NAG Library Routine Document
 G01NAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

G01NAF computes the cumulants and moments of quadratic forms in Normal variates.

2 Specification

```
SUBROUTINE GO1NAF (MOM, MEAN, N, A, LDA, EMU, SIGMA, LDSIG, L, RKUM, &
    RMOM, WK, IFAIL)
INTEGER N, LDA, LDSIG, L, IFAIL
REAL (KIND=nag_wp) A(LDA,N), EMU(*), SIGMA(LDSIG,N), RKUM(L), RMOM(*), &
    WK(3*N* (N+1)/2+N)
CHARACTER(1) MOM, MEAN
```


3 Description

Let x have an n-dimensional multivariate Normal distribution with mean μ and variance-covariance matrix Σ. Then for a symmetric matrix A, G01NAF computes up to the first 12 moments and cumulants of the quadratic form $Q=x^{\mathrm{T}} A x$. The s th moment (about the origin) is defined as

$$
E\left(Q^{s}\right)
$$

where E denotes expectation. The s th moment of Q can also be found as the coefficient of $t^{s} / s!$ in the expansion of $E\left(e^{Q t}\right)$. The s th cumulant is defined as the coefficient of t^{s} / s ! in the expansion of $\log \left(E\left(e^{Q t}\right)\right)$.
The routine is based on the routine CUM written by Magnus and Pesaran (1993a) and based on the theory given by Magnus (1978), Magnus (1979) and Magnus (1986).

4 References

Magnus J R (1978) The moments of products of quadratic forms in Normal variables Statist. Neerlandica 32 201-210

Magnus J R (1979) The expectation of products of quadratic forms in Normal variables: the practice Statist. Neerlandica 33 131-136

Magnus J R (1986) The exact moments of a ratio of quadratic forms in Normal variables Ann. Üconom. Statist. 4 95-109

Magnus J R and Pesaran B (1993a) The evaluation of cumulants and moments of quadratic forms in Normal variables (CUM): Technical description Comput. Statist. 8 39-45

Magnus J R and Pesaran B (1993b) The evaluation of moments of quadratic forms and ratios of quadratic forms in Normal variables: Background, motivation and examples Comput. Statist. 8 47-55

5 Arguments

1: MOM - CHARACTER(1)
Input
On entry: indicates if moments are computed in addition to cumulants.
$\mathrm{MOM}={ }^{\mathrm{C}} \mathrm{C}^{\prime}$
Only cumulants are computed.
$\mathrm{MOM}=\mathrm{M}^{\prime}$
Moments are computed in addition to cumulants.
Constraint: $\mathrm{MOM}=$ ' C^{\prime} or ' M '.

2: MEAN - CHARACTER(1)
Input
On entry: indicates if the mean, μ, is zero.
MEAN $=$ ' Z '
μ is zero.
$\mathrm{MEAN}=$ ' M^{\prime}
The value of μ is supplied in EMU.
Constraint: MEAN $=$ ' Z ' or ' M '.

3: $\quad \mathrm{N}$ - INTEGER
Input
On entry: n, the dimension of the quadratic form.
Constraint: $\mathrm{N}>1$.

4: $\quad \mathrm{A}(\mathrm{LDA}, \mathrm{N})-$ REAL (KIND=$=$ nag_wp) array
Input
On entry: the n by n symmetric matrix A. Only the lower triangle is referenced.
5: LDA - INTEGER
Input
On entry: the first dimension of the array A as declared in the (sub)program from which G01NAF is called.

Constraint: $\mathrm{LDA} \geq \mathrm{N}$.

6: $\operatorname{EMU}(*)$ - REAL (KIND=nag_wp) array
Input
Note: the dimension of the array EMU must be at least N if MEAN $=$ ' M^{\prime}, and at least 1 otherwise.

On entry: if MEAN $=$ ' M ', EMU must contain the n elements of the vector μ.
If MEAN $=$ ' Z ', EMU is not referenced.

7: \quad SIGMA(LDSIG, N) - REAL (KIND=nag_wp) array
Input
On entry: the n by n variance-covariance matrix Σ. Only the lower triangle is referenced.
Constraint: the matrix Σ must be positive definite.

8: LDSIG - INTEGER
Input
On entry: the first dimension of the array SIGMA as declared in the (sub)program from which G01NAF is called.

Constraint: $\mathrm{LDSIG} \geq \mathrm{N}$.

9: L - INTEGER
Input
On entry: the required number of cumulants, and moments if specified.
Constraint: $1 \leq \mathrm{L} \leq 12$.

10:
RKUM(L) - REAL (KIND=nag_wp) array
Output
On exit: the L cumulants of the quadratic form.

11: $\operatorname{RMOM}(*)$ - REAL (KIND=nag_wp) array
Output
Note: the dimension of the array RMOM must be at least L if $\mathrm{MOM}={ }^{\prime} \mathrm{M}$ ', and at least 1 otherwise.

On exit: if $\mathrm{MOM}=$ ' M ', the L moments of the quadratic form.
12: $\quad \mathrm{WK}(3 \times \mathrm{N} \times(\mathrm{N}+1) / 2+\mathrm{N})-$ REAL $(\mathrm{KIND}=$ nag_wp $)$ array
Workspace
13: IFAIL - INTEGER
Input/Output
On entry: IFAIL must be set to $0,-1$ or 1 . If you are unfamiliar with this argument you should refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.
For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this argument, the recommended value is 0 . When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL $=0$ unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL $=0$ or -1 , explanatory error messages are output on the current error message unit (as defined by X04AAF).
Errors or warnings detected by the routine:
IFAIL $=1$
On entry, $\mathrm{N} \leq 1$,
or $\quad \mathrm{L}<1$,
or $\quad \mathrm{L}>12$,
or \quad LDA $<\mathrm{N}$,
or LDSIG $<\mathrm{N}$,
or $\quad \mathrm{MOM} \neq \mathrm{C}^{\prime}$ ' or ' M^{\prime},
or \quad MEAN \neq ' M^{\prime} or ' Z '.
IFAIL $=2$
On entry, the matrix Σ is not positive definite.
IFAIL $=-99$
An unexpected error has been triggered by this routine. Please contact NAG.
See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
IFAIL $=-399$
Your licence key may have expired or may not have been installed correctly.
See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
IFAIL $=-999$
Dynamic memory allocation failed.
See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

$7 \quad$ Accuracy

In a range of tests the accuracy was found to be a modest multiple of machine precision. See Magnus and Pesaran (1993b).

8 Parallelism and Performance

G01NAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example is given by Magnus and Pesaran (1993b) and considers the simple autoregression

$$
y_{t}=\beta y_{t-1}+u_{t}, \quad t=1,2, \ldots n
$$

where $\left\{u_{t}\right\}$ is a sequence of independent Normal variables with mean zero and variance one, and y_{0} is known. The moments of the quadratic form

$$
Q=\sum_{t=2}^{n} y_{t} y_{t-1}
$$

are computed using G01NAF. The matrix A is given by:

$$
\begin{aligned}
& A(i+1, i)=\frac{1}{2}, \quad i=1,2, \ldots n-1 \\
& A(i, j) \quad=0, \quad \text { otherwise }
\end{aligned}
$$

The value of Σ can be computed using the relationships

$$
\operatorname{var}\left(y_{t}\right)=\beta^{2} \operatorname{var}\left(y_{t-1}\right)+1
$$

and

$$
\operatorname{cov}\left(y_{t} y_{t+k}\right)=\beta \operatorname{cov}\left(y_{t} y_{t+k-1}\right)
$$

for $k \geq 0$ and $\operatorname{var}\left(y_{1}\right)=1$.
The values of β, y_{0}, n, and the number of moments required are read in and the moments and cumulants printed.

10.1 Program Text

```
Program g01nafe
    GO1NAF Example Program Text
    Mark 26 Release. NAG Copyright 2016.
    .. Use Statements ..
    Use nag_library, Only: g01naf, nag_wp
    .. Implicit None Statement ..
    Implicit None
    .. Parameters ..
    Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..
```

```
    Real (Kind=nag_wp) :: beta, con
    Integer :: i, ifail, j, l, lda, ldsig, lwk, n
    .. Local Arrays ..
    Real (Kind=nag_wp), Allocatable :: a(:,:), emu(:), rkum(:), rmom(:), &
        sigma(:,:), wk(:)
    .. Executable Statements ..
    Write (nout,*) 'GO1NAF Example Program Results'
    Write (nout,*)
    Skip heading in data file
    Read (nin,*)
! Read in the problem size
    Read (nin,*) beta, con
    Read (nin,*) n, l
    ldsig = n
    lda = n
    lwk = 3*n* (n+1)/2 + n
    Allocate (a(lda,n),emu(n),sigma(ldsig,n),rkum(l),rmom(l),wk(lwk))
    Compute A, EMU, and SIGMA for simple autoregression
    Do i = 1, n
        Do j = i, n
        a(j,i) = 0.0EO_nag_wp
    End Do
    End Do
    Do i = 1, n - 1
        a(i+1,i) = 0.5E0_nag_wp
    End Do
    emu(1) = con*beta
    Do i = 1, n - 1
    emu(i+1) = beta*emu(i)
    End Do
    sigma(1,1) = 1.OEO_nag_wp
    Do i = 2, n
    sigma(i,i) = beta*beta*sigma(i-1,i-1) + 1.OEO_nag_wp
    End Do
    Do i = 1, n
    Do j = i + 1, n
        sigma(j,i) = beta*sigma(j-1,i)
    End Do
End Do
! Compute cumulants
    ifail = 0
    Call gOlnaf('M','M',n,a,lda,emu,sigma,ldsig,l,rkum,rmom,wk,ifail)
! Display results
    Write (nout,99999) ' N = ', n, ' BETA = ', beta, ' CON = ', con
    Write (nout,*)
    Write (nout,*) , Cumulants Moments'
    Write (nout,*)
    Write (nout,99998)(i,rkum(i),rmom(i),i=1,l)
99999 Format (A,I3,2(A,F6.3))
99998 Format (I3,E12.4,4X,E12.4)
    End Program g01nafe
```


10.2 Program Data

G01NAF Example Program Data
0.81 .0 : BETA, CON

104 : N, L

10.3 Program Results

G01NAF Example Program Results	
$\mathrm{N}=$	$10 \mathrm{BETA}=$
Cumulants	$0.800 \mathrm{CON}=1.000$
1	$0.1752 \mathrm{E}+02$

