NAG Library Routine Document F08BHF (DTZRZF)

Abstract

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

F08BHF (DTZRZF) reduces the m by $n(m \leq n)$ real upper trapezoidal matrix A to upper triangular form by means of orthogonal transformations.

2 Specification

```
SUBROUTINE FO8BHF (M, N, A, LDA, TAU, WORK, LWORK, INFO)
INTEGER M, N, LDA, LWORK, INFO
REAL (KIND=nag_wp) A(LDA,*), TAU(*), WORK(max (1,LWORK))
```

The routine may be called by its LAPACK name $d t z r z f$.

3 Description

The m by $n(m \leq n)$ real upper trapezoidal matrix A given by

$$
A=\left(\begin{array}{ll}
R_{1} & R_{2}
\end{array}\right)
$$

where R_{1} is an m by m upper triangular matrix and R_{2} is an m by $(n-m)$ matrix, is factorized as

$$
A=\left(\begin{array}{ll}
R & 0
\end{array}\right) Z
$$

where R is also an m by m upper triangular matrix and Z is an n by n orthogonal matrix.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM, Philadelphia http://www.netlib.org/lapack/lug

5 Arguments

1: M - INTEGER
Input
On entry: m, the number of rows of the matrix A.
Constraint: $\mathrm{M} \geq 0$.
2: N - INTEGER Input
On entry: n, the number of columns of the matrix A.
Constraint: $\mathrm{N} \geq 0$.
3: $\mathrm{A}(\mathrm{LDA}, *)-$ REAL (KIND $=$ nag_wp) array
Input/Output
Note: the second dimension of the array A must be at least $\max (1, N)$.
On entry: the leading m by n upper trapezoidal part of the array A must contain the matrix to be factorized.

On exit: the leading m by m upper triangular part of A contains the upper triangular matrix R, and elements $\mathrm{M}+1$ to N of the first m rows of A , with the array TAU, represent the orthogonal
matrix Z as a product of m elementary reflectors (see Section 3.3.6 in the F08 Chapter Introduction).

4: LDA - INTEGER
Input
On entry: the first dimension of the array A as declared in the (sub)program from which F08BHF (DTZRZF) is called.

Constraint: $\mathrm{LDA} \geq \max (1, \mathrm{M})$.
5: $\quad \mathrm{TAU}(*)$ - REAL (KIND=nag_wp) array
Output
Note: the dimension of the array TAU must be at least $\max (1, \mathrm{M})$.
On exit: the scalar factors of the elementary reflectors.
6: $\quad \operatorname{WORK}(\max (1, \operatorname{LWORK}))-\operatorname{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Workspace
On exit: if INFO $=0$, WORK (1) contains the minimum value of LWORK required for optimal performance.

7: LWORK - INTEGER
Input
On entry: the dimension of the array WORK as declared in the (sub)program from which F08BHF (DTZRZF) is called.

If LWORK $=-1$, a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued.

Suggested value: for optimal performance, LWORK $\geq \mathrm{M} \times n b$, where $n b$ is the optimal block size.
Constraint: LWORK $\geq \max (1, \mathrm{M})$ or $\operatorname{LWORK}=-1$.
8: INFO - INTEGER
Output
On exit: INFO $=0$ unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

$\mathrm{INFO}<0$
If INFO $=-i$, argument i had an illegal value. An explanatory message is output, and execution of the program is terminated.

7 Accuracy

The computed factorization is the exact factorization of a nearby matrix $A+E$, where

$$
\|E\|_{2}=O \epsilon\|A\|_{2}
$$

and ϵ is the machine precision.

8 Parallelism and Performance

F08BHF (DTZRZF) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately $4 m^{2}(n-m)$.
The complex analogue of this routine is F08BVF (ZTZRZF).

10 Example

This example solves the linear least squares problems

$$
\min _{x}\left\|b_{j}-A x_{j}\right\|_{2}, \quad j=1,2
$$

for the minimum norm solutions x_{1} and x_{2}, where b_{j} is the j th column of the matrix B,

$$
A=\left(\begin{array}{rrrrr}
-0.09 & 0.14 & -0.46 & 0.68 & 1.29 \\
-1.56 & 0.20 & 0.29 & 1.09 & 0.51 \\
-1.48 & -0.43 & 0.89 & -0.71 & -0.96 \\
-1.09 & 0.84 & 0.77 & 2.11 & -1.27 \\
0.08 & 0.55 & -1.13 & 0.14 & 1.74 \\
-1.59 & -0.72 & 1.06 & 1.24 & 0.34
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{rr}
7.4 & 2.7 \\
4.2 & -3.0 \\
-8.3 & -9.6 \\
1.8 & 1.1 \\
8.6 & 4.0 \\
2.1 & -5.7
\end{array}\right) .
$$

The solution is obtained by first obtaining a $Q R$ factorization with column pivoting of the matrix A, and then the $R Z$ factorization of the leading k by k part of R is computed, where k is the estimated rank of A. A tolerance of 0.01 is used to estimate the rank of A from the upper triangular factor, R.
Note that the block size (NB) of 64 assumed in this example is not realistic for such a small problem, but should be suitable for large problems.

10.1 Program Text

Program f08bhfe
! FO8BHF Example Program Text
! Mark 26 Release. NAG Copyright 2016.
! .. Use Statements ..
Use nag_library, Only: dgeqp3, dnrm2, dormqr, dormrz, dtrsm, dtzrzf,
nag_wp, x04caf
! .. Implicit None Statement ..
Implicit None
! .. Parameters ..
Real (Kind=nag_wp), Parameter : : one = 1.0EO_nag_wp Real (Kind=nag_wp), Parameter : : zero = O.OEO_nag_wp Integer, Parameter : : incl $=1, \mathrm{nb}=64, \mathrm{nin}=5$, nout $=6$
! .. Local Scalars ..
Real (Kind=nag_wp) : : tol
Integer : : i, ifail, info, j, k, lda, ldb, \&
. Local Arrays ..
Real (Kind=nag_wp), Allocatable : a (:,:), b(:,:), rnorm(:), tau(:), \& work(:)
Integer, Allocatable : jpvt (:)
! .. Intrinsic Procedures ..
Intrinsic : : abs
! .. Executable Statements ..
Write (nout,*) 'FO8BHF Example Program Results'
Write (nout,*)
! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n, nrhs
lda $=\mathrm{m}$
$l \mathrm{db}=\mathrm{m}$
lwork $=2 *_{n}+(n+1) *_{n b}$
Allocate $(a(l d a, n), b(l d b, n r h s), \operatorname{rnorm}(n), t a u(n)$, work(lwork),jpvt(n))
! Read A and B from data file

```
    Read (nin,*)(a(i,1:n),i=1,m)
    Read (nin,*)(b(i,1:nrhs),i=1,m)
    Initialize JPVT to be zero so that all columns are free
    jpvt(1:n) = 0
    Compute the QR factorization of A with column pivoting as
    A = Q*(R11 R12)*(P**T)
        ( O R22)
    The NAG name equivalent of dgeqp3 is f08bff
    Call dgeqp3(m,n,a,lda,jpvt,tau,work,lwork,info)
    Compute C = (C1) = (Q**T)*B, storing the result in B
        (C2)
    The NAG name equivalent of dormqr is f08agf
    Call dormqr('Left','Transpose',m,nrhs,n,a,lda,tau,b,ldb,work,lwork,info)
Choose TOL to reflect the relative accuracy of the input data
    tol = 0.01_nag_wp
! Determine and print the rank, K, of R relative to TOL
loop: Do k = 1, n
    If (abs(a(k,k))<=tol*abs(a(1,1))) Then
        Exit loop
    End If
    End Do loop
    k = k - 1
    Write (nout,*) 'Tolerance used to estimate the rank of A'
    Write (nout,99999) tol
    Write (nout,*) 'Estimated rank of A'
    Write (nout,99998) k
    Write (nout,*)
    Flush (nout)
    Compute the RZ factorization of the K by K part of R as
    (R11 R12) = (T O)*Z
    The NAG name equivalent of dtzrzf is f08bhf
    Call dtzrzf(k,n,a,lda,tau,work,lwork,info)
    Compute least squares solutions of triangular problems by
    back-substitution in T*Y1 = C1, storing the result in B
    The NAG name equivalent of dtrsm is f06yjf
    Call dtrsm('Left','Upper','No transpose','Non-Unit',k,nrhs,one,a,lda,b, &
    ldb)
    Compute estimates of the square roots of the residual sums of
    squares (2-norm of each of the columns of C2)
    The NAG name equivalent of dnrm2 is f06ejf
    Do j = 1, nrhs
        rnorm(j) = dnrm2(m-k,b(k+1,j),inc1)
    End Do
    Set the remaining elements of the solutions to zero (to give
    the minimum-norm solutions), Y2 = 0
    b(k+1:n,1:nrhs) = zero
    Form W = (Z**T)*Y
The NAG name equivalent of dormrz is f08bkf
    Call dormrz('Left','Transpose',n,nrhs,k,n-k,a,lda,tau,b,ldb,work,lwork, &
        info)
    Permute the least squares solutions stored in B to give X = P*W
```

```
    Do j = 1, nrhs
    work(jpvt(1:n)) = b(1:n,j)
    b(1:n,j) = work(1:n)
    End Do
! Print least squares solutions
    ifail: behaviour on error exit
            =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
    ifail = 0
    Call x04caf('General',' ',n,nrhs,b,ldb,'Least squares solution(s)',
        ifail)
! Print the square roots of the residual sums of squares
    Write (nout,*)
    Write (nout,*) 'Square root(s) of the residual sum(s) of squares'
    Write (nout,99999) rnorm(1:nrhs)
99999 Format (5X,1P,6E11.2)
9 9 9 9 8 ~ F o r m a t ~ ( 1 X , I 8 )
    End Program f08bhfe
```


10.2 Program Data

FO8BHF Example Program Data

65	2				: Values of M, N and NRHS
-0.09	0.14	-0.46	0.68	1.29	
-1.56	0.20	0.29	1.09	0.51	
-1.48	-0.43	0.89	-0.71	-0.96	
-1.09	0.84	0.77	2.11	-1.27	
0.08	0.55	-1.13	0.14	1.74	
-1.59	-0.72	1.06	1.24	0.34	: End of matrix A
7.4	2.7				
4.2	-3.0				
-8.3	-9.6				
1.8	1.1				
8.6	4.0				
2.1	-5.7				: End of matrix B

10.3 Program Results

```
FO8BHF Example Program Results
Tolerance used to estimate the rank of A
    1.00E-02
Estimated rank of A
    4
Least squares solution(s)
1 0.6344 3.6258
2 0.9699 1.8284
3 -1.4402 -1.6416
4 3.3678 2.4307
5 3.3992 0.2818
Square root(s) of the residual sum(s) of squares
    2.54E-02 3.65E-02
```

