NAG Library Routine Document
 D03PLF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

D03PLF integrates a system of linear or nonlinear convection-diffusion equations in one space dimension, with optional source terms and scope for coupled ordinary differential equations (ODEs). The system must be posed in conservative form. Convection terms are discretized using a sophisticated upwind scheme involving a user-supplied numerical flux function based on the solution of a Riemann problem at each mesh point. The method of lines is employed to reduce the partial differential equations (PDEs) to a system of ODEs, and the resulting system is solved using a backward differentiation formula (BDF) method or a Theta method.

2 Specification

```
SUBROUTINE DO3PLF (NPDE, TS, TOUT, PDEDEF, NUMFLX, BNDARY, U, NPTS, X, &
                        NCODE, ODEDEF, NXI, XI, NEQN, RTOL, ATOL, ITOL, NORM, &
                        LAOPT, ALGOPT, RSAVE, LRSAVE, ISAVE, LISAVE, ITASK, &
                        ITRACE, IND, IFAIL)
INTEGER NPDE, NPTS, NCODE, NXI, NEQN, ITOL, LRSAVE, &
REAL (KIND=nag_wp) TS, TOUT, U(NEQN), X(NPTS), XI(*), RTOL(*), ATOL(*), &
ALGOPT(30), RSAVE(LRSAVE)
CHARACTER(1) NORM, LAOPT
EXTERNAL PDEDEF, NUMFLX, BNDARY, ODEDEF
```


3 Description

D03PLF integrates the system of convection-diffusion equations in conservative form:

$$
\begin{equation*}
\sum_{j=1}^{\text {NPDE }} P_{i, j} \frac{\partial U_{j}}{\partial t}+\frac{\partial F_{i}}{\partial x}=C_{i} \frac{\partial D_{i}}{\partial x}+S_{i} \tag{1}
\end{equation*}
$$

or the hyperbolic convection-only system:

$$
\begin{equation*}
\frac{\partial U_{i}}{\partial t}+\frac{\partial F_{i}}{\partial x}=0 \tag{2}
\end{equation*}
$$

for $i=1,2, \ldots$, NPDE, $\quad a \leq x \leq b, \quad t \geq t_{0}$, where the vector U is the set of PDE solution values

$$
U(x, t)=\left[U_{1}(x, t), \ldots, U_{\mathrm{NPDE}}(x, t)\right]^{\mathrm{T}}
$$

The optional coupled ODEs are of the general form

$$
\begin{equation*}
R_{i}\left(t, V, \dot{V}, \xi, U^{*}, U_{x}^{*}, U_{t}^{*}\right)=0, \quad i=1,2, \ldots, \mathrm{NCODE} \tag{3}
\end{equation*}
$$

where the vector V is the set of ODE solution values

$$
V(t)=\left[V_{1}(t), \ldots, V_{\mathrm{NCODE}}(t)\right]^{\mathrm{T}}
$$

\dot{V} denotes its derivative with respect to time, and U_{x} is the spatial derivative of U.
In (1), $P_{i, j}, F_{i}$ and C_{i} depend on x, t, U and $V ; D_{i}$ depends on x, t, U, U_{x} and V; and S_{i} depends on x, t, U, V and linearly on \dot{V}. Note that $P_{i, j}, F_{i}, C_{i}$ and S_{i} must not depend on any space derivatives, and $P_{i, j}, F_{i}, C_{i}$ and D_{i} must not depend on any time derivatives. In terms of conservation laws, $F_{i}, \frac{C_{i} \partial D_{i}}{\partial x}$ and S_{i} are the convective flux, diffusion and source terms respectively.

In (3), ξ represents a vector of n_{ξ} spatial coupling points at which the ODEs are coupled to the PDEs. These points may or may not be equal to PDE spatial mesh points. U^{*}, U_{x}^{*} and U_{t}^{*} are the functions U, U_{x} and U_{t} evaluated at these coupling points. Each R_{i} may depend only linearly on time derivatives. Hence (3) may be written more precisely as

$$
\begin{equation*}
R=L-M \dot{V}-N U_{t}^{*} \tag{4}
\end{equation*}
$$

where $R=\left[R_{1}, \ldots, R_{\text {NCODE }}\right]^{\mathrm{T}}, L$ is a vector of length NCODE, M is an NCODE by NCODE matrix, N is an NCODE by ($n_{\xi} \times$ NPDE $)$ matrix and the entries in L, M and N may depend on t, ξ, U^{*}, U_{x}^{*} and V. In practice you only need to supply a vector of information to define the ODEs and not the matrices L, M and N. (See Section 5 for the specification of ODEDEF.)

The integration in time is from t_{0} to $t_{\text {out }}$, over the space interval $a \leq x \leq b$, where $a=x_{1}$ and $b=x_{\text {NPTS }}$ are the leftmost and rightmost points of a user-defined mesh $x_{1}, x_{2}, \ldots, x_{\text {NPTS }}$. The initial values of the functions $U(x, t)$ and $V(t)$ must be given at $t=t_{0}$.

The PDEs are approximated by a system of ODEs in time for the values of U_{i} at mesh points using a spatial discretization method similar to the central-difference scheme used in D03PCF/D03PCA, D03PHF/D03PHA and D03PPF/D03PPA, but with the flux F_{i} replaced by a numerical flux, which is a representation of the flux taking into account the direction of the flow of information at that point (i.e., the direction of the characteristics). Simple central differencing of the numerical flux then becomes a sophisticated upwind scheme in which the correct direction of upwinding is automatically achieved.
The numerical flux vector, \hat{F}_{i} say, must be calculated by you in terms of the left and right values of the solution vector U (denoted by U_{L} and U_{R} respectively), at each mid-point of the mesh $x_{j-\frac{1}{2}}=\left(x_{j-1}+x_{j}\right) / 2$, for $j=2,3, \ldots$, NPTS. The left and right values are calculated by D03PLF from two adjacent mesh points using a standard upwind technique combined with a Van Leer slopelimiter (see LeVeque (1990)). The physically correct value for \hat{F}_{i} is derived from the solution of the Riemann problem given by

$$
\begin{equation*}
\frac{\partial U_{i}}{\partial t}+\frac{\partial F_{i}}{\partial y}=0 \tag{5}
\end{equation*}
$$

where $y=x-x_{j-\frac{1}{2}}$, i.e., $y=0$ corresponds to $x=x_{j-\frac{1}{2}}$, with discontinuous initial values $U=U_{L}$ for $y<0$ and $U=U_{R}$ for $y>0$, using an approximate Riemann solver. This applies for either of the systems (1) or (2); the numerical flux is independent of the functions $P_{i, j}, C_{i}, D_{i}$ and S_{i}. A description of several approximate Riemann solvers can be found in LeVeque (1990) and Berzins et al. (1989). Roe's scheme (see Roe (1981)) is perhaps the easiest to understand and use, and a brief summary follows. Consider the system of PDEs $U_{t}+F_{x}=0$ or equivalently $U_{t}+A U_{x}=0$. Provided the system is linear in U, i.e., the Jacobian matrix A does not depend on U, the numerical flux \hat{F} is given by

$$
\begin{equation*}
\hat{F}=\frac{1}{2}\left(F_{L}+F_{R}\right)-\frac{1}{2} \sum_{k=1}^{\mathrm{NPDE}} \alpha_{k}\left|\lambda_{k}\right| e_{k} \tag{6}
\end{equation*}
$$

where $F_{L}\left(F_{R}\right)$ is the flux F calculated at the left (right) value of U, denoted by $U_{L}\left(U_{R}\right)$; the λ_{k} are the eigenvalues of A; the e_{k} are the right eigenvectors of A; and the α_{k} are defined by

$$
\begin{equation*}
U_{R}-U_{L}=\sum_{k=1}^{\mathrm{NPDE}} \alpha_{k} e_{k} \tag{7}
\end{equation*}
$$

An example is given in Section 10 and in the D03PFF documentation.
If the system is nonlinear, Roe's scheme requires that a linearized Jacobian is found (see Roe (1981)).
The functions $P_{i, j}, C_{i}, D_{i}$ and S_{i} (but not F_{i}) must be specified in PDEDEF. The numerical flux \hat{F}_{i} must be supplied in a separate NUMFLX. For problems in the form (2), the actual argument D03PLP may be used for PDEDEF. D03PLP is included in the NAG Library and sets the matrix with entries $P_{i, j}$ to the identity matrix, and the functions C_{i}, D_{i} and S_{i} to zero.
The boundary condition specification has sufficient flexibility to allow for different types of problems. For second-order problems, i.e., D_{i} depending on U_{x}, a boundary condition is required for each PDE at both boundaries for the problem to be well-posed. If there are no second-order terms present, then the
continuous PDE problem generally requires exactly one boundary condition for each PDE, that is NPDE boundary conditions in total. However, in common with most discretization schemes for firstorder problems, a numerical boundary condition is required at the other boundary for each PDE. In order to be consistent with the characteristic directions of the PDE system, the numerical boundary conditions must be derived from the solution inside the domain in some manner (see below). You must supply both types of boundary condition, i.e., a total of NPDE conditions at each boundary point.

The position of each boundary condition should be chosen with care. In simple terms, if information is flowing into the domain then a physical boundary condition is required at that boundary, and a numerical boundary condition is required at the other boundary. In many cases the boundary conditions are simple, e.g., for the linear advection equation. In general you should calculate the characteristics of the PDE system and specify a physical boundary condition for each of the characteristic variables associated with incoming characteristics, and a numerical boundary condition for each outgoing characteristic.

A common way of providing numerical boundary conditions is to extrapolate the characteristic variables from the inside of the domain (note that when using banded matrix algebra the fixed bandwidth means that only linear extrapolation is allowed, i.e., using information at just two interior points adjacent to the boundary). For problems in which the solution is known to be uniform (in space) towards a boundary during the period of integration then extrapolation is unnecessary; the numerical boundary condition can be supplied as the known solution at the boundary. Another method of supplying numerical boundary conditions involves the solution of the characteristic equations associated with the outgoing characteristics. Examples of both methods can be found in Section 10 and in the D03PFF documentation.

The boundary conditions must be specified in BNDARY in the form

$$
\begin{equation*}
G_{i}^{L}(x, t, U, V, \dot{V})=0 \quad \text { at } x=a, \quad i=1,2, \ldots, \mathrm{NPDE} \tag{8}
\end{equation*}
$$

at the left-hand boundary, and

$$
\begin{equation*}
G_{i}^{R}(x, t, U, V, \dot{V})=0 \quad \text { at } x=b, \quad i=1,2, \ldots, \mathrm{NPDE}, \tag{9}
\end{equation*}
$$

at the right-hand boundary.
Note that spatial derivatives at the boundary are not passed explicitly to BNDARY, but they can be calculated using values of U at and adjacent to the boundaries if required. However, it should be noted that instabilities may occur if such one-sided differencing opposes the characteristic direction at the boundary.

The algebraic-differential equation system which is defined by the functions R_{i} must be specified in ODEDEF. You must also specify the coupling points ξ (if any) in the array XI.

The problem is subject to the following restrictions:
(i) In (1), $\dot{V}_{j}(t)$, for $j=1,2, \ldots, \mathrm{NCODE}$, may only appear linearly in the functions S_{i}, for $i=1,2, \ldots$, NPDE, with a similar restriction for G_{i}^{L} and G_{i}^{R};
(ii) $P_{i, j}, F_{i}, C_{i}$ and S_{i} must not depend on any space derivatives; and $P_{i, j}, F_{i}, C_{i}$ and D_{i} must not depend on any time derivatives;
(iii) $t_{0}<t_{\text {out }}$, so that integration is in the forward direction;
(iv) The evaluation of the terms $P_{i, j}, C_{i}, D_{i}$ and S_{i} is done by calling the PDEDEF at a point approximately midway between each pair of mesh points in turn. Any discontinuities in these functions must therefore be at one or more of the mesh points $x_{1}, x_{2}, \ldots, x_{\text {NPTS }}$;
(v) At least one of the functions $P_{i, j}$ must be nonzero so that there is a time derivative present in the PDE problem.

In total there are NPDE \times NPTS + NCODE ODEs in the time direction. This system is then integrated forwards in time using a BDF or Theta method, optionally switching between Newton's method and functional iteration (see Berzins et al. (1989)).
For further details of the scheme, see Pennington and Berzins (1994) and the references therein.

4 References

Berzins M, Dew P M and Furzeland R M (1989) Developing software for time-dependent problems using the method of lines and differential-algebraic integrators Appl. Numer. Math. 5375-397

Hirsch C (1990) Numerical Computation of Internal and External Flows, Volume 2: Computational Methods for Inviscid and Viscous Flows John Wiley
LeVeque R J (1990) Numerical Methods for Conservation Laws BirkhÌuser Verlag
Pennington S V and Berzins M (1994) New NAG Library software for first-order partial differential equations ACM Trans. Math. Softw. 20 63-99

Roe P L (1981) Approximate Riemann solvers, parameter vectors, and difference schemes J. Comput. Phys. 43 357-372
Sod G A (1978) A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws J. Comput. Phys. 27 1-31

5 Arguments

1: NPDE - INTEGER
Input
On entry: the number of PDEs to be solved.
Constraint: $\mathrm{NPDE} \geq 1$.
2: \quad TS - REAL (KIND=nag_wp)
Input/Output
On entry: the initial value of the independent variable t.
On exit: the value of t corresponding to the solution values in U . Normally TS $=$ TOUT.
Constraint: TS $<$ TOUT.
3: TOUT - REAL (KIND=nag_wp)
Input
On entry: the final value of t to which the integration is to be carried out.
4: PDEDEF - SUBROUTINE, supplied by the NAG Library or the user. External Procedure PDEDEF must evaluate the functions $P_{i, j}, C_{i}, D_{i}$ and S_{i} which partially define the system of PDEs. $P_{i, j}$ and C_{i} may depend on x, t, U and $V ; D_{i}$ may depend on x, t, U, U_{x} and V; and S_{i} may depend on x, t, U, V and linearly on \dot{V}. PDEDEF is called approximately midway between each pair of mesh points in turn by D03PLF. The actual argument D03PLP may be used for PDEDEF for problems in the form (2). (D03PLP is included in the NAG Library.)

```
The specification of PDEDEF is:
SUBROUTINE PDEDEF (NPDE, T, X, U, UX, NCODE, V, VDOT, P, C, D, S, &
        IRES)
INTEGER NPDE, NCODE, IRES
REAL (KIND=nag_wp) T, X, U(NPDE), UX(NPDE), V(NCODE), &
                        VDOT(NCODE), P(NPDE,NPDE), C(NPDE), D(NPDE), &
                        S (NPDE)
                            NPDE - INTEGER Input
    On entry: the number of PDEs in the system.
2: T - REAL (KIND=nag_wp)
                                    Input
    On entry: the current value of the independent variable t.
```

3: $\quad \mathrm{X}-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$
Input
On entry: the current value of the space variable x.
U(NPDE) - REAL (KIND=nag_wp) array
Input
On entry: $\mathrm{U}(i)$ contains the value of the component $U_{i}(x, t)$, for $i=1,2, \ldots$, NPDE.
5: UX(NPDE) - REAL (KIND=nag wp) array
Input
On entry: $\mathrm{UX}(i)$ contains the value of the component $\frac{\partial U_{i}(x, t)}{\partial x}$, for $i=1,2, \ldots$, NPDE.
NCODE - INTEGER Input

On entry: the number of coupled ODEs in the system.
$\mathrm{V}(\mathrm{NCODE})-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$ array Input
On entry: if NCODE $>0, \mathrm{~V}(i)$ contains the value of the component $V_{i}(t)$, for $i=1,2, \ldots$, NCODE.

8: VDOT(NCODE) - REAL (KIND=nag_wp) array Input
On entry: if $\mathrm{NCODE}>0, \operatorname{VDOT}(i)$ contains the value of component $\dot{V}_{i}(t)$, for $i=1,2, \ldots$, NCODE.

Note: $\dot{V}_{i}(t)$, for $i=1,2, \ldots$, NCODE, may only appear linearly in S_{j}, for $j=1,2, \ldots$, NPDE.

P(NPDE, NPDE) - REAL (KIND=nag_wp) array
Output
On exit: $\mathrm{P}(i, j)$ must be set to the value of $P_{i, j}(x, t, U, V)$, for $i=1,2, \ldots, \mathrm{NPDE}$ and $j=1,2, \ldots$, NPDE.

C(NPDE) - REAL (KIND=nag_wp) array
Output
On exit: $\mathrm{C}(i)$ must be set to the value of $C_{i}(x, t, U, V)$, for $i=1,2, \ldots$, NPDE.
11: $\quad \mathrm{D}(\mathrm{NPDE})-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp) array
Output
On exit: $\mathrm{D}(i)$ must be set to the value of $D_{i}\left(x, t, U, U_{x}, V\right)$, for $i=1,2, \ldots$, NPDE.
12: $\mathrm{S}(\mathrm{NPDE})$ - REAL (KIND=nag_wp) array
Output
On exit: $\mathrm{S}(i)$ must be set to the value of $S_{i}(x, t, U, V, \dot{V})$, for $i=1,2, \ldots, \mathrm{NPDE}$.
13: IRES - INTEGER
Input/Output
On entry: set to -1 or 1 .
On exit: should usually remain unchanged. However, you may set IRES to force the integration routine to take certain actions as described below:

IRES $=2$
Indicates to the integrator that control should be passed back immediately to the calling subroutine with the error indicator set to $\operatorname{IFAIL}=6$.

IRES $=3$
Indicates to the integrator that the current time step should be abandoned and a smaller time step used instead. You may wish to set IRES $=3$ when a physically meaningless input or output value has been generated. If you consecutively set IRES $=3$, then D03PLF returns to the calling subroutine with the error indicator set to $\mathrm{IFAIL}=4$.

PDEDEF must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub) program from which D03PLF is called. Arguments denoted as Input must not be changed by this procedure.

5: NUMFLX - SUBROUTINE, supplied by the user.
External Procedure
NUMFLX must supply the numerical flux for each PDE given the left and right values of the solution vector U. NUMFLX is called approximately midway between each pair of mesh points in turn by D03PLF.

```
The specification of NUMFLX is:
SUBROUTINE NUMFLX (NPDE, T, X, NCODE, V, ULEFT, URIGHT, FLUX, &
        IRES)
INTEGER NPDE, NCODE, IRES
REAL (KIND=nag_wp) T, X, V(NCODE), ULEFT(NPDE), URIGHT(NPDE), &
    FLUX(NPDE)
1: NPDE - INTEGER Input
    On entry: the number of PDEs in the system.
2: T - REAL (KIND=nag_wp) Input
    On entry: the current value of the independent variable t.
3: X - REAL (KIND=nag_wp) Input
    On entry: the current value of the space variable }x\mathrm{ .
4: NCODE - INTEGER Input
    On entry: the number of coupled ODEs in the system.
5: V(NCODE) - REAL (KIND=nag_wp) array Input
    On entry: if NCODE > 0, V (i) contains the value of the component }\mp@subsup{V}{i}{}(t)\mathrm{ , for
    i=1,2,\ldots.,NCODE.
6: ULEFT(NPDE) - REAL (KIND=nag_wp) array Input
    On entry: ULEFT}(i)\mathrm{ contains the left value of the component }\mp@subsup{U}{i}{}(x)\mathrm{ , for
    i=1,2,\ldots.,NPDE.
7: URIGHT(NPDE) - REAL (KIND=nag_wp) array Input
    On entry: URIGHT(i) contains the right value of the component }\mp@subsup{U}{i}{}(x)\mathrm{ , for
    i=1,2,\ldots.,NPDE.
8: FLUX(NPDE) - REAL (KIND=nag_wp) array
Output
    On exit: FLUX(i) must be set to the numerical flux }\mp@subsup{\hat{F}}{i}{}\mathrm{ , for }i=1,2,\ldots,NPDE
9: IRES - INTEGER Input/Output
    On entry: set to -1 or 1.
    On exit: should usually remain unchanged. However, you may set IRES to force the
    integration routine to take certain actions as described below:
    IRES = 2
        Indicates to the integrator that control should be passed back immediately to the
        calling subroutine with the error indicator set to IFAIL =6.
```

IRES $=3$
Indicates to the integrator that the current time step should be abandoned and a smaller time step used instead. You may wish to set IRES $=3$ when a physically meaningless input or output value has been generated. If you consecutively set $\operatorname{IRES}=3$, then D03PLF returns to the calling subroutine with the error indicator set to $\mathrm{IFAIL}=4$.

NUMFLX must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)program from which D03PLF is called. Arguments denoted as Input must not be changed by this procedure.

6: BNDARY - SUBROUTINE, supplied by the user.
External Procedure
BNDARY must evaluate the functions G_{i}^{L} and G_{i}^{R} which describe the physical and numerical boundary conditions, as given by (8) and (9).

The specification of BNDARY is:

```
SUBROUTINE BNDARY (NPDE, NPTS, T, X, U, NCODE, V, VDOT, IBND, G, &
        IRES)
INTEGER NPDE, NPTS, NCODE, IBND, IRES
REAL (KIND=nag_wp) T, X(NPTS), U(NPDE,NPTS), V(NCODE), &
```

 VDOT(NCODE), G(NPDE)
 1: NPDE - INTEGER Input

On entry: the number of PDEs in the system.
2: NPTS - INTEGER Input
On entry: the number of mesh points in the interval $[a, b]$.
3: T - REAL (KIND=nag_wp) Input
On entry: the current value of the independent variable t.
4: $\mathrm{X}(\mathrm{NPTS})-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp) array Input
On entry: the mesh points in the spatial direction. $\mathrm{X}(1)$ corresponds to the left-hand boundary, a, and X(NPTS) corresponds to the right-hand boundary, b.

5: U(NPDE, NPTS) - REAL (KIND=nag_wp) array Input
On entry: $\mathrm{U}(i, j)$ contains the value of the component $U_{i}(x, t)$ at $x=\mathrm{X}(j)$, for $i=1,2, \ldots$, NPDE and $j=1,2, \ldots$, NPTS.

Note: if banded matrix algebra is to be used then the functions G_{i}^{L} and G_{i}^{R} may depend on the value of $U_{i}(x, t)$ at the boundary point and the two adjacent points only.

6: NCODE - INTEGER Input
On entry: the number of coupled ODEs in the system.
7: $\quad \mathrm{V}(\mathrm{NCODE})-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$ array Input
On entry: if NCODE $>0, \mathrm{~V}(i)$ contains the value of the component $V_{i}(t)$, for $i=1,2, \ldots$, NCODE.

8: $\quad \operatorname{VDOT}(\mathrm{NCODE})$ - REAL (KIND=nag_wp) array
Input
On entry: if $\operatorname{NCODE}>0, \operatorname{VDOT}(i)$ contains the value of component $\dot{V}_{i}(t)$, for $i=1,2, \ldots$, NCODE.

Note: $\dot{V}_{i}(t)$, for $i=1,2, \ldots$, NCODE, may only appear linearly in G_{j}^{L} and G_{j}^{R}, for $j=1,2, \ldots$, NPDE.

IBND - INTEGER
On entry: specifies which boundary conditions are to be evaluated.
$\operatorname{IBND}=0$
BNDARY must evaluate the left-hand boundary condition at $x=a$.
IBND $\neq 0$
BNDARY must evaluate the right-hand boundary condition at $x=b$.
10: $\mathrm{G}(\mathrm{NPDE})$ - REAL (KIND=nag_wp) array
Output
On exit: $\mathrm{G}(i)$ must contain the i th component of either G_{i}^{L} or G_{i}^{R} in (8) and (9), depending on the value of IBND, for $i=1,2, \ldots$, NPDE.

11: IRES - INTEGER
On entry: set to -1 or 1 .
On exit: should usually remain unchanged. However, you may set IRES to force the integration routine to take certain actions as described below:
IRES $=2$
Indicates to the integrator that control should be passed back immediately to the calling subroutine with the error indicator set to $\operatorname{IFAIL}=6$.
IRES $=3$
Indicates to the integrator that the current time step should be abandoned and a smaller time step used instead. You may wish to set IRES $=3$ when a physically meaningless input or output value has been generated. If you consecutively set IRES $=3$, then D03PLF returns to the calling subroutine with the error indicator set to $\mathrm{IFAIL}=4$.

BNDARY must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)program from which D03PLF is called. Arguments denoted as Input must not be changed by this procedure.

7: $\quad \mathrm{U}(\mathrm{NEQN})-$ REAL (KIND=nag_wp) array
Input/Output
On entry: the initial values of the dependent variables defined as follows:
$\mathrm{U}(\mathrm{NPDE} \times(j-1)+i)$ contain $U_{i}\left(x_{j}, t_{0}\right)$, for $i=1,2, \ldots, \mathrm{NPDE}$ and $j=1,2, \ldots$, NPTS, and
$\mathrm{U}(\mathrm{NPTS} \times \mathrm{NPDE}+k)$ contain $V_{k}\left(t_{0}\right)$, for $k=1,2, \ldots$, NCODE.
On exit: the computed solution $U_{i}\left(x_{j}, t\right)$, for $i=1,2, \ldots$, NPDE and $j=1,2, \ldots$, NPTS, and $V_{k}(t)$, for $k=1,2, \ldots, \mathrm{NCODE}$, all evaluated at $t=\mathrm{TS}$.

8: NPTS - INTEGER
Input
On entry: the number of mesh points in the interval $[a, b]$.
Constraint: NPTS ≥ 3.
9: $\quad \mathrm{X}(\mathrm{NPTS})-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Input
On entry: the mesh points in the space direction. $\mathrm{X}(1)$ must specify the left-hand boundary, a, and $\mathrm{X}(\mathrm{NPTS})$ must specify the right-hand boundary, b.
Constraint: $\mathrm{X}(1)<\mathrm{X}(2)<\cdots<\mathrm{X}($ NPTS $)$.

NCODE - INTEGER
On entry: the number of coupled ODE components.
Constraint: $\mathrm{NCODE} \geq 0$.
11: ODEDEF - SUBROUTINE, supplied by the NAG Library or the user. External Procedure ODEDEF must evaluate the functions R, which define the system of ODEs, as given in (4).

If you wish to compute the solution of a system of PDEs only (i.e., NCODE $=0$), ODEDEF must be the dummy routine D03PEK. (D03PEK is included in the NAG Library.)

The specification of ODEDEF is:

```
SUBROUTINE ODEDEF (NPDE, T, NCODE, V, VDOT, NXI, XI, UCP, UCPX, &
    UCPT, R, IRES)
INTEGER NPDE, NCODE, NXI, IRES
REAL (KIND=nag_wp) T, V(NCODE), VDOT(NCODE), XI(NXI),
    UCP(NPDE,*), UCPX(NPDE,*), UCPT(NPDE,*), &
    R(NCODE)
1: NPDE - INTEGER Input
On entry: the number of PDEs in the system.
```

2: T - REAL (KIND=nag_wp) Input
On entry: the current value of the independent variable t.

3: NCODE - INTEGER Input
On entry: the number of coupled ODEs in the system.
4: $\mathrm{V}(\mathrm{NCODE})$ - REAL (KIND=nag_wp) array Input
On entry: if NCODE $>0, \mathrm{~V}(i)$ contains the value of the component $V_{i}(t)$, for $i=1,2, \ldots$, NCODE.

5: VDOT(NCODE) - REAL (KIND=nag_wp) array Input
On entry: if $\operatorname{NCODE}>0, \operatorname{VDOT}(i)$ contains the value of component $\dot{V}_{i}(t)$, for $i=1,2, \ldots$, NCODE.

6: NXI - INTEGER
Input
On entry: the number of ODE/PDE coupling points.
7: $\quad \mathrm{XI}(\mathrm{NXI})$ - REAL (KIND=nag_wp) array Input
On entry: if $\mathrm{NXI}>0, \mathrm{XI}(i)$ contains the $\mathrm{ODE} / \mathrm{PDE}$ coupling point, ξ_{i}, for $i=1,2, \ldots$, NXI.

8: $\quad \mathrm{UCP}(\mathrm{NPDE}, *)-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Input
On entry: if NXI $>0, \operatorname{UCP}(i, j)$ contains the value of $U_{i}(x, t)$ at the coupling point $x=\xi_{j}$, for $i=1,2, \ldots$, NPDE and $j=1,2, \ldots$, NXI.

9: $\quad \mathrm{UCPX}(\mathrm{NPDE}, *)$ - REAL (KIND=nag_wp) array
Input
On entry: if NXI $>0, \operatorname{UCPX}(i, j)$ contains the value of $\frac{\partial U_{i}(x, t)}{\partial x}$ at the coupling point $x=\xi_{j}$, for $i=1,2, \ldots$, NPDE and $j=1,2, \ldots$, NXI.

10: $\mathrm{UCPT}(\mathrm{NPDE}, *)-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Input
On entry: if NXI $>0, \operatorname{UCPT}(i, j)$ contains the value of $\frac{\partial U_{i}}{\partial t}$ at the coupling point $x=\xi_{j}$,
for $i=1,2, \ldots$, NPDE and $j=1,2, \ldots$, NXI.
11: $\mathrm{R}(\mathrm{NCODE})-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp) array
Output
On exit: $\mathrm{R}(i)$ must contain the i th component of R, for $i=1,2, \ldots$, NCODE, where R is defined as

$$
\begin{equation*}
R=L-M \dot{V}-N U_{t}^{*} \tag{10}
\end{equation*}
$$

or

$$
\begin{equation*}
R=-M \dot{V}-N U_{t}^{*} \tag{11}
\end{equation*}
$$

The definition of R is determined by the input value of IRES.
12: IRES - INTEGER
Input/Output
On entry: the form of R that must be returned in the array R.
IRES $=1$
Equation (10) must be used.
IRES $=-1$
Equation (11) must be used.
On exit: should usually remain unchanged. However, you may reset IRES to force the integration routine to take certain actions, as described below:

IRES $=2$
Indicates to the integrator that control should be passed back immediately to the calling (sub)routine with the error indicator set to IFAIL $=6$.
IRES $=3$
Indicates to the integrator that the current time step should be abandoned and a smaller time step used instead. You may wish to set IRES $=3$ when a physically meaningless input or output value has been generated. If you consecutively set $\operatorname{IRES}=3$, then D03PLF returns to the calling subroutine with the error indicator set to $\operatorname{IFAIL}=4$.

ODEDEF must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)program from which D03PLF is called. Arguments denoted as Input must not be changed by this procedure.

12: NXI - INTEGER
Input
On entry: the number of ODE/PDE coupling points.
Constraints:

$$
\begin{aligned}
& \text { if } \mathrm{NCODE}=0, \mathrm{NXI}=0 ; \\
& \text { if } \mathrm{NCODE}>0, \mathrm{NXI} \geq 0
\end{aligned}
$$

13: $\mathrm{XI}(*)$ - REAL (KIND=nag_wp) array Input
Note: the dimension of the array XI must be at least $\max (1, \mathrm{NXI})$.
On entry: $\mathrm{XI}(i)$, for $i=1,2, \ldots, \mathrm{NXI}$, must be set to the ODE/PDE coupling points.
Constraint: $\mathrm{X}(1) \leq \mathrm{XI}(1)<\mathrm{XI}(2)<\cdots<\mathrm{XI}(\mathrm{NXI}) \leq \mathrm{X}(\mathrm{NPTS})$.

14: NEQN - INTEGER
Input
On entry: the number of ODEs in the time direction.
Constraint: $\mathrm{NEQN}=\mathrm{NPDE} \times \mathrm{NPTS}+\mathrm{NCODE}$.
15: $\operatorname{RTOL}(*)$ - REAL (KIND=nag_wp) array
Input
Note: the dimension of the array RTOL must be at least 1 if ITOL $=1$ or 2 and at least NEQN if ITOL $=3$ or 4 .
On entry: the relative local error tolerance.
Constraint: $\mathrm{RTOL}(i) \geq 0.0$ for all relevant i.
16: $\operatorname{ATOL}(*)-$ REAL (KIND=$=$ nag_wp) array
Input
Note: the dimension of the array ATOL must be at least 1 if ITOL $=1$ or 3 and at least NEQN if ITOL $=2$ or 4 .
On entry: the absolute local error tolerance.
Constraint: ATOL $(i) \geq 0.0$ for all relevant i.
Note: corresponding elements of RTOL and ATOL cannot both be 0.0.

17: ITOL - INTEGER
Input
On entry: a value to indicate the form of the local error test. If e_{i} is the estimated local error for $\mathrm{U}(i)$, for $i=1,2, \ldots, \mathrm{NEQN}$, and $\|\|$ denotes the norm, then the error test to be satisfied is $\left\|e_{i}\right\|<1.0$. ITOL indicates to D03PLF whether to interpret either or both of RTOL and ATOL as a vector or scalar in the formation of the weights w_{i} used in the calculation of the norm (see the description of NORM):

ITOL	RTOL	ATOL	w_{i}
1	scalar	scalar	RTOL $(1) \times\|\mathrm{U}(i)\|+\operatorname{ATOL}(1)$
2	scalar	vector	RTOL $(1) \times\|\mathrm{U}(i)\|+\operatorname{ATOL}(i)$
3	vector	scalar	RTOL $(i) \times\|\mathrm{U}(i)\|+\operatorname{ATOL}(1)$
4	vector	vector	RTOL $(i) \times\|\mathrm{U}(i)\|+\operatorname{ATOL}(i)$

Constraint: $1 \leq \mathrm{ITOL} \leq 4$.
18: NORM - CHARACTER(1)
Input
On entry: the type of norm to be used.
NORM $={ }^{\prime} 1$ '
Averaged L_{1} norm.
NORM $=$ ' 2 '
Averaged L_{2} norm.
If $U_{\text {norm }}$ denotes the norm of the vector U of length NEQN, then for the averaged L_{1} norm

$$
U_{\text {norm }}=\frac{1}{\mathrm{NEQN}} \sum_{i=1}^{\mathrm{NEQN}} \mathrm{U}(i) / w_{i}
$$

and for the averaged L_{2} norm

$$
U_{\mathrm{norm}}=\sqrt{\frac{1}{\mathrm{NEQN}} \sum_{i=1}^{\mathrm{NEQN}}\left(\mathrm{U}(i) / w_{i}\right)^{2}} .
$$

See the description of ITOL for the formulation of the weight vector w.
Constraint: NORM $=$ ' 1 ' or ' 2 '.

On entry: the type of matrix algebra required.
LAOPT $=$ ' ${ }^{\prime}$
Full matrix methods to be used.
LAOPT $=$ 'B'
Banded matrix methods to be used.
LAOPT = 'S'
Sparse matrix methods to be used.
Constraint: LAOPT = 'F', 'B' or 'S'.
Note: you are recommended to use the banded option when no coupled ODEs are present ($\mathrm{NCODE}=0$). Also, the banded option should not be used if the boundary conditions involve solution components at points other than the boundary and the immediately adjacent two points.

ALGOPT(30) - REAL (KIND=nag_wp) array

On entry: may be set to control various options available in the integrator. If you wish to employ all the default options, then ALGOPT(1) should be set to 0.0 . Default values will also be used for any other elements of ALGOPT set to zero. The permissible values, default values, and meanings are as follows:

ALGOPT(1)

Selects the ODE integration method to be used. If $\operatorname{ALGOPT}(1)=1.0$, a BDF method is used and if $\operatorname{ALGOPT}(1)=2.0$, a Theta method is used. The default is $\operatorname{ALGOPT}(1)=1.0$.
If $\operatorname{ALGOPT}(1)=2.0$, then $\operatorname{ALGOPT}(i)$, for $i=2,3,4$, are not used.
ALGOPT(2)
Specifies the maximum order of the BDF integration formula to be used. ALGOPT(2) may be $1.0,2.0,3.0,4.0$ or 5.0. The default value is $\operatorname{ALGOPT}(2)=5.0$.

ALGOPT(3)

Specifies what method is to be used to solve the system of nonlinear equations arising on each step of the BDF method. If $\operatorname{ALGOPT}(3)=1.0$ a modified Newton iteration is used and if $\operatorname{ALGOPT}(3)=2.0$ a functional iteration method is used. If functional iteration is selected and the integrator encounters difficulty, then there is an automatic switch to the modified Newton iteration. The default value is $\operatorname{ALGOPT}(3)=1.0$.

ALGOPT(4)

Specifies whether or not the Petzold error test is to be employed. The Petzold error test results in extra overhead but is more suitable when algebraic equations are present, such as $P_{i, j}=0.0$, for $j=1,2, \ldots$, NPDE, for some i or when there is no $\dot{V}_{i}(t)$ dependence in the coupled ODE system. If $\operatorname{ALGOPT}(4)=1.0$, then the Petzold test is used. If $\operatorname{ALGOPT}(4)=2.0$, then the Petzold test is not used. The default value is $\operatorname{ALGOPT}(4)=1.0$.
If $\operatorname{ALGOPT}(1)=1.0$, then $\operatorname{ALGOPT}(i)$, for $i=5,6,7$, are not used.
ALGOPT(5)
Specifies the value of Theta to be used in the Theta integration method. $0.51 \leq \operatorname{ALGOPT}(5) \leq 0.99$. The default value is $\operatorname{ALGOPT}(5)=0.55$.
ALGOPT(6)
Specifies what method is to be used to solve the system of nonlinear equations arising on each step of the Theta method. If $\operatorname{ALGOPT}(6)=1.0$, a modified Newton iteration is used and if $\operatorname{ALGOPT}(6)=2.0$, a functional iteration method is used. The default value is $\operatorname{ALGOPT}(6)=1.0$.

ALGOPT(7)

Specifies whether or not the integrator is allowed to switch automatically between modified Newton and functional iteration methods in order to be more efficient. If
$\operatorname{ALGOPT}(7)=1.0$, then switching is allowed and if $\operatorname{ALGOPT}(7)=2.0$, then switching is not allowed. The default value is $\operatorname{ALGOPT}(7)=1.0$.

ALGOPT(11)

Specifies a point in the time direction, $t_{\text {crit }}$, beyond which integration must not be attempted. The use of $t_{\text {crit }}$ is described under the argument ITASK. If $\operatorname{ALGOPT}(1) \neq 0.0, \mathrm{a}$ value of 0.0 for $\operatorname{ALGOPT}(11)$, say, should be specified even if ITASK subsequently specifies that $t_{\text {crit }}$ will not be used.

ALGOPT(12)

Specifies the minimum absolute step size to be allowed in the time integration. If this option is not required, $\operatorname{ALGOPT}(12)$ should be set to 0.0 .

ALGOPT(13)

Specifies the maximum absolute step size to be allowed in the time integration. If this option is not required, $\operatorname{ALGOPT}(13)$ should be set to 0.0 .

ALGOPT(14)

Specifies the initial step size to be attempted by the integrator. If $\operatorname{ALGOPT}(14)=0.0$, then the initial step size is calculated internally.

ALGOPT(15)

Specifies the maximum number of steps to be attempted by the integrator in any one call. If $\operatorname{ALGOPT}(15)=0.0$, then no limit is imposed.

ALGOPT(23)

Specifies what method is to be used to solve the nonlinear equations at the initial point to initialize the values of U, U_{t}, V and \dot{V}. If $\operatorname{ALGOPT}(23)=1.0$, a modified Newton iteration is used and if $\operatorname{ALGOPT}(23)=2.0$, functional iteration is used. The default value is $\operatorname{ALGOPT}(23)=1.0$.
$\operatorname{ALGOPT}(29)$ and $\operatorname{ALGOPT}(30)$ are used only for the sparse matrix algebra option, i.e., LAOPT $=$ 'S'.

ALGOPT(29)

Governs the choice of pivots during the decomposition of the first Jacobian matrix. It should lie in the range $0.0<\operatorname{ALGOPT}(29)<1.0$, with smaller values biasing the algorithm towards maintaining sparsity at the expense of numerical stability. If ALGOPT(29) lies outside the range then the default value is used. If the routines regard the Jacobian matrix as numerically singular, then increasing ALGOPT(29) towards 1.0 may help, but at the cost of increased fill-in. The default value is $\operatorname{ALGOPT}(29)=0.1$.

ALGOPT(30)

Used as the relative pivot threshold during subsequent Jacobian decompositions (see ALGOPT(29)) below which an internal error is invoked. ALGOPT(30) must be greater than zero, otherwise the default value is used. If $\operatorname{ALGOPT}(30)$ is greater than 1.0 no check is made on the pivot size, and this may be a necessary option if the Jacobian matrix is found to be numerically singular (see ALGOPT(29)). The default value is $\operatorname{ALGOPT}(30)=0.0001$.

RSAVE(LRSAVE) - REAL (KIND=nag_wp) array
Communication Array
If IND $=0$, RSAVE need not be set on entry.
If $\operatorname{IND}=1$, RSAVE must be unchanged from the previous call to the routine because it contains required information about the iteration.

LRSAVE - INTEGER
Input
On entry: the dimension of the array RSAVE as declared in the (sub)program from which D03PLF is called. Its size depends on the type of matrix algebra selected.
If LAOPT $=$ 'F', LRSAVE \geq NEQN \times NEQN + NEQN + nwkres $+l e n o d e$.
If LAOPT $=$ 'B', LRSAVE $\geq(3 \times m l u+1) \times$ NEQN $+n w k r e s+l e n o d e$.

If LAOPT $=$ 'S', LRSAVE $\geq 4 \times$ NEQN $+11 \times$ NEQN $/ 2+1+$ nwkres + lenode.
Where
$m l u$ is the lower or upper half bandwidths such that
$m l u=3 \times$ NPDE -1 , for PDE problems only (no coupled ODEs); or
$m l u=\mathrm{NEQN}-1$, for coupled PDE/ODE problems.
$n w k r e s= \begin{cases}\mathrm{NPDE} \times(2 \times \mathrm{NPTS}+6 \times \mathrm{NXI}+3 \times \mathrm{NPDE}+26)+\mathrm{NXI}+\mathrm{NCODE}+7 \times \mathrm{NPTS}+2, & \text { when NCODE }>0 \text { and NXI }>0 ; \\ \mathrm{NPDE} \times(2 \times \mathrm{NPTS}+3 \times \mathrm{NPDE}+32)+\mathrm{NCODE}+7 \times \mathrm{NPTS}+3, & \text { when NCODE }>0 \text { and NXI }=0 ; \\ \mathrm{NPDE} \times(2 \times \mathrm{NPTS}+3 \times \mathrm{NPDE}+32)+7 \times \mathrm{NPTS}+4, & \text { when NCODE }=0 .\end{cases}$
lenode $= \begin{cases}(6+\operatorname{int}(\operatorname{ALGOPT}(2))) \times \mathrm{NEQN}+50, & \text { when the BDF method is used; or } \\ 9 \times \mathrm{NEQN}+50, & \text { when the Theta method is used. }\end{cases}$
Note: when LAOPT $=$ 'S', the value of LRSAVE may be too small when supplied to the integrator. An estimate of the minimum size of LRSAVE is printed on the current error message unit if ITRACE >0 and the routine returns with IFAIL $=15$.

ISAVE(LISAVE) - INTEGER array
Communication Array
If $\operatorname{IND}=0$, ISAVE need not be set.
If IND $=1$, ISAVE must be unchanged from the previous call to the routine because it contains required information about the iteration. In particular the following components of the array ISAVE concern the efficiency of the integration:

ISAVE(1)
Contains the number of steps taken in time.
ISAVE(2)
Contains the number of residual evaluations of the resulting ODE system used. One such evaluation involves evaluating the PDE functions at all the mesh points, as well as one evaluation of the functions in the boundary conditions.
ISAVE(3)
Contains the number of Jacobian evaluations performed by the time integrator.
ISAVE(4)
Contains the order of the BDF method last used in the time integration, if applicable. When the Theta method is used, $\operatorname{ISAVE}(4)$ contains no useful information.
ISAVE(5)
Contains the number of Newton iterations performed by the time integrator. Each iteration involves residual evaluation of the resulting ODE system followed by a back-substitution using the $L U$ decomposition of the Jacobian matrix.

LISAVE - INTEGER
On entry: the dimension of the array ISAVE as declared in the (sub)program from which D03PLF is called. Its size depends on the type of matrix algebra selected:

$$
\begin{aligned}
& \text { if LAOPT }=\text { ' } \mathrm{F}^{\prime}, \text { LISAVE } \geq 24 ; \\
& \text { if LAOPT }=\text { 'B', LISAVE } \geq \mathrm{NEQN}+24 ; \\
& \text { if LAOPT }=\text { 'S', LISAVE } \geq 25 \times \text { NEQN }+24
\end{aligned}
$$

Note: when using the sparse option, the value of LISAVE may be too small when supplied to the integrator. An estimate of the minimum size of LISAVE is printed on the current error message unit if ITRACE >0 and the routine returns with IFAIL $=15$.

ITASK - INTEGER

Input
On entry: the task to be performed by the ODE integrator.
ITASK $=1$
Normal computation of output values U at $t=$ TOUT (by overshooting and interpolating).

ITASK $=2$

Take one step in the time direction and return.

ITASK $=3$

Stop at first internal integration point at or beyond $t=$ TOUT.
ITASK $=4$
Normal computation of output values U at $t=$ TOUT but without overshooting $t=t_{\text {crit }}$ where $t_{\text {crit }}$ is described under the argument ALGOPT.
ITASK $=5$
Take one step in the time direction and return, without passing $t_{\text {crit }}$, where $t_{\text {crit }}$ is described under the argument ALGOPT.

Constraint: ITASK $=1,2,3,4$ or 5 .

ITRACE - INTEGER
Input
On entry: the level of trace information required from D03PLF and the underlying ODE solver. ITRACE may take the value $-1,0,1,2$ or 3 .

ITRACE $=-1$
No output is generated.

ITRACE $=0$

Only warning messages from the PDE solver are printed on the current error message unit (see X04AAF).

ITRACE >0
Output from the underlying ODE solver is printed on the current advisory message unit (see X04ABF). This output contains details of Jacobian entries, the nonlinear iteration and the time integration during the computation of the ODE system.
If ITRACE <-1, then -1 is assumed and similarly if ITRACE >3, then 3 is assumed.
The advisory messages are given in greater detail as ITRACE increases. You are advised to set ITRACE $=0$, unless you are experienced with Sub-chapter D02M-N.

IND - INTEGER
Input/Output
On entry: indicates whether this is a continuation call or a new integration.
$\mathrm{IND}=0$
Starts or restarts the integration in time.
$\operatorname{IND}=1$
Continues the integration after an earlier exit from the routine. In this case, only the arguments TOUT and IFAIL should be reset between calls to D03PLF.

Constraint: IND $=0$ or 1.
On exit: IND $=1$.
IFAIL - INTEGER
Input/Output
On entry: IFAIL must be set to $0,-1$ or 1 . If you are unfamiliar with this argument you should refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.
For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this argument, the recommended value is 0 . When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.
On exit: IFAIL $=0$ unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL $=0$ or -1 , explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors or warnings detected by the routine:
IFAIL $=1$
On entry, TS \geq TOUT,
or TOUT - TS is too small,
or $\quad \operatorname{ITASK} \neq 1,2,3,4$ or 5 ,
or at least one of the coupling points defined in array XI is outside the interval [X(1), X(NPTS)],
or the coupling points are not in strictly increasing order,
or $\quad \mathrm{NPTS}<3$,
or $\quad \mathrm{NPDE}<1$,
or \quad LAOPT $\neq{ }^{\prime} \mathrm{F}^{\prime}$, 'B' or 'S',
or $\quad \mathrm{ITOL} \neq 1,2,3$ or 4 ,
or \quad IND $\neq 0$ or 1 ,
or mesh points $\mathrm{X}(i)$ are badly ordered,
or LRSAVE or LISAVE are too small,
or NCODE and NXI are incorrectly defined,
or \quad IND $=1$ on initial entry to D03PLF,
or \quad NEQN \neq NPDE \times NPTS + NCODE,
or an element of RTOL or ATOL <0.0,
or corresponding elements of RTOL and ATOL are both 0.0 ,
or \quad NORM $\neq 1$ or 2 .
IFAIL $=2$
The underlying ODE solver cannot make any further progress, with the values of ATOL and RTOL, across the integration range from the current point $t=\mathrm{TS}$. The components of U contain the computed values at the current point $t=\mathrm{TS}$.

IFAIL $=3$

In the underlying ODE solver, there were repeated error test failures on an attempted step, before completing the requested task, but the integration was successful as far as $t=$ TS. The problem may have a singularity, or the error requirement may be inappropriate. Incorrect specification of boundary conditions may also result in this error.

IFAIL $=4$
In setting up the ODE system, the internal initialization routine was unable to initialize the derivative of the ODE system. This could be due to the fact that IRES was repeatedly set to 3 in one of PDEDEF, NUMFLX, BNDARY or ODEDEF, when the residual in the underlying ODE solver was being evaluated. Incorrect specification of boundary conditions may also result in this error.

IFAIL $=5$
In solving the ODE system, a singular Jacobian has been encountered. Check the problem formulation.

IFAIL $=6$
When evaluating the residual in solving the ODE system, IRES was set to 2 in at least one of PDEDEF, NUMFLX, BNDARY or ODEDEF. Integration was successful as far as $t=\mathrm{TS}$.

IFAIL $=7$
The values of ATOL and RTOL are so small that the routine is unable to start the integration in time.
$\operatorname{IFAIL}=8$
In either, PDEDEF, NUMFLX, BNDARY or ODEDEF, IRES was set to an invalid value.
IFAIL $=9$ (D02NNF)
A serious error has occurred in an internal call to the specified routine. Check the problem specification and all arguments and array dimensions. Setting ITRACE $=1$ may provide more information. If the problem persists, contact NAG.

IFAIL $=10$
The required task has been completed, but it is estimated that a small change in ATOL and RTOL is unlikely to produce any change in the computed solution. (Only applies when you are not operating in one step mode, that is when ITASK $\neq 2$ or 5 .)

IFAIL $=11$
An error occurred during Jacobian formulation of the ODE system (a more detailed error description may be directed to the current advisory message unit when ITRACE ≥ 1). If using the sparse matrix algebra option, the values of $\operatorname{ALGOPT}(29)$ and ALGOPT(30) may be inappropriate.

IFAIL $=12$
In solving the ODE system, the maximum number of steps specified in ALGOPT(15) has been taken.

IFAIL $=13$
Some error weights w_{i} became zero during the time integration (see the description of ITOL). Pure relative error control ($\mathrm{ATOL}(i)=0.0$) was requested on a variable (the i th) which has become zero. The integration was successful as far as $t=\mathrm{TS}$.

IFAIL $=14$
One or more of the functions $P_{i, j}, D_{i}$ or C_{i} was detected as depending on time derivatives, which is not permissible.

IFAIL $=15$
When using the sparse option, the value of LISAVE or LRSAVE was not sufficient (more detailed information may be directed to the current error message unit).

IFAIL $=-99$
An unexpected error has been triggered by this routine. Please contact NAG.
See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
IFAIL $=-399$
Your licence key may have expired or may not have been installed correctly.
See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
IFAIL $=-999$
Dynamic memory allocation failed.
See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

D03PLF controls the accuracy of the integration in the time direction but not the accuracy of the approximation in space. The spatial accuracy depends on both the number of mesh points and on their distribution in space. In the time integration only the local error over a single step is controlled and so the accuracy over a number of steps cannot be guaranteed. You should therefore test the effect of varying the accuracy arguments, ATOL and RTOL.

8 Parallelism and Performance

D03PLF is not thread safe and should not be called from a multithreaded user program. Please see Section 3.12.1 in How to Use the NAG Library and its Documentation for more information on thread safety.

D03PLF is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
D03PLF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

D03PLF is designed to solve systems of PDEs in conservative form, with optional source terms which are independent of space derivatives, and optional second-order diffusion terms. The use of the routine to solve systems which are not naturally in this form is discouraged, and you are advised to use one of the central-difference schemes for such problems.
You should be aware of the stability limitations for hyperbolic PDEs. For most problems with small error tolerances the ODE integrator does not attempt unstable time steps, but in some cases a maximum time step should be imposed using ALGOPT(13). It is worth experimenting with this argument, particularly if the integration appears to progress unrealistically fast (with large time steps). Setting the maximum time step to the minimum mesh size is a safe measure, although in some cases this may be too restrictive.

Problems with source terms should be treated with caution, as it is known that for large source terms stable and reasonable looking solutions can be obtained which are in fact incorrect, exhibiting nonphysical speeds of propagation of discontinuities (typically one spatial mesh point per time step). It is essential to employ a very fine mesh for problems with source terms and discontinuities, and to check for non-physical propagation speeds by comparing results for different mesh sizes. Further details and an example can be found in Pennington and Berzins (1994).

The time taken depends on the complexity of the system and on the accuracy requested. For a given system and a fixed accuracy it is approximately proportional to NEQN.

10 Example

For this routine two examples are presented, with a main program and two example problems given in Example 1 (EX1) and Example 2 (EX2).

Example 1 (EX1)

This example is a simple first-order system with coupled ODEs arising from the use of the characteristic equations for the numerical boundary conditions.

The PDEs are

$$
\begin{aligned}
& \frac{\partial U_{1}}{\partial t}+\frac{\partial U_{1}}{\partial x}+2 \frac{\partial U_{2}}{\partial x}=0 \\
& \frac{\partial U_{2}}{\partial t}+2 \frac{\partial U_{1}}{\partial x}+\frac{\partial U_{2}}{\partial x}=0
\end{aligned}
$$

for $x \in[0,1]$ and $t \geq 0$.
The PDEs have an exact solution given by

$$
U_{1}(x, t)=f(x-3 t)+g(x+t), \quad U_{2}(x, t)=f(x-3 t)-g(x+t)
$$

where $f(z)=\exp (\pi z) \sin (2 \pi z), g(z)=\exp (-2 \pi z) \cos (2 \pi z)$.
The initial conditions are given by the exact solution.
The characteristic variables are $W_{1}=U_{1}-U_{2}$ and $W_{2}=U_{1}+U_{2}$, corresponding to the characteristics given by $d x / d t=-1$ and $d x / d t=3$ respectively. Hence we require a physical boundary condition for W_{2} at the left-hand boundary and for W_{1} at the right-hand boundary (corresponding to the incoming characteristics), and a numerical boundary condition for W_{1} at the left-hand boundary and for W_{2} at the right-hand boundary (outgoing characteristics).

The physical boundary conditions are obtained from the exact solution, and the numerical boundary conditions are supplied in the form of the characteristic equations for the outgoing characteristics, that is

$$
\frac{\partial W_{1}}{\partial t}-\frac{\partial W_{1}}{\partial x}=0
$$

at the left-hand boundary, and

$$
\frac{\partial W_{2}}{\partial t}+3 \frac{\partial W_{2}}{\partial x}=0
$$

at the right-hand boundary.
In order to specify these boundary conditions, two ODE variables V_{1} and V_{2} are introduced, defined by

$$
\begin{aligned}
& V_{1}(t)=W_{1}(0, t)=U_{1}(0, t)-U_{2}(0, t), \\
& V_{2}(t)=W_{2}(1, t)=U_{1}(1, t)+U_{2}(1, t)
\end{aligned}
$$

The coupling points are therefore at $x=0$ and $x=1$.
The numerical boundary conditions are now

$$
\dot{V}_{1}-\frac{\partial W_{1}}{\partial x}=0
$$

at the left-hand boundary, and

$$
\dot{V}_{2}+3 \frac{\partial W_{2}}{\partial x}=0
$$

at the right-hand boundary.
The spatial derivatives are evaluated at the appropriate boundary points in BNDARY using one-sided differences (into the domain and therefore consistent with the characteristic directions).

The numerical flux is calculated using Roe's approximate Riemann solver (see Section 3 for details), giving

$$
\hat{F}=\frac{1}{2}\left[\begin{array}{l}
3 U_{1 L}-U_{1 R}+3 U_{2 L}+U_{2 R} \\
3 U_{1 L}+U_{1 R}+3 U_{2 L}-U_{2 R}
\end{array}\right]
$$

Example 2 (EX2)

This example is the standard shock-tube test problem proposed by Sod (1978) for the Euler equations of gas dynamics. The problem models the flow of a gas in a long tube following the sudden breakdown of
a diaphragm separating two initial gas states at different pressures and densities. There is an exact solution to this problem which is not included explicitly as the calculation is quite lengthy. The PDEs are

$$
\begin{aligned}
\frac{\partial \rho}{\partial t}+\frac{\partial m}{\partial x} & =0 \\
\frac{\partial m}{\partial t}+\frac{\partial}{\partial x}\left(\frac{m^{2}}{\rho}+(\gamma-1)\left(e-\frac{m^{2}}{2 \rho}\right)\right) & =0 \\
\frac{\partial e}{\partial t}+\frac{\partial}{\partial x}\left(\frac{m e}{\rho}+\frac{m}{\rho}(\gamma-1)\left(e-\frac{m^{2}}{2 \rho}\right)\right) & =0
\end{aligned}
$$

where ρ is the density; m is the momentum, such that $m=\rho u$, where u is the velocity; e is the specific energy; and γ is the (constant) ratio of specific heats. The pressure p is given by

$$
p=(\gamma-1)\left(e-\frac{\rho u^{2}}{2}\right)
$$

The solution domain is $0 \leq x \leq 1$ for $0<t \leq 0.2$, with the initial discontinuity at $x=0.5$, and initial conditions

$$
\begin{array}{lll}
\rho(x, 0)=1, & m(x, 0)=0, \quad e(x, 0)=2.5, & \text { for } x<0.5 \\
\rho(x, 0)=0.125, & m(x, 0)=0, \quad e(x, 0)=0.25, & \text { for } x>0.5
\end{array}
$$

The solution is uniform and constant at both boundaries for the spatial domain and time of integration stated, and hence the physical and numerical boundary conditions are indistinguishable and are both given by the initial conditions above. The evaluation of the numerical flux for the Euler equations is not trivial; the Roe algorithm given in Section 3 cannot be used directly as the Jacobian is nonlinear. However, an algorithm is available using the argument-vector method (see Roe (1981)), and this is provided in the utility routine D03PUF. An alternative Approxiate Riemann Solver using Osher's scheme is provided in D03PVF. Either D03PUF or D03PVF can be called from NUMFLX.

10.1 Program Text

```
D03PLF Example Program Text
Mark 26 Release. NAG Copyright 2016.
Module dO3plfe_mod
    D03PLF Example Program Module:
                        Parameters and User-defined Routines
    .. Use Statements ..
    Use nag_library, Only: nag_wp
    .. Implicit None Statement ..
    Implicit None
    .. Accessibility Statements ..
    Private
    Public :: bndry1, bndry2, exact, nmflx1,
                                    nmflx2, odedef, pdedef, uvinit
    .. Parameters ..
    Real (Kind=nag_wp), Parameter, Public :: el0 = 2.5_nag_wp
    Real (Kind=nag_wp), Parameter, Public : : er0 = 0.2\overline{5_nag_wp}
    Real (Kind=nag_wp), Parameter, Public :: gamma = 1.4_nag_wp
    Real (Kind=nag_wp), Parameter, Public :: rlo = 1.0_nag_wp
    Real (Kind=nag_wp), Parameter, Public :: rr0 = 0.125_nag_wp
    Integer, Parameter, Public : itrace = 0, ncodel }=2=2, ncode2 = 0, &
                                    nin = 5, nout = 6, npde1 = 2, &
                                    npde2 = 3, nxil = 2, nxi2 = 0
Contains
    Subroutine exact(t,u,npde,x,npts)
        Exact solution (for comparison and b.c. purposes)
        .. Use Statements ..
        Use nag_library, Only: x0laaf
        .. Scalar Arguments ..
```

 Real (Kind=nag_wp), Intent (In) : : t
 Integer, Intent (In) : npde, npts
 .. Array Arguments ..
 Real (Kind=nag_wp), Intent (Out) : : u(npde, npts)
 Real (Kind=nag_wp), Intent (In) : : x(*)
 .. Local Scalars ..
 Real (Kind=nag_wp) : f f, g, pi, pi2, x1, x3
 Integer : : i
 . . Intrinsic Procedures ..
 Intrinsic : : cos, exp, sin
 .. Executable Statements ..
 \(\mathrm{f}=0.0\) nag wp
 pi \(=x 0\) laaf(f)
 pi2 = 2.0_nag_wp*pi
 Do $i=1$, npts
$x 1=x(i)+t$
$x 3=x(i)-3.0 _$nag_wp*t
$\mathrm{f}=\exp (\mathrm{pi*} 33) * \sin (\mathrm{pi} 2 * \mathrm{x} 3)$
$g=\exp (-p i 2 * x 1) * \cos (p i 2 * x 1)$
$u(1, i)=f+g$
$u(2, i)=f-g$
End Do
Return
End Subroutine exact
Subroutine pdedef(npde,t,x,u,ux,ncode,v,vdot,p,c,d,s,ires)
.. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) : : t, x
Integer, Intent (Inout) : ires
Integer, Intent (In) : ncode, npde
.. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) : : c(npde), d(npde), p(npde,npde)
s(npde)
Real (Kind=nag_wp), Intent (In) : : u(npde), ux(npde), v(ncode),
vdot(ncode)
.. Local Scalars ..
Integer : : i
.. Executable Statements ..
c (1:npde) = 1.0_nag_wp
d(1:npde) $=0.0 _$nag_wp
s(1:npde) $=0.0 _$nag_wp
p(1:npde,1:npde) = 0.0_nag_wp
Do $i=1$, npde
$p(i, i)=1.0 _$nag_wp
End Do
Return
End Subroutine pdedef
Subroutine bndryl(npde, npts,t,x,u,ncode,v,vdot,ibnd,g,ires)
.. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) : : t
Integer, Intent (In) : ibnd, ncode, npde, npts
Integer, Intent (Inout) : ires
.. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) : : g(npde)
Real (Kind=nag_wp), Intent (In) : : u(npde,npts), v(ncode),
vdot(ncode), x(npts)
.. Local Scalars ..
Real (Kind=nag_wp) : : dudx
Integer : : i
.. Local Arrays ..
,
Real (Kind=nag_wp) : : ue $(2,1)$
. Executable Statements ..
If (ibnd==0) Then
i $=1$
Call exact(t, ue, npde, x(i), 1)
$g(1)=u(1, i)+u(2, i)-u e(1,1)-u e(2,1)$
dudx $=(u(1, i+1)-u(2, i+1)-u(1, i)+u(2, i)) /(x(i+1)-x(i))$
$g(2)=\operatorname{vdot}(1)-d u d x$
Else
$i=n p t s$

Call exact(t, ue, npde,x(i), 1)
$g(1)=u(1, i)-u(2, i)-u e(1,1)+u e(2,1)$
$d u d x=(u(1, i)+u(2, i)-u(1, i-1)-u(2, i-1)) /(x(i)-x(i-1))$
$g(2)=v d o t(2)+3.0 _n a g _w p * d u d x$
End If
Return
End Subroutine bndry1
Subroutine nmflxi(npde,t,x,ncode,v,uleft,uright,flux,ires)
.. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) : : t, x
Integer, Intent (Inout) : ires
Integer, Intent (In) : ncode, npde
.. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) : : flux(npde)
Real (Kind=nag_wp), Intent (In) : : uleft(npde), uright(npde), v(ncode)
.. Local Scalars ..
Real (Kind=nag_wp) : : tmpl, tmpr
.. Executable Statements ..
tmpl $=$ 3.0_nag_wp*(uleft(1)+uleft(2))
tmpr $=$ uright(1) - uright(2)
flux (1) = 0.5_nag_wp*(tmpl-tmpr)
flux (2) $=0.5 _$nag_wp*(tmpl+tmpr)
Return
End Subroutine nmflxl
Subroutine odedef(npde,t,ncode,v,vdot,nxi,xi,ucp,ucpx,ucpt,r,ires)
.. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) : : t
Integer, Intent (Inout) : ires
Integer, Intent (In) : : ncode, npde, nxi
.. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) : : r(ncode)
Real (Kind=nag_wp), Intent (In) : : ucp (npde,*), ucpt(npde,*), \& ucpx(npde,*), v(ncode), vdot(ncode), \& xi(nxi)
.. Executable Statements ..
If (ires==-1) Then $r(1)=0.0 _$nag_wp
$r(2)=0.0 _n a g _w p$
Else
$r(1)=v(1)-\operatorname{ucp}(1,1)+\operatorname{ucp}(2,1)$
$r(2)=v(2)-\operatorname{ucp}(1,2)-\operatorname{ucp}(2,2)$
End If
Return
End Subroutine odedef
Subroutine bndry2(npde, npts,t,x,u,ncode,v,vdot,ibnd,g,ires)
.. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) : : t
Integer, Intent (In) : ibnd, ncode, npde, npts
Integer, Intent (Inout) : ires
.. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) : : g(npde)
Real (Kind=nag_wp), Intent (In) : : u(npde,npts), v(ncode), \& vdot(ncode), $x(n p t s)$
.. Executable Statements ..
If (ibnd==0) Then
$g(1)=u(1,1)-r 10$
$g(2)=u(2,1)$
$g(3)=u(3,1)-e l 0$
Else
$g(1)=u(1, n p t s)-r r 0$
$g(2)=u(2$, npts $)$
$g(3)=u(3$, npts $)-\operatorname{erO}$
End If
Return
End Subroutine bndry2
Subroutine nmflx2(npde,t,x,ncode,v,uleft,uright,flux,ires)
.. Use Statements ..
.. Executable Statements ..
Write (nout,*) 'D03PLF Example Program Results'
Call exl
Call ex2
Contains
Subroutine exl
.. Use Statements ..

```
Use nag_library, Only: dO3plf, nag_wp
Use dO3plfe_mod, Only: bndry1, exact, itrace, ncode1, nin, nmflx1,
npde1, nxil, odedef, pdedef
.. Local Scalars ..
Real (Kind=nag_wp) :: errmax, lerr, lwgt, tout, ts
Integer :: i, ifail, ind, itask, itol, j, &
    lenode, lisave, lrsave, ncode, neqn, &
    nfuncs, niters, njacs, npde, npts, &
    nsteps, nwkres, nxi
Character (1) :: laopt, norm
.. Local Arrays ..
Real (Kind=nag_wp) :: algopt(30), atol(1), rtol(1)
Real (Kind=nag_wp), Allocatable :: rsave(:), u(:), ue(:,:), x(:),
    xi(:)
Integer, Allocatable :: isave(:)
.. Intrinsic Procedures ..
Intrinsic :: abs, int, max, real
.. Executable Statements ..
Write (nout,*)
Write (nout,*)
Write (nout,*) 'Example 1'
Write (nout,*)
Skip heading in data file
Read (nin,*)
Read (nin,*) npts
npde = npde1
ncode = ncode1
nxi = nxil
neqn = npde*npts + ncode
lisave = 25*neqn + 24
nwkres = npde*(2*npts+6*nxi+3*npde+26) + nxi + ncode + 7*npts + 2
lenode = 11*neqn + 50
lrsave = 4*neqn + 11*neqn/2 + 1 + nwkres + lenode
lisave = lisave*4
lrsave = lrsave*4
Allocate (rsave(lrsave),u(neqn),ue(npde,npts),x(npts),xi(nxi),
    isave(lisave))
Read (nin,*) itol
Read (nin,*) norm
Read (nin,*) atol(1), rtol(1)
Initialize mesh
Do i = 1, npts
    x(i) = real(i-1,kind=nag_wp)/real(npts-1,kind=nag_wp)
End Do
xi(1) = 0.0_nag_wp
xi(2) = 1.0_nag_wp
Set initial values ..
ts = 0.0_nag_wp
Call exact(ts,u,npde,x,npts)
u(neqn-1) = u(1) - u(2)
u(neqn) = u(neqn-2) +u(neqn-3)
laopt = 'S'
ind = 0
itask = 1
algopt(1:30) = 0.0_nag_wp
Theta integration
algopt(1) = 1.0_nag_wp
Sparse matrix algebra parameters
algopt(29) = 0.1_nag_wp
algopt(30) = 1.1_nag_wp
tout = 0.5_nag_wp
ifail: behaviour on error exit
    =O for hard exit, =1 for quiet-soft, =-1 for noisy-soft
ifail = 0
```

Call do3plf(npde,ts,tout,pdedef,nmflx1,bndryl,u,npts,x,ncode,odedef,
\quad nxi,xi,neqn,rtol, atol,itol,norm,laopt, algopt,rsave,lrsave,isave,
lisave,itask,itrace,ind,ifail)
Write (nout, 99992)
Write (nout, 99991) npts
Write (nout, 99990) rtol(1)
Write (nout,99989) atol(1)

Calculate global error at t=tout $: \max (| | u-u e| |, ~ o v e r ~ x) ~$

Get exact solution at $t=t o u t$
Call exact (tout, ue, npde, x, npts)
errmax = -1.0_nag_wp
Do $i=2$, npts
lerr = O.O_nag_wp
Do $j=1, \overline{n p d e}$
lwgt $=$ rtol(1)*abs(ue(j,i)) + atol(1)
lerr $=$ lerr $+\mathrm{abs}(u((i-1) * n p d e+j)-u e(j, i)) / l w g t$
End Do
lerr $=$ lerr/real(npde,kind=nag_wp)
errmax $=$ max (errmax,lerr)
End Do
Write (nout, 99999)
Write (nout, 99998) 100*int(errmax/100.0_nag_wp) + 100
Print integration statistics (reasonably rounded)
nsteps $=$ 50*((isave(1)+25)/50)
nfuncs $=100 *(($ isave $(2)+50) / 100)$
njacs $=20 *((i s a v e(3)+10) / 20)$
niters $=100 *(($ isave (5) +50$) / 100)$
Write (nout, 99997)
Write (nout, 99996) nsteps
Write (nout, 99995) nfuncs
Write (nout, 99994) njacs
Write (nout, 99993) niters
Return
Format (/,1X,'Integration Results:')
Format (2 X, 'Global error is less than ',I3,
' times the local error tolerance.')
Format (/,1X,'Integration Statistics:')
Format (2X,'Number of time steps (nearest 50) = ',I6)
Format (2X,'Number of function evaluations (nearest 100) = ',I6)
Format (2X,'Number of Jacobian evaluations (nearest 20) = ',I6)
Format (2X,'Number of iterations (nearest 100) = ',I6)
Format (/,1X,'Method Parameters:')
Format (2X,'Number of mesh points used $=$ ',I4)
Format (2X,'Relative tolerance used $=$, , E10.3)
Format (2X,'Absolute tolerance used $=$ ',E10.3)
End Subroutine ex1
Subroutine ex2
.. Use Statements ..
Use nag_library, Only: do3pek, d03plf, d03plp, nag_wp
Use dO3plfe_mod, Only: bndry2, el0, er0, gamma, itrace, ncode2, nin, \&
nmflx2, npde2, nxi2, rl0, rro, uvinit
.. Local Scalars ..
Real (Kind=nag_wp) : : d, p, tout, ts, v
Integer : i, ifail, ind, it, itask, itol, \&
lenode, lisave, lrsave, mlu, ncode, \&
neqn, nfuncs, niters, njacs, npde, \&
npts, nskip, nsteps, nwkres, nxi
Character (1)
! .. Local Arrays ..
Real (Kind=nag_wp) : algopt(30), atol(1), rtol(1), xi(1)
Real (Kind=nag_wp), Allocatable : : rsave(:), u(:,:), x(:)
Integer, Allocatable : : isave(:)
.. Intrinsic Procedures ..
Intrinsic :: real

```
!
! Print problem parameters
Write (nout,99997)
Write (nout,99996) gamma
Write (nout,99995) el0, er0
Write (nout,99994) rl0, rro
Read and print method parameters
Read (nin,*) itol
Read (nin,*) norm
Read (nin,*) atol(1), rtol(1)
Write (nout,99987)
Write (nout,99986) npts
Write (nout,99985) rtol(1)
Write (nout,99984) atol(1)
Initialize mesh
Do i = 1, npts
    x(i) = real(i-1,kind=nag_wp)/real(npts-1,kind=nag_wp)
End Do
Initial values of variables
Call uvinit(npde,npts,x,u)
xi(1) = 0.0_nag_wp
laopt = 'B'
ind = 0
itask = 1
algopt(1:30) = 0.0_nag_wp
Theta integration
algopt(1) = 2.0_nag_wp
algopt(6) = 2.0_nag_wp
algopt(7) = 2.0_nag_wp
Max. time step
algopt(13) = 0.5E-2_nag_wp
Write (nout,99999)
Write (nout,99998)
ts = 0.0_nag_wp
tout = ts
Do it = 1, 2
    tout = tout + 0.1_nag_wp
    ifail: behaviour on error exit
            =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
    ifail = 0
    Call d03plf(npde,ts,tout,d03plp,nmflx2,bndry2,u,npts,x,ncode,d03pek, &
        nxi,xi,neqn,rtol,atol,itol,norm,laopt,algopt,rsave,lrsave,isave, &
        lisave,itask,itrace,ind,ifail)
```

!
99987 Format (/,' Method Parameters:')
99986 Format (' Number of mesh points used = ',I4)
99985 Format (' Relative tolerance used $=$ ',E10.3)
99984 Format (' Absolute tolerance used = ',E10.3)
End Subroutine ex2

End Program dO3plfe

10.2 Program Data

10.3 Program Results

```
DO3PLF Example Program Results
```

Example 1

Method Parameters:
Number of mesh points used $=201$
Relative tolerance used $=0.250 \mathrm{E}-03$

```
Absolute tolerance used = 0.100E-04
Integration Results:
    Global error is less than 100 times the local error tolerance.
Integration Statistics:
    Number of time steps (nearest 50) =
        1 5 0
    Number of function evaluations (nearest 100) = 1400
    Number of Jacobian evaluations (nearest 20) = 20
    Number of iterations (nearest 100) = 400
```

Example 2

Problem Parameter and initial conditions:
gamma $=1.400$
$e(x<0.5,0)=2.500 \quad e(x>0.5,0)=0.250$
rho $(x>0.5,0)=1.000 \quad$ rho $(x>0.5,0)=0.125$

Method Parameters:
Number of mesh points used $=141$
Relative tolerance used $=0.500 \mathrm{E}-03$
Absolute tolerance used $=0.500 \mathrm{E}-02$

Solution

t	x	density	velocity	pressure
0.100	0.0000	1.0000	0.0000	1.0000
	0.100	1.0000	-0.0000	1.0000
	0.200	1.0000	-0.0000	1.0000
	0.300	1.0000	-0.0000	1.0000
	0.400	0.8668	0.1665	0.8188
	0.500	0.4299	0.9182	0.3071
	0.600	0.2969	0.9274	0.3028
	0.700	0.1250	0.0000	0.1000
	0.800	0.1250	-0.0000	0.1000
	0.900	0.1250	-0.0000	0.1000
	1.000	0.1250	0.0000	0.1000
	0.0000	1.0000	0.0000	1.0000
	0.100	1.0000	-0.0000	1.0000
	0.300	1.0000	-0.0000	1.0000
	0.400	0.8718	0.1601	0.8253
	0.500	0.4245	0.5543	0.5022
	0.600	0.4259	0.9314	0.3014
	0.700	0.2772	0.9272	0.3030
	0.800	0.2657	0.9276	0.3031
	0.900	0.1250	-0.0000	0.1000
	1.000	0.1250	0.0000	0.1000

Number of time steps	(nearest 50)	$=$	150
Number of function evaluations	(nearest 50)	$=$	400
Number of Jacobian evaluations (nearest 1)	$=$	1	
Number of iterations	(nearest 1)	$=$	2

Example Program 1

First-order System with Coupled ODEs Solution $U(1, x, t)$

Example Program 2
Shock Tube Test Problem of Euler Equations in Gas Dynamics DENSITY

Shock Tube Test Problem of Euler Equations in Gas Dynamics
VELOCITY

Time
shock lube lest rrobiem or Euler equations in Gas Dynamics PRESSURE

