NAG Library Routine Document
 S30AAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

S30AAF computes the European option price given by the Black-Scholes-Merton formula.

2 Specification

```
SUBROUTINE S3OAAF (CALPUT, M, N, X, S, T, SIGMA, R, Q, P, LDP, IFAIL)
INTEGER M, N, LDP, IFAIL
REAL (KIND=nag_wp ) X(M), S, T(N), SIGMA, R, Q, P(LDP,N)
CHARACTER(1) CALPUT
```


3 Description

S30AAF computes the price of a European call (or put) option for constant volatility, σ, and risk-free interest rate, r, with a possible dividend yield, q, using the Black-Scholes-Merton formula (see Black and Scholes (1973) and Merton (1973)). For a given strike price, X, the price of a European call with underlying price, S, and time to expiry, T, is

$$
P_{\text {call }}=S e^{-q T} \Phi\left(d_{1}\right)-X e^{-r T} \Phi\left(d_{2}\right)
$$

and the corresponding European put price is

$$
P_{\mathrm{put}}=X e^{-r T} \Phi\left(-d_{2}\right)-S e^{-q T} \Phi\left(-d_{1}\right)
$$

and where Φ denotes the cumulative Normal distribution function,

$$
\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} \exp \left(-y^{2} / 2\right) d y
$$

and

$$
\begin{aligned}
& d_{1}=\frac{\ln (S / X)+\left(r-q+\sigma^{2} / 2\right) T}{\sigma \sqrt{T}} \\
& d_{2}=d_{1}-\sigma \sqrt{T}
\end{aligned}
$$

The option price $P_{i j}=P\left(X=X_{i}, T=T_{j}\right)$ is computed for each strike price in a set X_{i}, $i=1,2, \ldots, m$, and for each expiry time in a set $T_{j}, j=1,2, \ldots, n$.

4 References

Black F and Scholes M (1973) The pricing of options and corporate liabilities Journal of Political Economy 81 637-654

Merton R C (1973) Theory of rational option pricing Bell Journal of Economics and Management Science 4 141-183

5 Arguments

1: CALPUT - CHARACTER(1)
On entry: determines whether the option is a call or a put.
CALPUT = 'C'
A call; the holder has a right to buy.
CALPUT $=$ ' P '
A put; the holder has a right to sell.
Constraint: CALPUT $=$ ' C^{\prime} or ' P '.

2: M - INTEGER
Input
On entry: the number of strike prices to be used.
Constraint: $\mathrm{M} \geq 1$.

3: $\quad \mathrm{N}$ - INTEGER
Input
On entry: the number of times to expiry to be used.
Constraint: $\mathrm{N} \geq 1$.
4: $\quad \mathrm{X}(\mathrm{M})-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Input
On entry: $\mathrm{X}(i)$ must contain X_{i}, the i th strike price, for $i=1,2, \ldots, \mathrm{M}$.
Constraint: $\mathrm{X}(i) \geq z$ and $\mathrm{X}(i) \leq 1 / z$, where $z=\mathrm{X} 02 \mathrm{AMF}()$, the safe range parameter, for $i=1,2, \ldots, \mathrm{M}$.

5: $\quad \mathrm{S}-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp)
Input
On entry: S, the price of the underlying asset.
Constraint: $\mathrm{S} \geq z$ and $\mathrm{S} \leq 1.0 / z$, where $z=\mathrm{X} 02 \mathrm{AMF}()$, the safe range parameter.
6: $\quad \mathrm{T}(\mathrm{N})$ - REAL (KIND=nag_wp) array
On entry: $\mathrm{T}(i)$ must contain T_{i}, the i th time, in years, to expiry, for $i=1,2, \ldots, \mathrm{~N}$.
Constraint: $\mathrm{T}(i) \geq z$, where $z=\mathrm{X} 02 \mathrm{AMF}()$, the safe range parameter, for $i=1,2, \ldots, \mathrm{~N}$.
SIGMA - REAL (KIND=nag_wp)
Input
On entry: σ, the volatility of the underlying asset. Note that a rate of 15% should be entered as 0.15 .

Constraint: SIGMA >0.0.

8: $\quad \mathrm{R}-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp)
Input
On entry: r, the annual risk-free interest rate, continuously compounded. Note that a rate of 5% should be entered as 0.05 .
Constraint: $\mathrm{R} \geq 0.0$.
Q - REAL (KIND=nag_wp)
Input
On entry: q, the annual continuous yield rate. Note that a rate of 8% should be entered as 0.08 . Constraint: $\mathrm{Q} \geq 0.0$.

10: $\quad \mathrm{P}(\mathrm{LDP}, \mathrm{N})-$ REAL (KIND=nag_wp) array
Output
On exit: $\mathrm{P}(i, j)$ contains $P_{i j}$, the option price evaluated for the strike price X_{i} at expiry T_{j} for $i=1,2, \ldots, \mathrm{M}$ and $j=1,2, \ldots, \mathrm{~N}$.

11: LDP - INTEGER
Input
On entry: the first dimension of the array P as declared in the (sub)program from which S30AAF is called.

Constraint: LDP $\geq \mathrm{M}$.
12: IFAIL - INTEGER
Input/Output
On entry: IFAIL must be set to $0,-1$ or 1 . If you are unfamiliar with this argument you should refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this argument, the recommended value is 0 . When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL $=0$ unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL $=0$ or -1 , explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors or warnings detected by the routine:
IFAIL $=1$
On entry, CALPUT $=\langle$ value \rangle was an illegal value.
IFAIL $=2$
On entry, $\mathrm{M}=\langle$ value \rangle.
Constraint: $\mathrm{M} \geq 1$.
IFAIL $=3$
On entry, $\mathrm{N}=\langle$ value \rangle.
Constraint: $\mathrm{N} \geq 1$.
IFAIL $=4$
On entry, $\mathrm{X}(\langle$ value $\rangle)=\langle$ value \rangle.
Constraint: $\mathrm{X}(i) \geq\langle$ value \rangle and $\mathrm{X}(i) \leq\langle$ value \rangle.
IFAIL $=5$
On entry, $\mathrm{S}=\langle$ value \rangle.
Constraint: $\mathrm{S} \geq\langle$ value \rangle and $\mathrm{S} \leq\langle$ value \rangle.
IFAIL $=6$
On entry, $\mathrm{T}(\langle$ value $\rangle)=\langle$ value \rangle.
Constraint: $\mathrm{T}(i) \geq\langle$ value \rangle.

IFAIL $=7$
On entry, SIGMA $=\langle$ value \rangle.
Constraint: SIGMA >0.0.
IFAIL $=8$
On entry, $\mathrm{R}=\langle$ value \rangle.
Constraint: $\mathrm{R} \geq 0.0$.
IFAIL $=9$
On entry, $\mathrm{Q}=\langle$ value \rangle.
Constraint: $\mathrm{Q} \geq 0.0$.
IFAIL $=11$
On entry, LDP $=\langle$ value \rangle and $\mathrm{M}=\langle$ value \rangle.
Constraint: LDP $\geq \mathrm{M}$.
IFAIL $=-99$
An unexpected error has been triggered by this routine. Please contact NAG.
See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
IFAIL $=-399$
Your licence key may have expired or may not have been installed correctly.
See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
IFAIL $=-999$
Dynamic memory allocation failed.
See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the output is dependent on the accuracy of the cumulative Normal distribution function, Φ. This is evaluated using a rational Chebyshev expansion, chosen so that the maximum relative error in the expansion is of the order of the machine precision (see S15ABF and S15ADF). An accuracy close to machine precision can generally be expected.

8 Parallelism and Performance

S30AAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example computes the prices for six European call options using two expiry times and three strike prices as input. The times to expiry are taken as 0.7 and 0.8 years respectively. The stock price is 55 , with strike prices, 58,60 and 62 . The risk-free interest rate is 10% per year and the volatility is 30% per year.

10.1 Program Text

```
Program s30aafe
    S30AAF Example Program Text
    Mark 26 Release. NAG Copyright 2016.
    .. Use Statements ..
    Use nag_library, Only: nag_wp, s30aaf
    .. Implicit None Statement ..
    Implicit None
    .. Parameters ..
    Integer, Parameter :: nin = 5, nout = 6
    .. Local Scalars ..
    Real (Kind=nag_wp) :: q, r, s, sigma
    Integer :: i, ifail, j, ldp, m, n
    Character (1) :: calput
    .. Local Arrays ..
    Real (Kind=nag_wp), Allocatable :: p(:,:), t(:), x(:)
    .. Executable Statements ..
    Write (nout,*) 'S30AAF Example Program Results'
    Skip heading in data file
    Read (nin,*)
    Read (nin,*) calput
    Read (nin,*) s, sigma, r, q
    Read (nin,*) m, n
    ldp = m
    Allocate (p(ldp,n),t(n),x(m))
    Read (nin,*)(x(i),i=1,m)
    Read (nin,*)(t(i),i=1,n)
    ifail = 0
    Call s30aaf(calput,m,n,x,s,t,sigma,r,q,p,ldp,ifail)
    Write (nout,*)
    Write (nout,*) 'Black-Scholes-Merton formula'
    Select Case (calput)
    Case ('C','c')
        Write (nout,*) 'European Call :'
    Case ('P','p')
        Write (nout,*) 'European Put :'
    End Select
    Write (nout,99998) ' Spot = ', s
    Write (nout,99998) , Volatility = ', sigma
    Write (nout,99998) ' Rate = ', r
    Write (nout,99998) ' Dividend = ', q
    Write (nout,*)
    Write (nout,*) ' Strike Expiry Option Price'
    Do i = 1,m
    Do j = 1, n
        Write (nout,99999) x(i), t(j), p(i,j)
    End Do
```

End Do

```
99999 Format (1X,2(F9.4,1X),6X,F9.4)
99998 Format (A,1X,F8.4)
    End Program s30aafe
```


10.2 Program Data

```
S30AAF Example Program Data
    'C' : Call = 'C', Put = 'P'
    55.0 0.3 0.1 0.0 : S, SIGMA, R, Q
    3 : M, N
58.0
60.0
62.0 : X(I), I = 1,2,\ldotsM
0.7
0.8 : T(I), I = 1,2,\ldotsN
```


10.3 Program Results

S30AAF Example Program Results	
Black-Scholes-Merton formula	
European Call	$=55.0000$
Spot	$=0.3000$
Volatility	$=$
Rate	$=0.1000$
Dividend	$=$

Strike	Expiry	Option Price
58.0000	0.7000	5.9198
58.0000	0.8000	6.5506
60.0000	0.7000	5.0809
60.0000	0.8000	5.6992
62.0000	0.7000	4.3389
62.0000	0.8000	4.9379

