NAG Library Routine Document
 G01AEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

G01AEF constructs a frequency distribution of a variable, according to either user-supplied, or routinecalculated class boundary values.

2 Specification

```
SUBROUTINE GOIAEF (N, K, X, ICLASS, CB, IFREQ, XMIN, XMAX, IFAIL)
INTEGER N, K, ICLASS, IFREQ(K), IFAIL
REAL (KIND=nag_wp) X(N), CB(K), XMIN, XMAX
```


3 Description

The data consists of a sample of n observations of a continuous variable, denoted by x_{i}, for $i=1,2, \ldots, n$. Let $a=\min \left(x_{1}, \ldots, x_{n}\right)$ and $b=\max \left(x_{1}, \ldots, x_{n}\right)$.
G01AEF constructs a frequency distribution with $k(>1)$ classes denoted by f_{i}, for $i=1,2, \ldots, k$.
The boundary values may be either user-supplied, or routine-calculated, and are denoted by y_{j}, for $j=1,2, \ldots, k-1$.

If the boundary values of the classes are to be routine-calculated, then they are determined in one of the following ways:
(a) if $k>2$, the range of x values is divided into $k-2$ intervals of equal length, and two extreme intervals, defined by the class boundary values $y_{1}, y_{2}, \ldots, y_{k-1}$;
(b) if $k=2, y_{1}=\frac{1}{2}(a+b)$.

However formed, the values y_{1}, \ldots, y_{k-1} are assumed to be in ascending order. The class frequencies are formed with
$f_{1}=$ the number of x values in the interval $\left(-\infty, y_{1}\right)$
$f_{i}=$ the number of x values in the interval $\left[y_{i-1}, y_{i}\right), \quad i=2, \ldots, k-1$
$f_{k}=$ the number of x values in the interval $\left[y_{k-1}, \infty\right)$,
where [means inclusive, and) means exclusive. If the class boundary values are routine-calculated and $k>2$, then $f_{1}=f_{k}=0$, and y_{1} and y_{k-1} are chosen so that $y_{1}<a$ and $y_{k-1}>b$.

If a frequency distribution is required for a discrete variable, then it is suggested that you supply the class boundary values; routine-calculated boundary values may be slightly imprecise (due to the adjustment of y_{1} and y_{k-1} outlined above) and cause values very close to a class boundary to be assigned to the wrong class.

4 References

None.

5 Arguments

1: N - INTEGER
Input
On entry: n, the number of observations.
Constraint: $\mathrm{N} \geq 1$.

2: K - INTEGER
Input
On entry: k, the number of classes desired in the frequency distribution. Whether or not class boundary values are user-supplied, K must include the two extreme classes which stretch to $\pm \infty$.

Constraint: $\mathrm{K} \geq 2$.

3: $\quad \mathrm{X}(\mathrm{N})$ - REAL (KIND=nag_wp) array
Input
On entry: the sample of observations of the variable for which the frequency distribution is required, x_{i}, for $i=1,2, \ldots, n$. The values may be in any order.

4: ICLASS - INTEGER
Input
On entry: indicates whether class boundary values are to be calculated within G01AEF, or are supplied by you.
If ICLASS $=0$, then the class boundary values are to be calculated within the routine.
If ICLASS $=1$, they are user-supplied.
Constraint: ICLASS $=0$ or 1.
5: $\quad \mathrm{CB}(\mathrm{K})-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp) array
Input/Output
On entry: if ICLASS $=0$, then the elements of CB need not be assigned values, as G01AEF calculates $k-1$ class boundary values.

If ICLASS $=1$, the first $k-1$ elements of CB must contain the class boundary values you supplied, in ascending order.
In both cases, the element $\mathrm{CB}(k)$ need not be assigned, as it is not used in the routine.
On exit: the first $k-1$ elements of CB contain the class boundary values in ascending order.
Constraint: if ICLASS $=1, \mathrm{CB}(i)<\mathrm{CB}(i+1)$, for $i=1,2, \ldots, k-2$.
6: $\quad \operatorname{IFREQ}(\mathrm{K})$ - INTEGER array
Output
On exit: the elements of IFREQ contain the frequencies in each class, f_{i}, for $i=1,2, \ldots, k$. In particular IFREQ (1) contains the frequency of the class up to $\operatorname{CB}(1), f_{1}$, and $\operatorname{IFREQ}(k)$ contains the frequency of the class greater than $\mathrm{CB}(k-1), f_{k}$.

7: \quad XMIN - REAL (KIND=nag_wp)
Output
On exit: the smallest value in the sample, a.
8: \quad XMAX - REAL (KIND=nag_wp)
Output
On exit: the largest value in the sample, b.
9: IFAIL - INTEGER
Input/Output
On entry: IFAIL must be set to $0,-1$ or 1 . If you are unfamiliar with this argument you should refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.
For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0 . When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL $=0$ unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL $=0$ or -1 , explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors or warnings detected by the routine:
IFAIL $=1$
On entry, $\mathrm{K}<2$.
IFAIL $=2$
On entry, $\mathrm{N}<1$.
IFAIL $=3$
On entry, the user-supplied class boundary values are not in ascending order.
IFAIL $=-99$
An unexpected error has been triggered by this routine. Please contact NAG.
See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
IFAIL $=-399$
Your licence key may have expired or may not have been installed correctly.
See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
IFAIL $=-999$
Dynamic memory allocation failed.
See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The method used is believed to be stable.

8 Parallelism and Performance

G01AEF is not threaded in any implementation.

9 Further Comments

The time taken by G01AEF increases with K and N . It also depends on the distribution of the sample observations.

10 Example

This example summarises a number of datasets. For each dataset the sample observations and optionally class boundary values are read. G01AEF is then called and the frequency distribution and largest and smallest observations printed.

10.1 Program Text

```
    Program g0laefe
    GO1AEF Example Program Text
    Mark 26 Release. NAG Copyright 2016.
    .. Use Statements ..
    Use nag_library, Only: g0laef, nag_wp
    .. Implicit None Statement ..
    Implicit None
    .. Parameters ..
    Integer, Parameter :: nin = 5, nout = 6
    .. Local Scalars ..
    Real (Kind=nag_wp) :: xmax, xmin
    Integer :: iclass, ifail, j, k, n
    Real (Kind=nag_wp), Allocatable :: cb(:), x(:)
    Integer, Allocatable :: ifreq(:)
! .. Executable Statements ..
    Write (nout,*) 'GO1AEF Example Program Results'
    Write (nout,*)
! Skip heading in data file
    Read (nin,*)
! Read in the problem size
    Read (nin,*) n, iclass, k
    Allocate (x(n),cb(k),ifreq(k))
! Read in data
    Read (nin,*) x(1:n)
    Write (nout,99997) 'Number of cases', n
    Write (nout,99997) 'Number of classes', k
! Get the class boundaries
    If (iclass/=1) Then
        Write (nout,*) 'Routine-supplied class boundaries'
    Else
            Read (nin,*) cb(1:(k-1))
            Write (nout,*) 'User-supplied class boundaries'
    End If
    Write (nout,*)
! Construct the frequency table
    ifail = 0
    Call g0laef(n,k,x,iclass,cb,ifreq,xmin,xmax,ifail)
! Display results
    Write (nout,*) '*** Frequency distribution ***'
    Write (nout,*)
    Write (nout,*) ' Class Frequency'
    Write (nout,*)
    Write (nout,99999) ' Up to ', cb(1), ifreq(1)
    k = k - I
    If (k>1) Then
        Write (nout,99998)(cb(j-1),' to ',cb(j),ifreq(j),j=2,k)
    End If
    Write (nout,99996) cb(k), ' and over ', ifreq(k+1)
    Write (nout,*)
    Write (nout,99995) 'Total frequency = ', n
    Write (nout,99994) 'Minimum = ', xmin
    Write (nout,99994) 'Maximum = ', xmax
99999 Format (1X,A,F8.2,I11)
99998 Format (1X,F8.2,A,F8.2,I11)
```

```
99997 Format (1X,A,I4)
99996 Format (1X,F8.2,A,I9)
99995 Format (1X,A,I6)
99994 Format (1X,A,F9.2)
    End Program g0laefe
```


10.2 Program Data

GO1AEF	Example Program Data								
70	0	7							
22.3	21.6	22.6	22.4	22.4	22.4	22.1	21.9	23.1	23.4
23.4	22.6	22.5	22.5	22.1	22.6	22.3	22.4	21.8	22.3
22.1	23.6	20.8	22.2	23.1	21.1	21.7	21.4	21.6	22.5
21.2	22.6	22.2	22.2	21.4	21.7	23.2	23.1	22.3	22.3
21.1	21.4	21.5	21.8	22.8	21.4	20.7	21.6	23.2	23.6
22.7	21.7	23.0	21.9	22.6	22.1	22.2	23.4	21.5	23.0
22.8	21.4	23.2	21.8	21.2	22.0	22.4	22.8	23.2	23.6

10.3 Program Results

GO1AEF Example Program Results

Number of cases 70
Number of classes 7
Routine-supplied class boundaries
*** Frequency distribution ***

Class Frequency

Up to	20.70	0
20.70 to	21.28	6
21.28	to	21.86
21.86	to	22.44
22.44 to	23.02	16
23.02	to	23.60
23.60		and over

Total frequency = 70
Minimum = 20.70
Maximum = 23.60

