � 1). If using
the sparse matrix algebra option, the values of ALGOPTð29Þ and ALGOPTð30Þ may be
inappropriate.

IFAIL ¼ 12

In solving the ODE system, the maximum number of steps specified in ALGOPTð15Þ has been
taken.

IFAIL ¼ 13

Some error weights wi became zero during the time integration (see the description of ITOL).
Pure relative error control (ATOLðiÞ ¼ 0:0) was requested on a variable (the ith) which has
become zero. The integration was successful as far as t ¼ TS.

IFAIL ¼ 14

One or more of the functions Pi;j, Di or Ci was detected as depending on time derivatives, which
is not permissible.

IFAIL ¼ 15

When using the sparse option, the value of LISAVE or LRSAVE was not sufficient (more
detailed information may be directed to the current error message unit).

IFAIL ¼ �99

An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399

Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999

Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

D03PLF controls the accuracy of the integration in the time direction but not the accuracy of the
approximation in space. The spatial accuracy depends on both the number of mesh points and on their
distribution in space. In the time integration only the local error over a single step is controlled and so
the accuracy over a number of steps cannot be guaranteed. You should therefore test the effect of
varying the accuracy arguments, ATOL and RTOL.

8 Parallelism and Performance

D03PLF is not thread safe and should not be called from a multithreaded user program. Please see
Section 3.12.1 in How to Use the NAG Library and its Documentation for more information on thread
safety.

D03PLF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

D03PLF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

D03PLF is designed to solve systems of PDEs in conservative form, with optional source terms which
are independent of space derivatives, and optional second-order diffusion terms. The use of the routine
to solve systems which are not naturally in this form is discouraged, and you are advised to use one of
the central-difference schemes for such problems.

You should be aware of the stability limitations for hyperbolic PDEs. For most problems with small
error tolerances the ODE integrator does not attempt unstable time steps, but in some cases a maximum
time step should be imposed using ALGOPTð13Þ. It is worth experimenting with this argument,
particularly if the integration appears to progress unrealistically fast (with large time steps). Setting the
maximum time step to the minimum mesh size is a safe measure, although in some cases this may be
too restrictive.

Problems with source terms should be treated with caution, as it is known that for large source terms
stable and reasonable looking solutions can be obtained which are in fact incorrect, exhibiting non-
physical speeds of propagation of discontinuities (typically one spatial mesh point per time step). It is
essential to employ a very fine mesh for problems with source terms and discontinuities, and to check
for non-physical propagation speeds by comparing results for different mesh sizes. Further details and
an example can be found in Pennington and Berzins (1994).

The time taken depends on the complexity of the system and on the accuracy requested. For a given
system and a fixed accuracy it is approximately proportional to NEQN.

10 Example

For this routine two examples are presented, with a main program and two example problems given in
Example 1 (EX1) and Example 2 (EX2).

Example 1 (EX1)

This example is a simple first-order system with coupled ODEs arising from the use of the
characteristic equations for the numerical boundary conditions.

D03PLF NAG Library Manual

D03PLF.18 Mark 26



The PDEs are

@U1

@t
þ @U1

@x
þ 2

@U2

@x
¼ 0;

@U2

@t
þ 2

@U1

@x
þ @U2

@x
¼ 0;

for x 2 0; 1½ � and t � 0.

The PDEs have an exact solution given by

U1 x; tð Þ ¼ f x� 3tð Þ þ g xþ tð Þ; U2 x; tð Þ ¼ f x� 3tð Þ � g xþ tð Þ;
where f zð Þ ¼ exp �zð Þ sin 2�zð Þ, g zð Þ ¼ exp �2�zð Þ cos 2�zð Þ.
The initial conditions are given by the exact solution.

The characteristic variables are W1 ¼ U1 � U2 and W2 ¼ U1 þ U2, corresponding to the characteristics
given by dx=dt ¼ �1 and dx=dt ¼ 3 respectively. Hence we require a physical boundary condition for
W2 at the left-hand boundary and for W1 at the right-hand boundary (corresponding to the incoming
characteristics), and a numerical boundary condition for W1 at the left-hand boundary and for W2 at the
right-hand boundary (outgoing characteristics).

The physical boundary conditions are obtained from the exact solution, and the numerical boundary
conditions are supplied in the form of the characteristic equations for the outgoing characteristics, that
is

@W1

@t
� @W1

@x
¼ 0

at the left-hand boundary, and

@W2

@t
þ 3

@W2

@x
¼ 0

at the right-hand boundary.

In order to specify these boundary conditions, two ODE variables V1 and V2 are introduced, defined by

V1 tð Þ ¼ W1 0; tð Þ ¼ U1 0; tð Þ � U2 0; tð Þ;
V2 tð Þ ¼ W2 1; tð Þ ¼ U1 1; tð Þ þ U2 1; tð Þ:

The coupling points are therefore at x ¼ 0 and x ¼ 1.

The numerical boundary conditions are now

_V1 � @W1

@x
¼ 0

at the left-hand boundary, and

_V2 þ 3
@W2

@x
¼ 0

at the right-hand boundary.

The spatial derivatives are evaluated at the appropriate boundary points in BNDARY using one-sided
differences (into the domain and therefore consistent with the characteristic directions).

The numerical flux is calculated using Roe's approximate Riemann solver (see Section 3 for details),
giving

F̂ ¼ 1
2

3U1L � U1R þ 3U2L þ U2R
3U1L þ U1R þ 3U2L � U2R

� �
:

Example 2 (EX2)

This example is the standard shock-tube test problem proposed by Sod (1978) for the Euler equations of
gas dynamics. The problem models the flow of a gas in a long tube following the sudden breakdown of
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a diaphragm separating two initial gas states at different pressures and densities. There is an exact
solution to this problem which is not included explicitly as the calculation is quite lengthy. The PDEs
are

@�

@t
þ @m

@x
¼ 0;

@m

@t
þ @

@x
m2

� þ � � 1ð Þ e� m2

2�

� 	� 	
¼ 0;

@e

@t
þ @

@x
me
� þ m

� � � 1ð Þ e� m2

2�

� 	� 	
¼ 0;

where � is the density; m is the momentum, such that m ¼ �u, where u is the velocity; e is the specific
energy; and � is the (constant) ratio of specific heats. The pressure p is given by

p ¼ � � 1ð Þ e� �u2

2


 �
:

The solution domain is 0 � x � 1 for 0 < t � 0:2, with the initial discontinuity at x ¼ 0:5, and initial
conditions

� x; 0ð Þ ¼ 1; m x; 0ð Þ ¼ 0; e x; 0ð Þ ¼ 2:5; for x < 0:5;
� x; 0ð Þ ¼ 0:125; m x; 0ð Þ ¼ 0; e x; 0ð Þ ¼ 0:25; for x > 0:5:

The solution is uniform and constant at both boundaries for the spatial domain and time of integration
stated, and hence the physical and numerical boundary conditions are indistinguishable and are both
given by the initial conditions above. The evaluation of the numerical flux for the Euler equations is not
trivial; the Roe algorithm given in Section 3 cannot be used directly as the Jacobian is nonlinear.
However, an algorithm is available using the argument-vector method (see Roe (1981)), and this is
provided in the utility routine D03PUF. An alternative Approxiate Riemann Solver using Osher's
scheme is provided in D03PVF. Either D03PUF or D03PVF can be called from NUMFLX.

10.1 Program Text

! D03PLF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d03plfe_mod

! D03PLF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: bndry1, bndry2, exact, nmflx1, &

nmflx2, odedef, pdedef, uvinit
! .. Parameters ..

Real (Kind=nag_wp), Parameter, Public :: el0 = 2.5_nag_wp
Real (Kind=nag_wp), Parameter, Public :: er0 = 0.25_nag_wp
Real (Kind=nag_wp), Parameter, Public :: gamma = 1.4_nag_wp
Real (Kind=nag_wp), Parameter, Public :: rl0 = 1.0_nag_wp
Real (Kind=nag_wp), Parameter, Public :: rr0 = 0.125_nag_wp
Integer, Parameter, Public :: itrace = 0, ncode1 = 2, ncode2 = 0, &

nin = 5, nout = 6, npde1 = 2, &
npde2 = 3, nxi1 = 2, nxi2 = 0

Contains
Subroutine exact(t,u,npde,x,npts)

! Exact solution (for comparison and b.c. purposes)

! .. Use Statements ..
Use nag_library, Only: x01aaf

! .. Scalar Arguments ..
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Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (In) :: npde, npts

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: u(npde,npts)
Real (Kind=nag_wp), Intent (In) :: x(*)

! .. Local Scalars ..
Real (Kind=nag_wp) :: f, g, pi, pi2, x1, x3
Integer :: i

! .. Intrinsic Procedures ..
Intrinsic :: cos, exp, sin

! .. Executable Statements ..
f = 0.0_nag_wp
pi = x01aaf(f)
pi2 = 2.0_nag_wp*pi
Do i = 1, npts

x1 = x(i) + t
x3 = x(i) - 3.0_nag_wp*t
f = exp(pi*x3)*sin(pi2*x3)
g = exp(-pi2*x1)*cos(pi2*x1)
u(1,i) = f + g
u(2,i) = f - g

End Do
Return

End Subroutine exact
Subroutine pdedef(npde,t,x,u,ux,ncode,v,vdot,p,c,d,s,ires)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t, x
Integer, Intent (Inout) :: ires
Integer, Intent (In) :: ncode, npde

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: c(npde), d(npde), p(npde,npde), &

s(npde)
Real (Kind=nag_wp), Intent (In) :: u(npde), ux(npde), v(ncode), &

vdot(ncode)
! .. Local Scalars ..

Integer :: i
! .. Executable Statements ..

c(1:npde) = 1.0_nag_wp
d(1:npde) = 0.0_nag_wp
s(1:npde) = 0.0_nag_wp
p(1:npde,1:npde) = 0.0_nag_wp
Do i = 1, npde

p(i,i) = 1.0_nag_wp
End Do
Return

End Subroutine pdedef
Subroutine bndry1(npde,npts,t,x,u,ncode,v,vdot,ibnd,g,ires)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (In) :: ibnd, ncode, npde, npts
Integer, Intent (Inout) :: ires

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: g(npde)
Real (Kind=nag_wp), Intent (In) :: u(npde,npts), v(ncode), &

vdot(ncode), x(npts)
! .. Local Scalars ..

Real (Kind=nag_wp) :: dudx
Integer :: i

! .. Local Arrays ..
Real (Kind=nag_wp) :: ue(2,1)

! .. Executable Statements ..
If (ibnd==0) Then

i = 1
Call exact(t,ue,npde,x(i),1)
g(1) = u(1,i) + u(2,i) - ue(1,1) - ue(2,1)
dudx = (u(1,i+1)-u(2,i+1)-u(1,i)+u(2,i))/(x(i+1)-x(i))
g(2) = vdot(1) - dudx

Else
i = npts
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Call exact(t,ue,npde,x(i),1)
g(1) = u(1,i) - u(2,i) - ue(1,1) + ue(2,1)
dudx = (u(1,i)+u(2,i)-u(1,i-1)-u(2,i-1))/(x(i)-x(i-1))
g(2) = vdot(2) + 3.0_nag_wp*dudx

End If
Return

End Subroutine bndry1
Subroutine nmflx1(npde,t,x,ncode,v,uleft,uright,flux,ires)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t, x
Integer, Intent (Inout) :: ires
Integer, Intent (In) :: ncode, npde

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: flux(npde)
Real (Kind=nag_wp), Intent (In) :: uleft(npde), uright(npde), v(ncode)

! .. Local Scalars ..
Real (Kind=nag_wp) :: tmpl, tmpr

! .. Executable Statements ..
tmpl = 3.0_nag_wp*(uleft(1)+uleft(2))
tmpr = uright(1) - uright(2)
flux(1) = 0.5_nag_wp*(tmpl-tmpr)
flux(2) = 0.5_nag_wp*(tmpl+tmpr)
Return

End Subroutine nmflx1
Subroutine odedef(npde,t,ncode,v,vdot,nxi,xi,ucp,ucpx,ucpt,r,ires)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (Inout) :: ires
Integer, Intent (In) :: ncode, npde, nxi

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: r(ncode)
Real (Kind=nag_wp), Intent (In) :: ucp(npde,*), ucpt(npde,*), &

ucpx(npde,*), v(ncode), vdot(ncode), &
xi(nxi)

! .. Executable Statements ..
If (ires==-1) Then

r(1) = 0.0_nag_wp
r(2) = 0.0_nag_wp

Else
r(1) = v(1) - ucp(1,1) + ucp(2,1)
r(2) = v(2) - ucp(1,2) - ucp(2,2)

End If
Return

End Subroutine odedef
Subroutine bndry2(npde,npts,t,x,u,ncode,v,vdot,ibnd,g,ires)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (In) :: ibnd, ncode, npde, npts
Integer, Intent (Inout) :: ires

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: g(npde)
Real (Kind=nag_wp), Intent (In) :: u(npde,npts), v(ncode), &

vdot(ncode), x(npts)
! .. Executable Statements ..

If (ibnd==0) Then
g(1) = u(1,1) - rl0
g(2) = u(2,1)
g(3) = u(3,1) - el0

Else
g(1) = u(1,npts) - rr0
g(2) = u(2,npts)
g(3) = u(3,npts) - er0

End If
Return

End Subroutine bndry2
Subroutine nmflx2(npde,t,x,ncode,v,uleft,uright,flux,ires)

! .. Use Statements ..
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Use nag_library, Only: d03puf, d03pvf
! .. Scalar Arguments ..

Real (Kind=nag_wp), Intent (In) :: t, x
Integer, Intent (Inout) :: ires
Integer, Intent (In) :: ncode, npde

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: flux(npde)
Real (Kind=nag_wp), Intent (In) :: uleft(npde), uright(npde), v(ncode)

! .. Local Scalars ..
Integer :: ifail
Character (1) :: path, solver

! .. Executable Statements ..
ifail = 0
solver = ’R’
If (solver==’R’) Then

! ROE scheme ..
Call d03puf(uleft,uright,gamma,flux,ifail)

Else
! OSHER scheme ..

path = ’P’
Call d03pvf(uleft,uright,gamma,path,flux,ifail)

End If
Return

End Subroutine nmflx2
Subroutine uvinit(npde,npts,x,u)

! .. Scalar Arguments ..
Integer, Intent (In) :: npde, npts

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: u(npde,npts)
Real (Kind=nag_wp), Intent (In) :: x(npts)

! .. Local Scalars ..
Integer :: i

! .. Executable Statements ..
Do i = 1, npts

If (x(i)<0.5_nag_wp) Then
u(1,i) = rl0
u(2,i) = 0.0_nag_wp
u(3,i) = el0

Else If (x(i)==0.5_nag_wp) Then
u(1,i) = 0.5_nag_wp*(rl0+rr0)
u(2,i) = 0.0_nag_wp
u(3,i) = 0.5_nag_wp*(el0+er0)

Else
u(1,i) = rr0
u(2,i) = 0.0_nag_wp
u(3,i) = er0

End If
End Do
Return

End Subroutine uvinit
End Module d03plfe_mod
Program d03plfe

! D03PLF Example Main Program

! .. Use Statements ..
Use d03plfe_mod, Only: nout

! .. Implicit None Statement ..
Implicit None

! .. Executable Statements ..
Write (nout,*) ’D03PLF Example Program Results’

Call ex1

Call ex2

Contains
Subroutine ex1

! .. Use Statements ..
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Use nag_library, Only: d03plf, nag_wp
Use d03plfe_mod, Only: bndry1, exact, itrace, ncode1, nin, nmflx1, &

npde1, nxi1, odedef, pdedef
! .. Local Scalars ..

Real (Kind=nag_wp) :: errmax, lerr, lwgt, tout, ts
Integer :: i, ifail, ind, itask, itol, j, &

lenode, lisave, lrsave, ncode, neqn, &
nfuncs, niters, njacs, npde, npts, &
nsteps, nwkres, nxi

Character (1) :: laopt, norm
! .. Local Arrays ..

Real (Kind=nag_wp) :: algopt(30), atol(1), rtol(1)
Real (Kind=nag_wp), Allocatable :: rsave(:), u(:), ue(:,:), x(:), &

xi(:)
Integer, Allocatable :: isave(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs, int, max, real

! .. Executable Statements ..
Write (nout,*)
Write (nout,*)
Write (nout,*) ’Example 1’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) npts
npde = npde1
ncode = ncode1
nxi = nxi1
neqn = npde*npts + ncode
lisave = 25*neqn + 24
nwkres = npde*(2*npts+6*nxi+3*npde+26) + nxi + ncode + 7*npts + 2
lenode = 11*neqn + 50
lrsave = 4*neqn + 11*neqn/2 + 1 + nwkres + lenode
lisave = lisave*4
lrsave = lrsave*4
Allocate (rsave(lrsave),u(neqn),ue(npde,npts),x(npts),xi(nxi), &

isave(lisave))

Read (nin,*) itol
Read (nin,*) norm
Read (nin,*) atol(1), rtol(1)

! Initialize mesh
Do i = 1, npts

x(i) = real(i-1,kind=nag_wp)/real(npts-1,kind=nag_wp)
End Do
xi(1) = 0.0_nag_wp
xi(2) = 1.0_nag_wp

! Set initial values ..
ts = 0.0_nag_wp
Call exact(ts,u,npde,x,npts)
u(neqn-1) = u(1) - u(2)
u(neqn) = u(neqn-2) + u(neqn-3)

laopt = ’S’
ind = 0
itask = 1

algopt(1:30) = 0.0_nag_wp
! Theta integration

algopt(1) = 1.0_nag_wp
! Sparse matrix algebra parameters

algopt(29) = 0.1_nag_wp
algopt(30) = 1.1_nag_wp

tout = 0.5_nag_wp

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
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Call d03plf(npde,ts,tout,pdedef,nmflx1,bndry1,u,npts,x,ncode,odedef, &
nxi,xi,neqn,rtol,atol,itol,norm,laopt,algopt,rsave,lrsave,isave, &
lisave,itask,itrace,ind,ifail)

Write (nout,99992)
Write (nout,99991) npts
Write (nout,99990) rtol(1)
Write (nout,99989) atol(1)

! Calculate global error at t=tout : max (||u-ue||, over x)

! Get exact solution at t=tout
Call exact(tout,ue,npde,x,npts)
errmax = -1.0_nag_wp
Do i = 2, npts

lerr = 0.0_nag_wp
Do j = 1, npde

lwgt = rtol(1)*abs(ue(j,i)) + atol(1)
lerr = lerr + abs(u((i-1)*npde+j)-ue(j,i))/lwgt

End Do
lerr = lerr/real(npde,kind=nag_wp)
errmax = max(errmax,lerr)

End Do
Write (nout,99999)
Write (nout,99998) 100*int(errmax/100.0_nag_wp) + 100

! Print integration statistics (reasonably rounded)
nsteps = 50*((isave(1)+25)/50)
nfuncs = 100*((isave(2)+50)/100)
njacs = 20*((isave(3)+10)/20)
niters = 100*((isave(5)+50)/100)
Write (nout,99997)
Write (nout,99996) nsteps
Write (nout,99995) nfuncs
Write (nout,99994) njacs
Write (nout,99993) niters

Return

99999 Format (/,1X,’Integration Results:’)
99998 Format (2X,’Global error is less than ’,I3, &

’ times the local error tolerance.’)
99997 Format (/,1X,’Integration Statistics:’)
99996 Format (2X,’Number of time steps (nearest 50) = ’,I6)
99995 Format (2X,’Number of function evaluations (nearest 100) = ’,I6)
99994 Format (2X,’Number of Jacobian evaluations (nearest 20) = ’,I6)
99993 Format (2X,’Number of iterations (nearest 100) = ’,I6)
99992 Format (/,1X,’Method Parameters:’)
99991 Format (2X,’Number of mesh points used = ’,I4)
99990 Format (2X,’Relative tolerance used = ’,E10.3)
99989 Format (2X,’Absolute tolerance used = ’,E10.3)

End Subroutine ex1
Subroutine ex2

! .. Use Statements ..
Use nag_library, Only: d03pek, d03plf, d03plp, nag_wp
Use d03plfe_mod, Only: bndry2, el0, er0, gamma, itrace, ncode2, nin, &

nmflx2, npde2, nxi2, rl0, rr0, uvinit
! .. Local Scalars ..

Real (Kind=nag_wp) :: d, p, tout, ts, v
Integer :: i, ifail, ind, it, itask, itol, &

lenode, lisave, lrsave, mlu, ncode, &
neqn, nfuncs, niters, njacs, npde, &
npts, nskip, nsteps, nwkres, nxi

Character (1) :: laopt, norm
! .. Local Arrays ..

Real (Kind=nag_wp) :: algopt(30), atol(1), rtol(1), xi(1)
Real (Kind=nag_wp), Allocatable :: rsave(:), u(:,:), x(:)
Integer, Allocatable :: isave(:)

! .. Intrinsic Procedures ..
Intrinsic :: real
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! .. Executable Statements ..
Write (nout,*)
Write (nout,*)
Write (nout,*) ’Example 2’
Write (nout,*)
Read (nin,*)
Read (nin,*) npts, nskip

npde = npde2
ncode = ncode2
nxi = nxi2
nwkres = npde*(2*npts+3*npde+32) + 7*npts + 4
mlu = 3*npde - 1
neqn = npde*npts + ncode
lenode = 9*neqn + 50
lisave = neqn + 24
lrsave = (3*mlu+1)*neqn + nwkres + lenode

Allocate (rsave(lrsave),u(npde,npts),x(npts),isave(lisave))

! Print problem parameters
Write (nout,99997)
Write (nout,99996) gamma
Write (nout,99995) el0, er0
Write (nout,99994) rl0, rr0

! Read and print method parameters
Read (nin,*) itol
Read (nin,*) norm
Read (nin,*) atol(1), rtol(1)

Write (nout,99987)
Write (nout,99986) npts
Write (nout,99985) rtol(1)
Write (nout,99984) atol(1)

! Initialize mesh
Do i = 1, npts

x(i) = real(i-1,kind=nag_wp)/real(npts-1,kind=nag_wp)
End Do

! Initial values of variables
Call uvinit(npde,npts,x,u)

xi(1) = 0.0_nag_wp
laopt = ’B’
ind = 0
itask = 1

algopt(1:30) = 0.0_nag_wp
! Theta integration

algopt(1) = 2.0_nag_wp
algopt(6) = 2.0_nag_wp
algopt(7) = 2.0_nag_wp

! Max. time step
algopt(13) = 0.5E-2_nag_wp

Write (nout,99999)
Write (nout,99998)

ts = 0.0_nag_wp
tout = ts
Do it = 1, 2

tout = tout + 0.1_nag_wp

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call d03plf(npde,ts,tout,d03plp,nmflx2,bndry2,u,npts,x,ncode,d03pek, &

nxi,xi,neqn,rtol,atol,itol,norm,laopt,algopt,rsave,lrsave,isave, &
lisave,itask,itrace,ind,ifail)
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! Calculate density, velocity and pressure ..
Do i = 1, npts, nskip

d = u(1,i)
v = u(2,i)/d
p = d*(gamma-1.0_nag_wp)*(u(3,i)/d-0.5_nag_wp*v**2)
If (i==1) Then

Write (nout,99993) ts, x(i), d, v, p
Else

Write (nout,99992) x(i), d, v, p
End If

End Do
Write (nout,*)

End Do

! Print integration statistics (reasonably rounded)
nsteps = 50*((isave(1)+25)/50)
nfuncs = 50*((isave(2)+25)/50)
njacs = isave(3)
niters = isave(5)
Write (nout,99991) nsteps
Write (nout,99990) nfuncs
Write (nout,99989) njacs
Write (nout,99988) niters

Return

99999 Format (/,1X,’Solution’)
99998 Format (4X,’t’,6X,’x’,5X,’density’,1X,’velocity’,1X,’pressure’)
99997 Format (/,’ Problem Parameter and initial conditions:’)
99996 Format (’ gamma =’,F6.3)
99995 Format (’ e(x<0.5,0) =’,F6.3,’ e(x>0.5,0) =’,F6.3)
99994 Format (’ rho(x>0.5,0) =’,F6.3,’ rho(x>0.5,0) =’,F6.3)
99993 Format (1X,F6.3,1X,F7.4,3(2X,F7.4))
99992 Format (8X,F7.3,3(2X,F7.4))
99991 Format (/,’ Number of time steps (nearest 50) = ’,I6)
99990 Format (’ Number of function evaluations (nearest 50) = ’,I6)
99989 Format (’ Number of Jacobian evaluations (nearest 1) = ’,I6)
99988 Format (’ Number of iterations (nearest 1) = ’,I6)
99987 Format (/,’ Method Parameters:’)
99986 Format (’ Number of mesh points used = ’,I4)
99985 Format (’ Relative tolerance used = ’,E10.3)
99984 Format (’ Absolute tolerance used = ’,E10.3)

End Subroutine ex2
End Program d03plfe

10.2 Program Data

D03PLF Example Program Data
201 : (ex1) npts

1 : itol
’1’ : norm

0.1E-4 0.25E-3 : atol(1), rtol(1)

141 14 : (ex2) npts, nskip
1 : itol

’2’ : norm
0.5E-2 0.5E-3 : atol(1), rtol(1)

10.3 Program Results

D03PLF Example Program Results

Example 1

Method Parameters:
Number of mesh points used = 201
Relative tolerance used = 0.250E-03
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Absolute tolerance used = 0.100E-04

Integration Results:
Global error is less than 100 times the local error tolerance.

Integration Statistics:
Number of time steps (nearest 50) = 150
Number of function evaluations (nearest 100) = 1400
Number of Jacobian evaluations (nearest 20) = 20
Number of iterations (nearest 100) = 400

Example 2

Problem Parameter and initial conditions:
gamma = 1.400

e(x<0.5,0) = 2.500 e(x>0.5,0) = 0.250
rho(x>0.5,0) = 1.000 rho(x>0.5,0) = 0.125

Method Parameters:
Number of mesh points used = 141
Relative tolerance used = 0.500E-03
Absolute tolerance used = 0.500E-02

Solution
t x density velocity pressure

0.100 0.0000 1.0000 0.0000 1.0000
0.100 1.0000 -0.0000 1.0000
0.200 1.0000 -0.0000 1.0000
0.300 1.0000 -0.0000 1.0000
0.400 0.8668 0.1665 0.8188
0.500 0.4299 0.9182 0.3071
0.600 0.2969 0.9274 0.3028
0.700 0.1250 0.0000 0.1000
0.800 0.1250 -0.0000 0.1000
0.900 0.1250 -0.0000 0.1000
1.000 0.1250 0.0000 0.1000

0.200 0.0000 1.0000 0.0000 1.0000
0.100 1.0000 -0.0000 1.0000
0.200 1.0000 -0.0000 1.0000
0.300 0.8718 0.1601 0.8253
0.400 0.6113 0.5543 0.5022
0.500 0.4245 0.9314 0.3014
0.600 0.4259 0.9277 0.3030
0.700 0.2772 0.9272 0.3031
0.800 0.2657 0.9276 0.3032
0.900 0.1250 -0.0000 0.1000
1.000 0.1250 0.0000 0.1000

Number of time steps (nearest 50) = 150
Number of function evaluations (nearest 50) = 400
Number of Jacobian evaluations (nearest 1) = 1
Number of iterations (nearest 1) = 2
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Example Program 1
First-order System with Coupled ODEs

Solution U(1,x,t)

U
(1

,x
,t)

 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6

Time
 0

 0.2

 0.4

 0.6

 0.8

 1

x

-8

-4

 0

Example Program 2
Shock Tube Test Problem of Euler Equations in Gas Dynamics

DENSITY

D
en

si
ty

 0
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 0.04
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 0.1
 0.12

 0.14
 0.16
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Time
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Shock Tube Test Problem of Euler Equations in Gas Dynamics
VELOCITY

V
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Shock Tube Test Problem of Euler Equations in Gas Dynamics
PRESSURE

P
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e

 0
 0.02

 0.04
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 0.08
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 0.22

Time
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