
NAG Library Routine Document

F01HBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01HBF computes the action of the matrix exponential etA, on the matrix B, where A is a complex n
by n matrix, B is a complex n by m matrix and t is a complex scalar. It uses reverse communication
for evaluating matrix products, so that the matrix A is not accessed explicitly.

2 Specification

SUBROUTINE F01HBF (IREVCM, N, M, B, LDB, T, TR, B2, LDB2, X, LDX, Y,
LDY, P, R, Z, CCOMM, COMM, ICOMM, IFAIL)

&

INTEGER IREVCM, N, M, LDB, LDB2, LDX, LDY, ICOMM(2*N+40),
IFAIL

&

REAL (KIND=nag_wp) COMM(3*N+14)
COMPLEX (KIND=nag_wp) B(LDB,*), T, TR, B2(LDB2,*), X(LDX,*), Y(LDY,*),

P(N), R(N), Z(N), CCOMM(N*(M+2))
&

3 Description

etAB is computed using the algorithm described in Al–Mohy and Higham (2011) which uses a
truncated Taylor series to compute the etAB without explicitly forming etA.

The algorithm does not explicity need to access the elements of A; it only requires the result of matrix
multiplications of the form AX or AHY . A reverse communication interface is used, in which control is
returned to the calling program whenever a matrix product is required.

4 References

Al–Mohy A H and Higham N J (2011) Computing the action of the matrix exponential, with an
application to exponential integrators SIAM J. Sci. Statist. Comput. 33(2) 488-511

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

5 Arguments

Note: this routine uses reverse communication. Its use involves an initial entry, intermediate exits and
re-entries, and a final exit, as indicated by the argument IREVCM. Between intermediate exits and re-
entries, all arguments other than B2, X, Y, P and R must remain unchanged.

1: IREVCM – INTEGER Input/Output

On initial entry: must be set to 0.

On intermediate exit: IREVCM ¼ 1, 2, 3, 4 or 5. The calling program must:

(a) if IREVCM ¼ 1: evaluate B2 ¼ AB, where B2 is an n by m matrix, and store the result in
B2;
if IREVCM ¼ 2: evaluate Y ¼ AX, where X and Y are n by 2 matrices, and store the result
in Y;
if IREVCM ¼ 3: evaluate X ¼ AHY and store the result in X;
if IREVCM ¼ 4: evaluate p ¼ Az and store the result in P;
if IREVCM ¼ 5: evaluate r ¼ AHz and store the result in R.

(b) call F01HBF again with all other parameters unchanged.

F01 – Matrix Operations, Including Inversion F01HBF

Mark 26 F01HBF.1



On final exit: IREVCM ¼ 0.

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: M – INTEGER Input

On entry: the number of columns of the matrix B.

Constraint: M � 0.

4: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least M.

On initial entry: the n by m matrix B.

On intermediate exit: if IREVCM ¼ 1, contains the n by m matrix B.

On intermediate re-entry: must not be changed.

On final exit: the n by m matrix etAB.

5: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F01HBF
is called.

Constraint: LDB � N.

6: T – COMPLEX (KIND=nag_wp) Input

On entry: the scalar t.

7: TR – COMPLEX (KIND=nag_wp) Input

On entry: the trace of A. If this is not available then any number can be supplied (0 is a
reasonable default); however, in the trivial case, n ¼ 1, the result eTRtB is immediately returned
in the first row of B. See Section 9.

8: B2ðLDB2; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B2 must be at least M.

On initial entry: need not be set.

On intermediate re-entry: if IREVCM ¼ 1, must contain AB.

On final exit: the array is undefined.

9: LDB2 – INTEGER Input

On initial entry: the first dimension of the array B2 as declared in the (sub)program from which
F01HBF is called.

Constraint: LDB2 � N.

10: XðLDX; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array X must be at least 2.

On initial entry: need not be set.

On intermediate exit: if IREVCM ¼ 2, contains the current n by 2 matrix X.

On intermediate re-entry: if IREVCM ¼ 3, must contain AHY .

F01HBF NAG Library Manual

F01HBF.2 Mark 26



On final exit: the array is undefined.

11: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which F01HBF
is called.

Constraint: LDX � N.

12: YðLDY; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array Y must be at least 2.

On initial entry: need not be set.

On intermediate exit: if IREVCM ¼ 3, contains the current n by 2 matrix Y .

On intermediate re-entry: if IREVCM ¼ 2, must contain AX.

On final exit: the array is undefined.

13: LDY – INTEGER Input

On entry: the first dimension of the array Y as declared in the (sub)program from which F01HBF
is called.

Constraint: LDY � N.

14: PðNÞ – COMPLEX (KIND=nag_wp) array Input/Output

On initial entry: need not be set.

On intermediate re-entry: if IREVCM ¼ 4, must contain Az.

On final exit: the array is undefined.

15: RðNÞ – COMPLEX (KIND=nag_wp) array Input/Output

On initial entry: need not be set.

On intermediate re-entry: if IREVCM ¼ 5, must contain AHz.

On final exit: the array is undefined.

16: ZðNÞ – COMPLEX (KIND=nag_wp) array Input/Output

On initial entry: need not be set.

On intermediate exit: if IREVCM ¼ 4 or 5, contains the vector z.

On intermediate re-entry: must not be changed.

On final exit: the array is undefined.

17: CCOMMðN� Mþ 2ð ÞÞ – COMPLEX (KIND=nag_wp) array Communication Array

18: COMMð3� Nþ 14Þ – REAL (KIND=nag_wp) array Communication Array

19: ICOMMð2� Nþ 40Þ – INTEGER array Communication Array

20: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the

F01 – Matrix Operations, Including Inversion F01HBF

Mark 26 F01HBF.3



recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 2

etAB has been computed using an IEEE double precision Taylor series, although the arithmetic
precision is higher than IEEE double precision.

IFAIL ¼ �1

On initial entry, IREVCM ¼ valueh i.
Constraint: IREVCM ¼ 0.

On intermediate re-entry, IREVCM ¼ valueh i.
Constraint: IREVCM ¼ 1, 2, 3, 4 or 5.

IFAIL ¼ �2

On initial entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �3

On initial entry, M ¼ valueh i.
Constraint: M � 0.

IFAIL ¼ �5

On initial entry, LDB ¼ valueh i and N ¼ valueh i.
Constraint: LDB � N.

IFAIL ¼ �9

On initial entry, LDB2 ¼ valueh i and N ¼ valueh i.
Constraint: LDB2 � N.

IFAIL ¼ �11

On initial entry, LDX ¼ valueh i and N ¼ valueh i.
Constraint: LDX � N.

IFAIL ¼ �13

On initial entry, LDY ¼ valueh i and N ¼ valueh i.
Constraint: LDY � N.

IFAIL ¼ �99

An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

F01HBF NAG Library Manual

F01HBF.4 Mark 26



IFAIL ¼ �399

Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999

Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

For an Hermitian matrix A (for which AH ¼ A) the computed matrix etAB is guaranteed to be close to
the exact matrix, that is, the method is forward stable. No such guarantee can be given for non-
Hermitian matrices. See Section 4 of Al–Mohy and Higham (2011) for details and further discussion.

8 Parallelism and Performance

F01HBF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

9.1 Use of Tr Að Þ
The elements of A are not explicitly required by F01HBF. However, the trace of A is used in the
preprocessing phase of the algorithm. If Tr Að Þ is not available to the calling subroutine then any
number can be supplied (0 is recommended). This will not affect the stability of the algorithm, but it
may reduce its efficiency.

9.2 When to use F01HBF

F01HBF is designed to be used when A is large and sparse. Whenever a matrix multiplication is
required, the routine will return control to the calling program so that the multiplication can be done in
the most efficient way possible. Note that etAB will not, in general, be sparse even if A is sparse.

If A is small and dense then F01HAF can be used to compute etAB without the use of a reverse
communication interface.

The real analog of F01HBF is F01GBF.

9.3 Use in Conjunction with NAG Library Routines

To compute etAB, the following skeleton code can normally be used:

revcm: Do
Call F01HBF(IREVCM,N,M,B,LDB,T,TR,B2,LDB2,X,LDX,Y,LDX,P,R,Z, &

CCOMM,COMM,ICOMM,IFAIL)
If (IREVCM == 0) Then

Exit revcm
Else If (IREVCM == 1) Then

.. Code to compute B2=AB ..
Else If (IREVCM == 2) Then

.. Code to compute Y=AX ..
Else If (IREVCM == 3) Then

.. Code to compute X=A^H Y ..
Else If (IREVCM == 4) Then

.. Code to compute P=AZ ..
Else If (IREVCM == 5) Then

F01 – Matrix Operations, Including Inversion F01HBF

Mark 26 F01HBF.5



.. Code to compute R=A^H Z ..
End If

End Do revcm

The code used to compute the matrix products will vary depending on the way A is stored. If all the
elements of A are stored explicitly, then F06ZAF (ZGEMM) can be used. If A is triangular then
F06ZFF (ZTRMM) should be used. If A is Hermitian, then F06ZCF (ZHEMM) should be used. If A is
symmetric, then F06ZTF (ZSYMM) should be used. For sparse A stored in coordinate storage format
F11XNF and F11XSF can be used. For sparse A stored in compressed column storage format (CCS) the
program text of Section 10 contains the routine matmul to perform matrix products.

10 Example

This example computes etAB where

A ¼
0:7þ 0:8i �0:2þ 0:0i 1:0þ 0:0i 0:6þ 0:5i
0:3þ 0:7i 0:7þ 0:0i 0:9þ 3:0i 1:0þ 0:8i
0:3þ 3:0i �0:7þ 0:0i 0:2þ 0:6i 0:7þ 0:5i
0:0þ 0:9i 4:0þ 0:0i 0:0þ 0:0i 0:2þ 0:0i

0
B@

1
CA;

B ¼
0:1þ 0:0i 1:2þ 0:1i
1:3þ 0:9i �0:2þ 2:0i
4:0þ 0:6i �1:0þ 0:8i
0:4þ 0:0i �0:9þ 0:0i

0
B@

1
CA

and

t ¼ 1:1þ 0:0i:

A is stored in compressed column storage format (CCS) and matrix multiplications are performed using
the routine matmul.

10.1 Program Text

Program f01hbfe

! F01HBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01hbf, nag_wp, x04daf, zgemm

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Complex (Kind=nag_wp) :: t, tr
Integer :: i, ifail, irevcm, lda, ldb, ldb2, &

ldx, ldy, m, n
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), b2(:,:), ccomm(:), &
p(:), r(:), x(:,:), y(:,:), z(:)

Real (Kind=nag_wp), Allocatable :: comm(:)
Integer, Allocatable :: icomm(:)

! .. Executable Statements ..
Write (nout,*) ’F01HBF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, m, t

lda = n
ldb = n
ldb2 = n

F01HBF NAG Library Manual

F01HBF.6 Mark 26



ldx = n
ldy = n

! Allocate required space
Allocate (a(lda,n))
Allocate (b(ldb,m))
Allocate (b2(ldb2,m))
Allocate (ccomm(n*(m+2)))
Allocate (x(ldx,2))
Allocate (y(ldy,2))
Allocate (icomm(2*n+40))
Allocate (comm(14+3*n))
Allocate (p(n))
Allocate (r(n))
Allocate (z(n))

! Read A from data file
Read (nin,*)(a(i,1:n),i=1,n)

! Read B from data file
Read (nin,*)(b(i,1:m),i=1,n)

! Compute the trace of A
tr = (0.0_nag_wp,0.0_nag_wp)
Do i = 1, n

tr = tr + a(i,i)
End Do

! Find exp(tA)B

irevcm = 0
ifail = 0

! Initial call to reverse communication interface f01hbf
revcm: Do

Call f01hbf(irevcm,n,m,b,ldb,t,tr,b2,ldb2,x,ldx,y,ldy,p,r,z,ccomm, &
comm,icomm,ifail)

If (irevcm==0) Then
Exit revcm

Else If (irevcm==1) Then
! Compute AB and store in B2

Call zgemm(’N’,’N’,n,m,n,(1.0_nag_wp,0.0_nag_wp),a,lda,b,ldb, &
(0.0_nag_wp,0.0_nag_wp),b2,ldb2)

Else If (irevcm==2) Then
! Compute AX and store in Y

Call zgemm(’N’,’N’,n,2,n,(1.0_nag_wp,0.0_nag_wp),a,lda,x,ldx, &
(0.0_nag_wp,0.0_nag_wp),y,ldy)

Else If (irevcm==3) Then
! Compute A^H Y and store in X

Call zgemm(’C’,’N’,n,2,n,(1.0_nag_wp,0.0_nag_wp),a,lda,y,ldy, &
(0.0_nag_wp,0.0_nag_wp),x,ldx)

Else If (irevcm==4) Then
! Compute Az and store in p

Call zgemm(’N’,’N’,n,1,n,(1.0_nag_wp,0.0_nag_wp),a,lda,z,n, &
(0.0_nag_wp,0.0_nag_wp),p,n)

Else If (irevcm==5) Then
! Compute A^H z and store in r

Call zgemm(’C’,’N’,n,1,n,(1.0_nag_wp,0.0_nag_wp),a,lda,z,n, &
(0.0_nag_wp,0.0_nag_wp),r,n)

End If

! Return to f01hbf
End Do revcm

If (ifail==0) Then
! Print solution

F01 – Matrix Operations, Including Inversion F01HBF

Mark 26 F01HBF.7



ifail = 0
Call x04daf(’G’,’N’,n,m,b,ldb,’exp(tA)B’,ifail)

End If

End Program f01hbfe

10.2 Program Data

F01HBF Example Program Data

4 2 (1.1,0.0) :Values of N, M, T

(0.7,0.8) (-0.2,0.0) (1.0,0.0) (0.6,0.5)
(0.3,0.7) ( 0.7,0.0) (0.9,3.0) (1.0,0.8)
(0.3,3.0) (-7.0,0.0) (0.2,0.6) (0.7,0.5)
(0.0,0.9) ( 4.0,0.0) (0.0,0.0) (0.2,0.0) :End of matrix A

(0.1,0.0) ( 1.2,0.1)
(1.3,0.9) (-0.2,2.0)
(4.0,0.6) (-1.0,0.8)
(0.4,0.0) (-0.9,0.0) :End of matrix B

10.3 Program Results

F01HBF Example Program Results

exp(tA)B
1 2

1 -15.3125 -4.5605
5.9123 -2.4288

2 12.3396 9.2005
-50.6993 -10.3632

3 -65.4353 -17.6075
34.3271 -1.0019

4 45.6506 11.3339
-28.3253 0.1127

F01HBF NAG Library Manual

F01HBF.8 (last) Mark 26


	F01HBF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Al-Mohy and Higham (2011)
	Higham (2008)

	5 Arguments
	IREVCM
	N
	M
	B
	LDB
	T
	TR
	B2
	LDB2
	X
	LDX
	Y
	LDY
	P
	R
	Z
	CCOMM
	COMM
	ICOMM
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=2
	IFAIL=-1
	IFAIL=-2
	IFAIL=-3
	IFAIL=-5
	IFAIL=-9
	IFAIL=-11
	IFAIL=-13
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	9.1 Use of TrA
	9.2 When to use F01HBF
	9.3 Use in Conjunction with NAG Library Routines

	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	NAG Fortran Library Manual, Mark 26.1
	Copyright Statement
	Foreword
	Introduction
	How to Use the NAG Library and its Documentation
	Mark 26.1 NAG Fortran Library News
	Implementation-specific Details for Users
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Code Contributors
	Support from NAG
	Index

	Chapters of the Library
	A00 - Library Identification
	A00 Chapter Contents
	A00 Chapter Introduction

	A02 - Complex Arithmetic
	A02 Chapter Contents
	A02 Chapter Introduction

	C02 - Zeros of Polynomials
	C02 Chapter Contents
	C02 Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	C05 Chapter Contents
	C05 Chapter Introduction

	C06 - Summation of Series
	C06 Chapter Contents
	C06 Chapter Introduction

	C09 - Wavelet Transforms
	C09 Chapter Contents
	C09 Chapter Introduction

	D01 - Quadrature
	D01 Chapter Contents
	D01 Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 Chapter Contents
	D02 Chapter Introduction
	D02M-N Sub-chapter Introduction

	D03 - Partial Differential Equations
	D03 Chapter Contents
	D03 Chapter Introduction

	D04 - Numerical Differentiation
	D04 Chapter Contents
	D04 Chapter Introduction

	D05 - Integral Equations
	D05 Chapter Contents
	D05 Chapter Introduction

	D06 - Mesh Generation
	D06 Chapter Contents
	D06 Chapter Introduction

	E01 - Interpolation
	E01 Chapter Contents
	E01 Chapter Introduction

	E02 - Curve and Surface Fitting
	E02 Chapter Contents
	E02 Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	E04 Chapter Contents
	E04 Chapter Introduction

	E05 - Global Optimization of a Function
	E05 Chapter Contents
	E05 Chapter Introduction

	F - Linear Algebra
	F Chapter Contents
	F Chapter Introduction

	F01 - Matrix Operations, Including Inversion
	F01 Chapter Contents
	F01 Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	F02 Chapter Contents
	F02 Chapter Introduction

	F03 - Determinants
	F03 Chapter Contents
	F03 Chapter Introduction

	F04 - Simultaneous Linear Equations
	F04 Chapter Contents
	F04 Chapter Introduction

	F05 - Orthogonalization
	F05 Chapter Contents
	F05 Chapter Introduction

	F06 - Linear Algebra Support Routines
	F06 Chapter Contents
	F06 Chapter Introduction

	F07 - Linear Equations (LAPACK)
	F07 Chapter Contents
	F07 Chapter Introduction

	F08 - Least Squares and Eigenvalue Problems (LAPACK)
	F08 Chapter Contents
	F08 Chapter Introduction

	F11 - Large Scale Linear Systems
	F11 Chapter Contents
	F11 Chapter Introduction

	F12 - Large Scale Eigenproblems
	F12 Chapter Contents
	F12 Chapter Introduction

	F16 - Further Linear Algebra Support Routines
	F16 Chapter Contents
	F16 Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	G01 Chapter Contents
	G01 Chapter Introduction

	G02 - Correlation and Regression Analysis
	G02 Chapter Contents
	G02 Chapter Introduction

	G03 - Multivariate Methods
	G03 Chapter Contents
	G03 Chapter Introduction

	G04 - Analysis of Variance
	G04 Chapter Contents
	G04 Chapter Introduction

	G05 - Random Number Generators
	G05 Chapter Contents
	G05 Chapter Introduction

	G07 - Univariate Estimation
	G07 Chapter Contents
	G07 Chapter Introduction

	G08 - Nonparametric Statistics
	G08 Chapter Contents
	G08 Chapter Introduction

	G10 - Smoothing in Statistics
	G10 Chapter Contents
	G10 Chapter Introduction

	G11 - Contingency Table Analysis
	G11 Chapter Contents
	G11 Chapter Introduction

	G12 - Survival Analysis
	G12 Chapter Contents
	G12 Chapter Introduction

	G13 - Time Series Analysis
	G13 Chapter Contents
	G13 Chapter Introduction

	G22 - Linear Model Specification
	G22 Chapter Contents
	G22 Chapter Introduction

	H - Operations Research
	H Chapter Contents
	H Chapter Introduction

	M01 - Sorting and Searching
	M01 Chapter Contents
	M01 Chapter Introduction

	S - Approximations of Special Functions
	S Chapter Contents
	S Chapter Introduction

	X01 - Mathematical Constants
	X01 Chapter Contents
	X01 Chapter Introduction

	X02 - Machine Constants
	X02 Chapter Contents
	X02 Chapter Introduction

	X03 - Inner Products
	X03 Chapter Contents
	X03 Chapter Introduction

	X04 - Input/Output Utilities
	X04 Chapter Contents
	X04 Chapter Introduction

	X05 - Date and Time Utilities
	X05 Chapter Contents
	X05 Chapter Introduction

	X06 - OpenMP Utilities
	X06 Chapter Contents
	X06 Chapter Introduction

	X07 - IEEE Arithmetic
	X07 Chapter Contents
	X07 Chapter Introduction




