Package 'NAGFWrappers'

November 16, 2011

Version 23.0

Date 2011-11-20
Title Interfaces to routines from the NAG Fortran library

Author NAG

Maintainer NAGsupport@nag.co.uk
Depends R (>=2.13.2)
SystemRequirements NAG Fortran library, Mark 23
Description Provides interfaces to a subset of routines from the NAG Fortran library
License Artistic-2.0
URL http://www.nag.co.uk
LazyLoad yes
LazyData yes

R topics documented:

a00ad . 2
e04ab . 5
e04bb . 7
e04cb . 9
e04dg . 11
e04fc . 13
e04fy . 17
e04gd . 18
e04gy . 22
e04gz . 24
e04hc . 26
e04hd . 28
e04he . 30
e04hy . 34
e04jc . 37
e04jy . 40
e04kd . 42
e04ky 46
e04kz 49
e04lb 51
e04ly 55
e04mf 58
e04nc 61
e04nf 64
e04nk 68
e04nq 73
e04uc 79
e04uf 85
e04ug 93
e04us 101
e04vj 106
e04wd 109
e04xa 115
e04ya 118
e04yb 120
e04yc 123
e05jb 125
f08fa 132
g02aa 134
g02ab 136
g02ae 138
NAGFWrappers 140
s17dc 141
s17de 142
s17dg 144
s17dh 145
s17dl 146
s18dc 147
s18de 149
s18gk 150
s22aa 151
x02aj 152
x02al 153
Index 154
a00ad a00ad: Library identification, details of implementation, major and minor marks

Description

a00ad prints information about the version of the NAG Library in use.

Usage

a00ad()

Details

R interface to the NAG Fortran routine A00ADF.

Value

IMP L string
The implementation title which usually lists the target platform, operating system and compiler.

PREC string
The working or basic precision of the implementation. Some functions may perform operations in reduced precision or additional precision, but the great majority will perform all operations in basic precision. See the introduction to the Fortran library for definitions of these precisions.

PCODE string
The product code for the NAG Library implementation that is being used. The code has a discernible structure, but it is not necessary to know the details of this structure. The product code can be used to differentiate between individual product licence codes.
MKMAJ integer
The major mark of the NAG Library implementation that is being used.
MKMIN integer
The minor mark of the NAG Library implementation that is being used.
HDWARE string
The target hardware for the NAG Library implementation that is being used.
OPSYS string
The target operating system for the NAG Library implementation that is being used.
FCOMP string
The compiler used to build the NAG Library implementation that is being used.

VEND string
The subsidiary library, if any, that must be linked with the NAG Library implementation that is being used. If the implementation does not require a subsidiary library then the string
'(self-contained)'
will be returned in vend.
boolean
Specifies whether or not a valid licence has been found for the NAG Library implementation that is being used.

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/A00/a00adf.pdf

Examples

```
ans<-a00ad()
if (1){
writeLines(toString(cat(sprintf(" *** Start of NAG Toolbox for MATLAB implementation det
impl<-ans$IMPL
writeLines(sprintf(" Implementation title: %s\n",impl,"\n"))
prec<-ans$PREC
writeLines(toString(cat(sprintf(" Precision: %s\n",prec,"\n"))))
pcode<-ans$PCODE
writeLines(toString(cat(sprintf(" Product Code: %s\n",pcode,"\n"))))
mkmaj<-ans$MKMAJ
mkmin<-ans$MKMIN
writeLines(toString(cat(sprintf(" Mark: %d.%d\n",mkmaj,mkmin,"\n"))))
vend<-ans$VEND
if (match(vend,"(self-contained)")==1) {
writeLines(toString(cat(sprintf(" Vendor Library: None\n","\n"))))
}
else
{
writeLines(toString(cat(sprintf(" Vendor Library: %s\n",vend,"\n"))))
}
writeLines(toString(cat(sprintf(" Applicable to:\n","\n"))))
hdware<-ans$HDWARE
writeLines(toString(cat(sprintf(" hardware - %s\n",hdware,"\n"))))
opsys<-ans$OPSYS
writeLines(toString(cat(sprintf(" op. sys. - %s\n",opsys,"\n"))))
```

fcomp<-ans\$FCOMP
writeLines(toString(cat(sprintf(" compiler - \%s \n",fcomp,"\n"))))

```
writeLines(toString(cat(sprintf(" and compatible systems.\n\n","\n"))))
writeLines(toString(cat(sprintf(" *** End of NAG Toolbox for MATLAB implementation detail
licval<-ans$LICVAL
if(licval){
pcode<-ans$PCODE
writeLines(toString(cat(sprintf(" A valid licence was found for %s\n\n",pcode,"\n"))))
}else {
pcode<-ans$PCODE
writeLines(toString(cat(sprintf(" A valid licence was not found for %s\n\n",pcode,"\n")))
}
}
```


e0 4 ab

e04ab: Minimum, function of one variable using function values only

Description

e04ab searches for a minimum, in a given finite interval, of a continuous function of a single variable, using function values only. The method (based on quadratic interpolation) is intended for functions which have a continuous first derivative (although it will usually work if the derivative has occasional discontinuities).

Usage

```
e04ab(funct, e1, e2, a, b, maxcal)
```


Arguments

funct	function You must supply this function to calculate the value of the function $F(x)$ at any point x in $[a b]$. It should be tested separately before being used in conjunction with e04ab. (FC) $=$ funct (xc)
e1	double The relative accuracy to which the position of a minimum is required. (Note that, since el is a relative tolerance, the scaling of x is automatically taken into account.) double The absolute accuracy to which the position of a minimum is required. e2 should be no smaller than 2ϵ.

a	double
The lower bound a of the interval containing a minimum.	
b	double The upper bound b of the interval containing a minimum.
integer	
The maximum number of calls of $F(x)$ to be allowed.	

Details

R interface to the NAG Fortran routine E04ABF.

Value

E1	double If you set e1 to 0.0 (or to any value less than ϵ), e1 will be reset to the default value $\sqrt{\epsilon}$ before starting the minimization process. double If you set e2 to 0.0 (or to any value less than ϵ), e2 will be reset to the default value $\sqrt{\epsilon}$. double An improved lower bound on the position of the minimum. double An improved upper bound on the position of the minimum. integer The total number of times that funct was actually called.
B \quadMAXCAL double The estimated position of the minimum.	
F \quaddouble	
The function value at the final point given in x.	

Author(s)

NAG

References

```
http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04abf.pdf
```


Examples

```
ifail <- 0
funct = function(xc) {
    fc <- sin(xc)/xc
    list(FC = fC)
}
```

```
e1 <- 0
e2 <- 0
a <- 3.5
b <- 5
maxcal <- 30
e04ab(funct, e1, e2, a, b, maxcal)
```

```
e04bb
```

e04bb: Minimum, function of one variable, using first derivative

Description

e04bb searches for a minimum, in a given finite interval, of a continuous function of a single variable, using function and first derivative values. The method (based on cubic interpolation) is intended for functions which have a continuous first derivative (although it will usually work if the derivative has occasional discontinuities).

Usage

```
e04bb(funct, e1, e2, a, b, maxcal)
```


Arguments

funct	function You must supply this function to calculate the values of $F(x)$ and $\frac{d F}{d x}$ at any point x in $[a b]$. $(F C, G C)=$ funct (xC) e1 double The relative accuracy to which the position of a minimum is required. (Note that, since e1 is a relative tolerance, the scaling of x is automatically taken into account.) double
e2	The absolute accuracy to which the position of a minimum is required. e2 should be no smaller than 2ϵ. double
a	The lower bound a of the interval containing a minimum. double
b maxcal	The upper bound b of the interval containing a minimum. integer
The maximum number of calls of funct to be allowed.	

Details

R interface to the NAG Fortran routine E04BBF.

Value

E1	double
	If you set el to 0.0 (or to any value less than ϵ), e1 will be reset to the default value $\sqrt{\epsilon}$ before starting the minimization process.
E2	double
	If you set e 2 to 0.0 (or to any value less than ϵ), e 2 will be reset to the default value $\sqrt{\epsilon}$.
A	double
	An improved lower bound on the position of the minimum.
B	double
	An improved upper bound on the position of the minimum.
MAXCAL	integer
	The total number of times that funct was actually called.
X	double
	The estimated position of the minimum.
F	double
	The function value at the final point given in x .
G	double
	The value of the first derivative at the final point in x .
IFAIL	integer
	ifail $=0$ unless the function detects an error or a warning has been flagged (see the Errors section in Fortran library documentation).

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04bbf.pdf

Examples

```
ifail <- 0
funct = function(xc) {
    fc <- sin(xc)/xc
    gc <- (cos(xc) - fc)/xc
    list(FC = fc, GC = gc)
}
e1 <- 0
e2 <- 0
a <- 3.5
b <- 5
```

```
maxcal <- 30
e04bb(funct, e1, e2, a, b, maxcal)
```


e04cb e04cb: Unconstrained minimization using simplex algorithm, function of several variables using function values only

Description

e 04 cb minimizes a general function $F(x)$ of n independent variables $x=\left(x_{1} x_{2} \ldots x_{n}\right)^{T}$ by the Nelder and Mead simplex method (see [Nelder J A Mead R (1965)]). Derivatives of the function need not be supplied.

Usage

```
e04cb(x, tolf, tolx, funct, monit, maxcal,
    n \(=\) nrow (x))
```


Arguments

x
tolf
tolx double
The error tolerable in the spatial values, in the following sense. If $L V$ denotes the 'linearized' volume of the current simplex, and if $L V_{\text {init }}$ denotes the 'linearized' volume of the initial simplex, then you can request that e04cb should terminate if

$$
\frac{L V}{L V_{i n i t}}<t o l x
$$

funct function
funct must evaluate the function F at a specified point. It should be tested separately before being used in conjunction with e04cb.
$(F C)=$ funct $(n, x C)$
monit function
monit may be used to monitor the optimization process. It is invoked once every iteration.
() = monit(fmin,fmax, sim, n, ncall, serror, vratio)

```
maxcal integer
    The maximum number of function evaluations to be allowed.
n integer: default = nrow(x)
    n, the number of variables.
```


Details

R interface to the NAG Fortran routine E04CBF.

Value

X double array The value of x corresponding to the function value in f .

F
double
The lowest function value found.
IFAIL
integer
ifail $=0$ unless the function detects an error or a warning has been flagged (see the Errors section in Fortran library documentation).

Author(s)

NAG

References

```
http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04cbf.pdf
```


Examples

```
ifail <- 0
funct = function(n, xc) {
    fc <- exp(xc[1]) %*% (4 %*% xc[1] %*% (xc[1] + xc[2]) + 2 %*%
        xc[2] %*% (xc[2] + 1) + 1)
    list(FC = fc)
}
monit = function(fmin, fmax, sim, n, ncall, serror,
    vratio) {
    if (user(1) != 0) {
        writeLines(toString(cat(sprintf("\nThere have been %d function calls\n",
            ncall, "\n"))))
        writeLines(toString(cat(sprintf("The smallest function value is %10.4f\n",
            fmin, "\n"))))
        writeLines(toString(cat(sprintf("The simplex is\n", "\n"))))
```

```
                writeLines(toString(cat(sprintf(sim, "\n"))))
                writeLines(toString(cat(sprintf("The standard deviation in function values at the
                        serror, "\n"))))
                writeLines(toString(cat(sprintf("The linearized volume ratio of the current simp
                        vratio, "\n"))))
        }
        list()
}
x <- matrix(c(-1, 1), nrow = 2, ncol = 1, byrow = TRUE)
tolf <- sqrt(x02aj()[["result"]])
tolx <- sqrt(tolf)
maxcal <- 100
user <- function(switch_integer) {
    switch(switch_integer, 0)
}
e04cb(x, tolf, tolx, funct, monit, maxcal)
```


e04dg

e04dg: Unconstrained minimum, preconditioned conjugate gradient algorithm, function of several variables using first derivatives (comprehensive)

Description

e04dg minimizes an unconstrained nonlinear function of several variables using a pre-conditioned, limited memory quasi-Newton conjugate gradient method. First derivatives (or an 'acceptable' finite difference approximation to them) are required. It is intended for use on large scale problems.

Usage

$$
\begin{gathered}
\text { e04dg (objfun, } x, \text { optlist, } \\
n=\text { nrow }(x))
\end{gathered}
$$

Arguments

objfun function
objfun must calculate the objective function $F(x)$ and possibly its gradient as well for a specified n element vector x.

$$
(M O D E, O B J F, O B J G R D)=o b j f u n(m o d e, n, x, n s t a t e)
$$

Details

R interface to the NAG Fortran routine E04DGF.

Value

ITER	integer The total number of iterations performed. double
OBJF	The value of the objective function at the final iterate. double array The gradient of the objective function at the final iterate (or its finite difference approximation). double array
X	The final estimate of the solution. integer ifail $=0$ unless the function detects an error or a warning has been flagged (see the Errors section in Fortran library documentation).

Author(s)

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04dgf.pdf

Examples

```
optlist <- list()
ifail <- 0
objfun = function(mode, n, x, nstate) {
    objgrd <- as.matrix(mat.or.vec(2, 1))
    expx1 <- exp(x[1])
    objf <- expx1 %*% (4 %*% x[1]^2 + 2 %*% x[2]^2 + 4 %*% x[1] %*%
        x[2] + 2 %*% x[2] + 1)
        if (mode == 2) {
            objgrd[1] <- 4 %*% expx1 %*% (2 %*% x[1] + x[2]) + objf
            objgrd[2] <- 2 %*% expx1 %*% (2 %*% x[2] + 2 %*% x[1] +
            1)
        }
        else {
            objgrd <- as.matrix(mat.or.vec(2, 1))
        }
        list(MODE = as.integer(mode), OBJF = objf, OBJGRD = as.matrix(objgrd))
}
x <- matrix(c(-1, 1), nrow = 2, ncol = 1, byrow = TRUE)
e04dg(objfun, x, optlist)
```

$$
\begin{array}{ll}
\mathrm{e} 04 \mathrm{fc} & \text { e04fc: Unconstrained minimum of a sum of squares, combined Gauss- } \\
\text { Newton and modified Newton algorithm using function values only } \\
\text { (comprehensive) }
\end{array}
$$

Description

e04fc is a comprehensive algorithm for finding an unconstrained minimum of a sum of squares of m nonlinear functions in n variables $(m \geq n)$. No derivatives are required.

The function is intended for functions which have continuous first and second derivatives (although it will usually work even if the derivatives have occasional discontinuities).

```
Usage
    e04fc(m, lsqfun, lsqmon, maxcal, x,
        n = nrow(x),
        iprint = 1,
    eta = if (n==1) 0.0 else 0.5,
    xtol = 0.0,
    stepmx = 100000.0)
```


Arguments

m	integer
lsqfun	function

1sqfun must calculate the vector of values $f_{i}(x)$ at any point x. (However, if you do not wish to calculate the residuals at a particular x, there is the option of setting a argument to cause e04fc to terminate immediately.)

$$
(\text { IFLAG, FVEC })=\text { lsqfun(iflag, } m, n, x c)
$$

lsqmon function
If iprint ≥ 0, you must supply lsqmon which is suitable for monitoring the minimization process. lsqmon must not change the values of any of its arguments.

$$
()=\operatorname{lsqmon}(m, n, x c, f v e c, f j a c, l d f j a c, s, i g r a d e, n i t e r, n f)
$$

maxcal integer
The limit you set on the number of times that lsqfun may be called by e04fc. There will be an error exit (see the Errors section in Fortran library documentation) after maxcal calls of lsqfun.
x
n
double array
$x[j]$ must be set to a guess at the j th component of the position of the minimum for $j=1 \ldots n$.
integer: default $=\operatorname{nrow}(x)$
The number m of residuals, $f_{i}(x)$, and the number n of variables, x_{j}.
iprint
eta
integer: default = 1
The frequency with which lsqmon is to be called.
double: default $=$ if $(n==1) 0.0$ else 0.5
Specifies how accurately the linear minimizations are to be performed. The minimum with respect to $\alpha^{(k)}$ will be located more accurately for small values of eta (say, 0.01) than for large values (say, 0.9). Although accurate linear minimizations will generally reduce the number of iterations performed by e 04 fc , they will increase the number of calls of lsqfun made each iteration. On balance it is usually more efficient to perform a low accuracy minimization.
xtol double: default $=0.0$
The accuracy in x to which the solution is required.
stepmx double: default $=100000.0$
An estimate of the Euclidean distance between the solution and the starting point supplied by you. (For maximum efficiency, a slight overestimate is preferable.) e04fc will ensure that, for each iteration,

$$
\sum_{j=1}^{n}\left(x_{j}^{(k)}-x_{j}^{(k-1)}\right)^{2} \leq(\text { stepm } x)^{2},
$$

where k is the iteration number. Thus, if the problem has more than one solution, e 04 fc is most likely to find the one nearest to the starting point. On difficult problems, a realistic choice can prevent the sequence $x^{(k)}$ entering a region where the problem is ill-behaved and can help avoid overflow in the evaluation of $F(x)$. However, an underestimate of stepmx can lead to inefficiency.

Details

R interface to the NAG Fortran routine E04FCF.

Value

X double array
The final point $x^{(k)}$. Thus, if ifail $=0$ on exit, $x[j]$ is the j th component of the estimated position of the minimum.
FSUMSQ double
The value of $F(x)$, the sum of squares of the residuals $f_{i}(x)$, at the final point given in x .

FVEC double array
The value of the residual $f_{i}(x)$ at the final point given in x for $i=1 \ldots m$.
FJAC double array
The estimate of the first derivative $\frac{\partial f_{i}}{\partial x_{j}}$ at the final point given in x for $j=1 \ldots n$ for $i=1 \ldots m$.
$S \quad$ double array
The singular values of the estimated Jacobian matrix at the final point. Thus s may be useful as information about the structure of your problem.
V double array
The matrix V associated with the singular value decomposition

$$
J=U S V^{T}
$$

of the estimated Jacobian matrix at the final point, stored by columns. This matrix may be useful for statistical purposes, since it is the matrix of orthonormalized eigenvectors of $J^{T} J$.
NITER integer
The number of iterations which have been performed in e04fc.
NF
integer
The number of times that the residuals have been evaluated (i.e., number of calls of lsqfun).
IFAIL integer
ifail $=0$ unless the function detects an error or a warning has been flagged (see the Errors section in Fortran library documentation).

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04fcf.pdf

Examples

```
ifail <- 0
lsqfun = function(iflag, m, n, xc) {
    fvec <- as.matrix(mat.or.vec(m, 1))
    for (i in c(1:m)) {
        fvec[i] <- xc[1] + t[i, 1]/(xc[2] %*% t[i, 2] + xc[3] %*%
            t[i, 3]) - y[i]
    }
    list(IFLAG = as.integer(iflag), FVEC = as.matrix(fvec))
}
lsqmon = function(m, n, xc, fvec, fjacc, ljc, s, igrade,
    niter, nf) {
    if (niter == 0) {
            writeLines(toString(cat(sprintf(" Itn F evals SUMSQ \n",
            "\n"))))
    }
    fsumsq <- crossprod(fvec, fvec)
    writeLines(toString(cat(sprintf(" %3d %3d %12.8f\n",
            niter, nf, fsumsq, "\n"))))
    list()
}
m <- 15
n <- 3
maxcal <- 1200
x <- matrix(c(0.5, 1, 1.5), nrow = 3, ncol = 1, byrow = TRUE)
iw <- as.matrix(mat.or.vec(1, 1))
w <- as.matrix(mat.or.vec(6 %*% n + m %*% n + 2 %*%
    m+n %*% ((n - 1)/2), 1))
y <- matrix(c(0.14, 0.18, 0.22, 0.25, 0.29, 0.32,
    0.35, 0.39, 0.37, 0.58, 0.73, 0.96, 1.34, 2.1, 4.39), nrow = 1,
    ncol = 15, byrow = TRUE)
t <- matrix(c(1, 15, 1, 2, 14, 2, 3, 13, 3, 4, 12,
    4, 5, 11, 5, 6, 10, 6, 7, 9, 7, 8, 8, 8, 9, 7, 7, 10, 6,
    6, 11, 5, 5, 12, 4, 4, 13, 3, 3, 14, 2, 2, 15, 1, 1), nrow = 15,
    ncol = 3, byrow = TRUE)
```

```
    e04fc(m, lsqfun, lsqmon, maxcal, x)
```

 e04fy
 e04fy: Unconstrained minimum of a sum of squares, combined GaussNewton and modified Newton algorithm using function values only (easy-to-use)

Description

e04fy is an easy-to-use algorithm for finding an unconstrained minimum of a sum of squares of m nonlinear functions in n variables $(m \geq n)$. No derivatives are required.
It is intended for functions which are continuous and which have continuous first and second derivatives (although it will usually work even if the derivatives have occasional discontinuities).

Usage

e04fy (m, lsfun1, x,

$$
\mathrm{n}=\operatorname{nrow}(\mathrm{x}))
$$

Arguments

$m \quad$ integer
lsfun1 function
You must supply this function to calculate the vector of values $f_{i}(x)$ at any point x. It should be tested separately before being used in conjunction with e04fy (see the E04 chapter introduction in the Fortran Library documentation).
$(\mathrm{FVEC})=\operatorname{lsfun1}(\mathrm{m}, \mathrm{n}, \mathrm{xc})$
x double array
$x[j]$ must be set to a guess at the j th component of the position of the minimum for $j=1 \ldots n$.
$\mathrm{n} \quad$ integer: default $=\operatorname{nrow}(\mathrm{x})$
The number m of residuals, $f_{i}(x)$, and the number n of variables, x_{j}.

Details

R interface to the NAG Fortran routine E04FYF.

Value

X double array
The lowest point found during the calculations. Thus, if ifail $=0$ on exit, $x[j]$ is the j th component of the position of the minimum.
FSUMSQ double
The value of the sum of squares, $F(x)$, corresponding to the final point stored in x .
IFAIL
integer
ifail $=0$ unless the function detects an error or a warning has been flagged (see the Errors section in Fortran library documentation).

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04fyf.pdf

Examples

```
ifail <- 0
lsfun1 = function(m, n, xc) {
    fvec <- as.matrix(mat.or.vec(m, 1))
    for (i in c(1:m)) {
        fvec[i] <- xc[1] + user(2)[i, 1]/(xc[2] %*% user(2)[i,
            2] + xc[3] %*% user(2)[i, 3]) - user(1)[i]
    }
    list(FVEC = as.matrix(fvec))
}
m <- 15
x <- matrix(c(0.5, 1, 1.5), nrow = 3, ncol = 1, byrow = TRUE)
y <- matrix(c(0.14, 0.18, 0.22, 0.25, 0.29, 0.32,
    0.35, 0.39, 0.37, 0.58, 0.73, 0.96, 1.34, 2.1, 4.39), nrow = 1,
    ncol = 15, byrow = TRUE)
t <- matrix(c(1, 15, 1, 2, 14, 2, 3, 13, 3, 4, 12,
    4, 5, 11, 5, 6, 10, 6, 7, 9, 7, 8, 8, 8, 9, 7, 7, 10, 6,
    6, 11, 5, 5, 12, 4, 4, 13, 3, 3, 14, 2, 2, 15, 1, 1), nrow = 15,
    ncol = 3, byrow = TRUE)
user <- function(switch_integer) {
    switch(switch_integer, y, t, 3)
}
e04fy(m, lsfun1, x)
```

```
e04gd
```

e04gd: Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm using first derivatives (comprehensive)

Description

e04gd is a comprehensive modified Gauss-Newton algorithm for finding an unconstrained minimum of a sum of squares of m nonlinear functions in n variables $(m \geq n)$. First derivatives are required.
The function is intended for functions which have continuous first and second derivatives (although it will usually work even if the derivatives have occasional discontinuities).

Usage

```
e04gd(m, lsqfun, lsqmon, maxcal, xtol, x,
    n = nrow(x),
    iprint = 1,
    eta = if (n==1) 0.0 else 0.5,
    stepmx = 100000.0)
```


Arguments

$m \quad$ integer
lsqfun function
lsqfun must calculate the vector of values $f_{i}(x)$ and Jacobian matrix of first derivatives $\frac{\partial f_{i}}{\partial x_{j}}$ at any point x. (However, if you do not wish to calculate the residuals or first derivatives at a particular x, there is the option of setting a argument to cause e 04 gd to terminate immediately.)

```
(IFLAG,FVEC,FJAC) = lsqfun(iflag,m,n,xc,ldfjac)
```

lsqmon function

If iprint ≥ 0, you must supply lsqmon which is suitable for monitoring the minimization process. lsqmon must not change the values of any of its arguments.

$$
()=\operatorname{lsqmon}(m, n, x c, f v e c, f j a c, l d f j a c, s, i g r a d e, n i t e r, n f)
$$

maxcal integer
Enables you to limit the number of times that lsqfun is called by e 04 gd . There will be an error exit (see the Errors section in Fortran library documentation) after maxcal evaluations of the residuals (i.e., calls of lsqfun with iflag set to 2). It should be borne in mind that, in addition to the calls of lsqfun which are limited directly by maxcal, there will be calls of lsqfun (with iflag set to 1) to evaluate only first derivatives.
xtol double
The accuracy in x to which the solution is required.
x
double array
$x[j]$ must be set to a guess at the j th component of the position of the minimum for $j=1 \ldots n$.
$\mathrm{n} \quad$ integer: default $=\operatorname{nrow}(x)$
The number m of residuals, $f_{i}(x)$, and the number n of variables, x_{j}.
iprint \quad integer: default $=1$
The frequency with which lsqmon is to be called.
iprint >0 : lsqmon is called once every iprint iterations and just before exit from e 04 gd .
iprint $=0$: lsqmon is just called at the final point.
iprint <0 : lsqmon is not called at all.
$\begin{array}{ll}\text { eta } & \text { double: } \text { default }=\text { if }(\mathrm{n}==1) 0.0 \text { else } 0.5 \\ & \text { Every iteration of } \mathrm{e} 04 \mathrm{gd} \text { involves a linear minimization, i.e., minimization of }\end{array}$ $F\left(x^{(k)}+\alpha^{(k)} p^{(k)}\right)$ with respect to $\alpha^{(k)}$. eta specifies how accurately these linear minimizations are to be performed. The minimum with respect to $\alpha^{(k)}$ will be located more accurately for small values of eta (say, 0.01) than for large values (say, 0.9).
stepmx double: default $=100000.0$
An estimate of the Euclidean distance between the solution and the starting point supplied by you. (For maximum efficiency, a slight overestimate is preferable.) $e 04 \mathrm{gd}$ will ensure that, for each iteration,

$$
\sum_{j=1}^{n}\left(x_{j}^{(k)}-x_{j}^{(k-1)}\right)^{2} \leq(\text { stepm } x)^{2}
$$

where k is the iteration number. Thus, if the problem has more than one solution, e 04 gd is most likely to find the one nearest to the starting point. On difficult problems, a realistic choice can prevent the sequence of $x^{(k)}$ entering a region where the problem is ill-behaved and can help avoid overflow in the evaluation of $F(x)$. However, an underestimate of stepmx can lead to inefficiency.

Details

R interface to the NAG Fortran routine E04GDF.

Value

$X \quad$ double array
The final point $x^{(k)}$. Thus, if ifail $=0$ on exit, $x[j]$ is the j th component of the estimated position of the minimum.
FSUMSQ double
The value of $F(x)$, the sum of squares of the residuals $f_{i}(x)$, at the final point given in x .

FVEC double array
The value of the residual $f_{i}(x)$ at the final point given in x for $i=1 \ldots m$.
FJAC double array
The value of the first derivative $\frac{\partial f_{i}}{\partial x_{j}}$ evaluated at the final point given in x for $j=1 \ldots n$ for $i=1 \ldots m$.
S
double array
The singular values of the Jacobian matrix at the final point. Thus s may be useful as information about the structure of your problem.
V double array
The matrix V associated with the singular value decomposition

$$
J=U S V^{T}
$$

of the Jacobian matrix at the final point, stored by columns. This matrix may be useful for statistical purposes, since it is the matrix of orthonormalized eigenvectors of $J^{T} J$.
integer
The number of iterations which have been performed in e04gd.

```
NF integer
The number of times that the residuals have been evaluated (i.e., number of calls of lsqfun with iflag set to 2 ).
IFAIL integer
ifail \(=0\) unless the function detects an error or a warning has been flagged (see the Errors section in Fortran library documentation).
```


Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04gdf.pdf

Examples

```
ifail <- 0
lsqfun = function(iflag, m, n, xc, ljc) {
    fvec <- as.matrix(mat.or.vec(m, 1))
    fjacc <- as.matrix(mat.or.vec(ljc, n))
    for (i in c(1:m)) {
        denom <- xc[2] %*% t[i, 2] + xc[3] %*% t[i, 3]
        if (iflag != 1) {
            fvec[i] <- xc[1] + t[i, 1]/denom - y[i]
            }
            if (iflag != 0) {
            fjacc[i, 1] <- 1
            dummy <- -1/(denom %*% denom)
            fjacc[i, 2] <- t[i, 1] %*% t[i, 2] %*% dummy
            fjacc[i, 3] <- t[i, 1] %*% t[i, 3] %*% dummy
            }
    }
    list(IFLAG = as.integer(iflag), FVEC = as.matrix(fvec), FJAC = as.matrix(fjacc))
}
lsqmon = function(m, n, xc, fvec, fjacc, ljc, s, igrade,
    niter, nf) {
    list()
}
m <- 15
maxcal <- }15
xtol <- 1.05418557512311e-07
```

```
x <- matrix(c(0.5, 1, 1.5), nrow = 3, ncol = 1, byrow = TRUE)
iw <- matrix(c(0), nrow = 1, ncol = 1, byrow = TRUE)
w <- as.matrix(mat.or.vec(105, 1))
y <- matrix(c(0.14, 0.18, 0.22, 0.25, 0.29, 0.32,
    0.35, 0.39, 0.37, 0.58, 0.73, 0.96, 1.34, 2.1, 4.39), nrow = 1,
    ncol = 15, byrow = TRUE)
t <- matrix(c(1, 15, 1, 2, 14, 2, 3, 13, 3, 4, 12,
    4, 5, 11, 5, 6, 10, 6, 7, 9, 7, 8, 8, 8, 9, 7, 7, 10, 6,
    6, 11, 5, 5, 12, 4, 4, 13, 3, 3, 14, 2, 2, 15, 1, 1), nrow = 15,
    ncol = 3, byrow = TRUE)
e04gd(m, lsqfun, lsqmon, maxcal, xtol, x)
```

e04gy e04gy: Unconstrained minimum of a sum of squares, combined Gauss-
Newton and quasi-Newton algorithm, using first derivatives (easy-to-
use)

Description

e04gy is an easy-to-use quasi-Newton algorithm for finding an unconstrained minimum of a sum of squares of m nonlinear functions in n variables $(m \geq n)$. First derivatives are required.
It is intended for functions which are continuous and which have continuous first and second derivatives (although it will usually work even if the derivatives have occasional discontinuities).

Usage

e04gy (m, lsfun2, x,

$$
\text { n }=\text { nrow (x)) }
$$

Arguments

m	integer
lsfun2	function

You must supply this function to calculate the vector of values $f_{i}(x)$ and the Jacobian matrix of first derivatives $\frac{\partial f_{i}}{\partial x_{j}}$ at any point x. It should be tested separately before being used in conjunction with e04gy (see the E04 chapter introduction in the Fortran Library documentation).

$$
(F V E C, F J A C)=l s f u n 2(m, n, x c, l d f j a c)
$$

double array
$x[j]$ must be set to a guess at the j th component of the position of the minimum for $j=1 \ldots n$. The function checks the first derivatives calculated by lsfun 2 at the starting point and so is more likely to detect an error in your function if the initial $x[j]$ are nonzero and mutually distinct.
n
integer: default $=\operatorname{nrow}(x)$
The number m of residuals, $f_{i}(x)$, and the number n of variables, x_{j}.

Details

R interface to the NAG Fortran routine E04GYF.

Value

$\mathrm{X} \quad$ double array
The lowest point found during the calculations. Thus, if ifail $=0$ on exit, $x[j]$ is the j th component of the position of the minimum.
FSUMSQ double
The value of the sum of squares, $F(x)$, corresponding to the final point stored in x .

IFAIL integer
ifail $=0$ unless the function detects an error or a warning has been flagged (see the Errors section in Fortran library documentation).

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04gyf.pdf

Examples

```
ifail <- 0
lsfun2 = function(m, n, xc, ljc) {
fvec <- as.matrix(mat.or.vec(m, 1))
fjacc <- as.matrix(mat.or.vec(ljc, n))
for (i in c(1:m)) {
    denom <- xc[2] %*% user(2)[i, 2] + xc[3] %*% user(2)[i,
            3]
    fvec[i] <- xc[1] + user(2)[i, 1]/denom - user(1)[i]
    fjacc[i, 1] <- 1
    dummy <- -1/(denom %*% denom)
    fjacc[i, 2] <- user(2)[i, 1] %*% user(2)[i, 2] %*% dummy
    fjacc[i, 3] <- user(2)[i, 1] %*% user(2) [i, 3] %*% dummy
    }
```

```
    list(FVEC = as.matrix(fvec), FJAC = as.matrix(fjacc))
}
m <- 15
x <- matrix(c(0.5, 1, 1.5), nrow = 3, ncol = 1, byrow = TRUE)
y <- matrix(c(0.14, 0.18, 0.22, 0.25, 0.29, 0.32,
    0.35, 0.39, 0.37, 0.58, 0.73, 0.96, 1.34, 2.1, 4.39), nrow = 1,
    ncol = 15, byrow = TRUE)
t <- matrix(c(1, 15, 1, 2, 14, 2, 3, 13, 3, 4, 12,
    4, 5, 11, 5, 6, 10, 6, 7, 9, 7, 8, 8, 8, 9, 7, 7, 10, 6,
    6, 11, 5, 5, 12, 4, 4, 13, 3, 3, 14, 2, 2, 15, 1, 1), nrow = 15,
    ncol = 3, byrow = TRUE)
user <- function(switch_integer) {
    switch(switch_integer, y, t, 3)
}
e04gy(m, lsfun2, x)
```


$e 04 \mathrm{gz}$

$e 04 \mathrm{gz}$: Unconstrained minimum of a sum of squares, combined GaussNewton and modified Newton algorithm using first derivatives (easy-to-use)

Description

e04gz is an easy-to-use modified Gauss-Newton algorithm for finding an unconstrained minimum of a sum of squares of m nonlinear functions in n variables $(m \geq n)$. First derivatives are required.
It is intended for functions which are continuous and which have continuous first and second derivatives (although it will usually work even if the derivatives have occasional discontinuities).

Usage

$$
\begin{array}{r}
\text { e04gz }(m, \quad \operatorname{sfun} 2, \quad x, \\
n=\operatorname{nrow}(x))
\end{array}
$$

Arguments

> m
> lsfun2
integer
function
You must supply this function to calculate the vector of values $f_{i}(x)$ and the Jacobian matrix of first derivatives $\frac{\partial f_{i}}{\partial x_{j}}$ at any point x. It should be tested separately before being used in conjunction with e 04 gz .

$$
(F V E C, F J A C)=\operatorname{lsfun} 2(m, n, x c, l d f j a c)
$$

double array
$x[j]$ must be set to a guess at the j th component of the position of the minimum for $j=1 \ldots n$. The function checks the first derivatives calculated by lsfun 2 at the starting point and so is more likely to detect any error in your functions if the initial $x[j]$ are nonzero and mutually distinct.
n
integer: default $=\operatorname{nrow}(x)$
The number m of residuals, $f_{i}(x)$, and the number n of variables, x_{j}.

Details

R interface to the NAG Fortran routine E04GZF.

Value

$\mathrm{X} \quad$ double array
The lowest point found during the calculations. Thus, if ifail $=0$ on exit, $x[j]$ is the j th component of the position of the minimum.
FSUMSQ double
The value of the sum of squares, $F(x)$, corresponding to the final point stored in x .

IFAIL integer
ifail $=0$ unless the function detects an error or a warning has been flagged (see the Errors section in Fortran library documentation).

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04gzf.pdf

Examples

```
ifail <- 0
lsfun2 = function(m, n, xc, ljc) {
    fvec <- as.matrix(mat.or.vec(m, 1))
    fjacc <- as.matrix(mat.or.vec(ljc, n))
    for (i in c(1:m)) {
    denom <- xc[2] %*% user(2)[i, 2] + xc[3] %*% user(2)[i,
            3]
    fvec[i] <- xc[1] + user(2)[i, 1]/denom - user(1)[i]
    fjacc[i, 1] <- 1
    dummy <- -1/(denom %*% denom)
    fjacc[i, 2] <- user(2)[i, 1] %*% user(2)[i, 2] %*% dummy
    fjacc[i, 3] <- user(2)[i, 1] %*% user(2) [i, 3] %*% dummy
    }
```

```
    list(FVEC = as.matrix(fvec), FJAC = as.matrix(fjacc))
}
m <- 15
x <- matrix(c(0.5, 1, 1.5), nrow = 3, ncol = 1, byrow = TRUE)
y <- matrix(c(0.14, 0.18, 0.22, 0.25, 0.29, 0.32,
    0.35, 0.39, 0.37, 0.58, 0.73, 0.96, 1.34, 2.1, 4.39), nrow = 1,
    ncol = 15, byrow = TRUE)
t <- matrix(c(1, 15, 1, 2, 14, 2, 3, 13, 3, 4, 12,
    4, 5, 11, 5, 6, 10, 6, 7, 9, 7, 8, 8, 8, 9, 7, 7, 10, 6,
    6, 11, 5, 5, 12, 4, 4, 13, 3, 3, 14, 2, 2, 15, 1, 1), nrow = 15,
    ncol = 3, byrow = TRUE)
user <- function(switch_integer) {
    switch(switch_integer, y, t, 3)
}
e04gz(m, lsfun2, x)
```

```
e04hc
```

e04hc: Check user's function for calculating first derivatives of function

Description

e04hc checks that a function for evaluating an objective function and its first derivatives produces derivative values which are consistent with the function values calculated.

Usage

e04hc (funct, x, n $=$ nrow (x))

Arguments

funct function
funct must evaluate the function and its first derivatives at a given point. (The minimization functions mentioned in the Description in Fortran library documentation gives you the option of resetting arguments of funct to cause the minimization process to terminate immediately. e04hc will also terminate immediately, without finishing the checking process, if the argument in question is reset.)
(IFLAG, FC, GC) = funct(iflag, n, xc)
double array
$x[j]$ for $j=1 \ldots n$, must be set to the coordinates of a suitable point at which to check the derivatives calculated by funct. 'Obvious' settings, such as 0.0 or 1.0 , should not be used since, at such particular points, incorrect terms may take correct values (particularly zero), so that errors could go undetected. Similarly, it is preferable that no two elements of x should be the same.
n
integer: default $=\operatorname{nrow}(x)$
The number n of independent variables in the objective function.

Details

R interface to the NAG Fortran routine E04HCF.

Value

F double
Unless you set iflag negative in the first call of funct, f contains the value of the objective function $F(x)$ at the point given by you in x .

G double array
Unless you set iflag negative in the first call of funct, $g[j]$ contains the value of the derivative $\frac{\partial F}{\partial x_{j}}$ at the point given in x , as calculated by funct for $j=1 \ldots n$.
IFAIL integer
ifail $=0$ unless the function detects an error or a warning has been flagged (see the Errors section in Fortran library documentation).

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04hcf.pdf

Examples

```
ifail <- 0
funct = function(iflag, n, xc) {
    gc <- as.matrix(mat.or.vec(n, 1))
    fc}<-
    if (iflag != 1) {
        fc <- (xc[1] + 10 %*% xc[2])^2 + 5 %*% (xc[3] - xc[4])^2 +
            (xc[2] - 2 %*% xc[3])^4 + 10%*% (xc[1] - xc[4])^4
    }
    if (iflag != 0) {
        gc[1] <- 2 %*% (xc[1] + 10 %*% xc[2]) + 40%*% (xc[1] -
            xc[4])^3
```

```
            gc[2] <- 20 %*% (xc[1] + 10 %*% xc[2]) + 4 %*% (xc[2] -
                2 %*% xc[3])^3
            gc[3] <- 10 %*% (xc[3] - xc[4]) - 8 %*% (xc[2] - 2 %*%
                xc[3])^3
            gc[4] <- 10 %*% (xc[4] - xc[3]) - 40%*% (xc[1] - xC[4])^3
    }
    list(IFLAG = as.integer(iflag), FC = fc, GC = as.matrix(gc))
}
x <- matrix(c(1.46, -0.82, 0.57, 1.21), nrow = 4,
    ncol = 1, byrow = TRUE)
e04hc(funct, x)
```


e04hd

e04hd: Check user's function for calculating second derivatives of function

Description

e04hd checks that a function for calculating second derivatives of an objective function is consistent with a function for calculating the corresponding first derivatives.

Usage

```
e04hd(funct, h, \(x\), lh,
    n \(=\) nrow (x) )
```


Arguments

funct
h

X

function

funct must evaluate the function and its first derivatives at a given point. (e04lb gives you the option of resetting arguments of funct to cause the minimization process to terminate immediately. e04hd will also terminate immediately, without finishing the checking process, if the argument in question is reset.)

$$
(I F L A G, F C, G C)=\text { funct (iflag, } n, x c)
$$

function
h must evaluate the second derivatives of the function at a given point. (As with funct, a argument can be set to cause immediate termination.)

$$
(I F L A G, F H E S L, F H E S D)=h(i f l a g, n, x c, l h, f h e s d)
$$

double array
$x[j]$ for $j=1 \ldots n$ must contain the coordinates of a suitable point at which to check the derivatives calculated by funct. 'Obvious' settings, such as 0.0 or 1.0 ,
should not be used since, at such particular points, incorrect terms may take correct values (particularly zero), so that errors could go undetected. Similarly, it is advisable that no two elements of x should be the same.
integer
$\mathrm{n} \quad$ integer: default $=\operatorname{nrow}(\mathrm{x})$
The number n of independent variables in the objective function.

Details

R interface to the NAG Fortran routine E04HDF.

Value

G double array
Unless you set iflag negative in the first call of funct, $g[j]$ contains the value of the first derivative $\frac{\partial F}{\partial x_{j}}$ at the point given in x , as calculated by funct for $j=1 \ldots n$.
HESL double array
Unless you set iflag negative in h , hesl contains the strict lower triangle of the second derivative matrix of F, as evaluated by h at the point given in x , stored by rows.

HESD double array
Unless you set iflag negative in h , hesd contains the diagonal elements of the second derivative matrix of F, as evaluated by hat the point given in x .
IFAIL integer
ifail $=0$ unless the function detects an error or a warning has been flagged (see the Errors section in Fortran library documentation).

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04hdf.pdf

Examples

```
ifail <- 0
funct = function(iflag, n, xc) {
    gc <- as.matrix(mat.or.vec(n, 1))
    fc<- (xc[1] + 10%*% xc[2])^^2 + 5 %*% (xc[3] - xc[4])^2 +
        (xc[2] - 2%*% xC[3])^4 + 10%*% (xc[1] - xc[4])^4
    gc[1] <- 2 %*% (xc[1] + 10 %*% xc[2]) + 40 %*% (xc[1] - xc[4])^3
    gc[2]<-20%*% (xc[1] + 10 % *% xc[2]) + 4%*% (xc[2] - 2%*%
        xc[3])^3
    gc[3] <- 10 %*% (xc[3] - xc[4]) - 8 %*% (xc[2] - 2 %*% xc[3])^3
    gc[4] <- 10 %*% (xc[4] - xc[3]) - 40 %*% (xc[1] - xc[4])^3
    list(IFLAG = as.integer(iflag), FC = fc, GC = as.matrix(gc))
}
```

```
hess = function(iflag, n, xc, lh, fhesd) {
    fhesl <- as.matrix(mat.or.vec(lh, 1))
    fhesd <- as.matrix(mat.or.vec(n, 1))
    fhesd[1] <- 2 + 120 %*% (xc[1] - xc[4])^2
    fhesd[2] <- 200 + 12 %*% (xc[2] - 2 %*% xc[3])^2
    fhesd[3] <- 10 + 48%*% (xc[2] - 2 %*% xc[3])^2
    fhesd[4] <- 10 + 120 %*% (xc[1] - xc[4])^2
    fhesl[1] <- 20
    fhesl[2] <- 0
    fhesl[3] <- -24 %*% (xc[2] - 2 %*% xc[3])^2
    fhesl[4] <- -120 %*% (xc[1] - xc[4])^2
    fhesl[5] <- 0
    fhesl[6] <- -10
    list(IFLAG = as.integer(iflag), FHESL = as.matrix(fhesl),
        FHESD = as.matrix(fhesd))
}
x <- matrix(c(1.46, -0.82, 0.57, 1.21), nrow = 4,
    ncol = 1, byrow = TRUE)
lh <- 6
iw <- matrix(c(0), nrow = 1, ncol = 1, byrow = TRUE)
w <- as.matrix(mat.or.vec(20, 1))
e04hd(funct, hess, x, lh)
```

$$
\begin{aligned}
& \text { e0 } 04 \text { he } \quad \begin{array}{l}
\text { e04he: Unconstrained minimum of a sum of squares, combined Gauss- } \\
\text { Newton and modified Newton algorithm, using second derivatives } \\
\text { (comprehensive) }
\end{array}
\end{aligned}
$$

Description

e04he is a comprehensive modified Gauss-Newton algorithm for finding an unconstrained minimum of a sum of squares of m nonlinear functions in n variables $(m \geq n)$. First and second derivatives are required.
The function is intended for functions which have continuous first and second derivatives (although it will usually work even if the derivatives have occasional discontinuities).

Usage

```
    e04he(m, lsqfun, lsqhes, lsqmon, maxcal, xtol, x,
        n = nrow(x),
    iprint = 1,
    eta = if (n==1) 0.0 else 0.5,
    stepmx = 100000.0)
```


Arguments

m
lsqfun

X
integer
function
1sqfun must calculate the vector of values $f_{i}(x)$ and Jacobian matrix of first derivatives $\frac{\partial f_{i}}{\partial x_{j}}$ at any point x. (However, if you do not wish to calculate the residuals or first derivatives at a particular x, there is the option of setting a argument to cause e04he to terminate immediately.)

$$
(I F L A G, F V E C, F J A C)=l \operatorname{sqfun}(i f l a g, m, n, x c, l d f j a c)
$$

integer
This argument is present so as to enable you to limit the number of times that lsqfun is called by e04he. There will be an error exit (see the Errors section in Fortran library documentation) after maxcal calls of 1sqfun.
double
The accuracy in x to which the solution is required.
double array
$x[j]$ must be set to a guess at the j th component of the position of the minimum for $j=1 \ldots n$.
integer: default $=\operatorname{nrow}(x)$
The number m of residuals, $f_{i}(x)$, and the number n of variables, x_{j}.
integer: default = 1
Specifies the frequency with which lsqmon is to be called.
iprint >0 : lsqmon is called once every iprint iterations and just before exit from e04he.
iprint $=0$: lsqmon is just called at the final point.
iprint <0 : lsqmon is not called at all.
double: default $=$ if $(n==1) 0.0$ else 0.5
Every iteration of e04he involves a linear minimization (i.e., minimization of $F\left(x^{(k)}+\alpha^{(k)} p^{(k)}\right)$ with respect to $\left.\alpha^{(k)}\right)$. eta must lie in the range $0.0 \leq e t a<$ 1.0 , and specifies how accurately these linear minimizations are to be performed. The minimum with respect to $\alpha^{(k)}$ will be located more accurately for small values of eta (say, 0.01) than for large values (say, 0.9).
stepmx
double: default $=100000.0$
An estimate of the Euclidean distance between the solution and the starting point supplied by you. (For maximum efficiency, a slight overestimate is preferable.)

Details

R interface to the NAG Fortran routine E04HEF.

Value	
X	double array
	The final point $x^{(k)}$. Thus, if ifail $=0$ on exit, $x[j]$ is the j th component of the estimated position of the minimum.
FSUMSQ	double
	The value of $F(x)$, the sum of squares of the residuals $f_{i}(x)$, at the final point given in x .
FVEC	double array
	The value of the residual $f_{i}(x)$ at the final point given in x for $i=1 \ldots m$.
FJAC	double array
	The value of the first derivative $\frac{\partial f_{i}}{\partial x_{j}}$ evaluated at the final point given in x for $j=1 \ldots n$ for $i=1 \ldots m$.
S	double array
	The singular values of the Jacobian matrix at the final point. Thus s may be useful as information about the structure of your problem.
V	double array
	The matrix V associated with the singular value decomposition
	$J=U S V^{T}$
	of the Jacobian matrix at the final point, stored by columns. This matrix may be useful for statistical purposes, since it is the matrix of orthonormalized eigenvectors of $J^{T} J$.
NITER	integer
	The number of iterations which have been performed in e04he.
NF	integer
	The number of times that the residuals and Jacobian matrix have been evaluated (i.e., number of calls of lsqfun).
IFAIL	integer
	ifail $=0$ unless the function detects an error or a warning has been flagged (see the Errors section in Fortran library documentation).

Author(s)

NAG

References

Examples

```
ifail <- 0
lsqfun = function(iflag, m, n, xc, ljc) {
    fvec <- as.matrix(mat.or.vec(m, 1))
    fjacc <- as.matrix(mat.or.vec(ljc, n))
    for (i in c(1:m)) {
        denom <- xc[2] %*% t[i, 2] + xc[3] %*% t[i, 3]
        fvec[i] <- xc[1] + t[i, 1]/denom - y[i]
        if (iflag != 0) {
            fjacc[i, 1] <- 1
            dummy <- -1/(denom %*% denom)
            fjacc[i, 2] <- t[i, 1] %*% t[i, 2] %*% dummy
            fjacc[i, 3] <- t[i, 1] %*% t[i, 3] %** dummy
            }
    }
    list(IFLAG = as.integer(iflag), FVEC = as.matrix(fvec), FJAC = as.matrix(fjacc))
}
lsqhes = function(iflag, m, n, fvec, xc, lb) {
    b <- as.matrix(mat.or.vec(lb, 1))
    b[1] <- 0
    b[2] <- 0
    sum22 <- 0
    sum32 <- 0
    sum33 <- 0
    for (i in c(1:m)) {
        dummy <- 2 %*% t[i, 1]/(xc[2] %*% t[i, 2] + xc[3] %*%
            t[i, 3])^3
        sum22 <- sum22 + fvec[i] %*% dummy %*% t[i, 2]^2
            sum32 <- sum32 + fvec[i] %*% dummy %*% t[i, 2] %*% t[i,
            3]
        sum33 <- sum33 + fvec[i] %*% dummy %*% t[i, 3]^2
    }
    b[3] <- sum22
    b[4] <- 0
    b [5] <- sum32
    b[6] <- sum33
    list(IFLAG = as.integer(iflag), B = as.matrix(b))
}
lsqmon = function(m, n, xc, fvec, fjacc, ljc, s, igrade,
    niter, nf) {
    list()
}
```

```
m <- 15
maxcal <- 150
xtol <- 1.05418557512311e-07
x <- matrix(c(0.5, 1, 1.5), nrow = 3, ncol = 1, byrow = TRUE)
iw <- matrix(c(0), nrow = 1, ncol = 1, byrow = TRUE)
w <- as.matrix(mat.or.vec(105, 1))
y <- matrix(c(0.14, 0.18, 0.22, 0.25, 0.29, 0.32,
    0.35, 0.39, 0.37, 0.58, 0.73, 0.96, 1.34, 2.1, 4.39), nrow = 1,
    ncol = 15, byrow = TRUE)
t <- matrix(c(1, 15, 1, 2, 14, 2, 3, 13, 3, 4, 12,
    4, 5, 11, 5, 6, 10, 6, 7, 9, 7, 8, 8, 8, 9, 7, 7, 10, 6,
    6, 11, 5, 5, 12, 4, 4, 13, 3, 3, 14, 2, 2, 15, 1, 1), nrow = 15,
    ncol = 3, byrow = TRUE)
e04he(m, lsqfun, lsqhes, lsqmon, maxcal, xtol, x)
```


e04hy

e04hy: Unconstrained minimum of a sum of squares, combined GaussNewton and modified Newton algorithm, using second derivatives (easy-to-use)

Description

e04hy is an easy-to-use modified Gauss-Newton algorithm for finding an unconstrained minimum of a sum of squares of m nonlinear functions in n variables $(m \geq n)$. First and second derivatives are required.

It is intended for functions which are continuous and which have continuous first and second derivatives (although it will usually work even if the derivatives have occasional discontinuities).

Usage

```
e04hy(m, lsfun2, lshes2, x,
    n = nrow (x))
```


Arguments

m
lsfun2

1shes 2

X
n
integer
function
You must supply this function to calculate the vector of values $f_{i}(x)$ and the Jacobian matrix of first derivatives $\frac{\partial f_{i}}{\partial x_{j}}$ at any point x. It should be tested separately before being used in conjunction with e04hy (see the E04 chapter introduction in the Fortran Library documentation).
$(\mathrm{FVEC}, \mathrm{FJAC})=\operatorname{lsfun} 2(\mathrm{~m}, \mathrm{n}, \mathrm{xc}, \operatorname{ldf} \mathrm{jac})$

You must supply this function to calculate the elements of the symmetric matrix

$$
B(x)=\sum_{i=1}^{m} f_{i}(x) G_{i}(x),
$$

at any point x, where $G_{i}(x)$ is the Hessian matrix of $f_{i}(x)$. It should be tested separately before being used in conjunction with e04hy (see the E04 chapter introduction in the Fortran Library documentation).
$(B)=\operatorname{lshes} 2(m, n, f v e c, x c, l b)$
double array
$x[j]$ must be set to a guess at the j th component of the position of the minimum for $j=1 \ldots n$. The function checks lsfun 2 and lshes 2 at the starting point and so is more likely to detect any error in your functions if the initial $x[j]$ are nonzero and mutually distinct.
integer: default $=\operatorname{nrow}(x)$
The number m of residuals, $f_{i}(x)$, and the number n of variables, x_{j}.

Details

R interface to the NAG Fortran routine E04HYF.

Value

$\mathrm{X} \quad$ double array
The lowest point found during the calculations. Thus, if ifail $=0$ on exit, $x[j]$ is the j th component of the position of the minimum.
FSUMSQ double
The value of the sum of squares, $F(x)$, corresponding to the final point stored in x .
IFAIL integer
ifail $=0$ unless the function detects an error or a warning has been flagged (see the Errors section in Fortran library documentation).

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04hyf.pdf

Examples

```
ifail <- 0
lsfun2 = function(m, n, xc, ljc) {
    fvec <- as.matrix(mat.or.vec(m, 1))
    fjacc <- as.matrix(mat.or.vec(ljc, n))
    for (i in c(1:m)) {
        denom <- xc[2] %*% user(2)[i, 2] + xc[3] %*% user(2)[i,
                3]
        fvec[i] <- xc[1] + user(2)[i, 1]/denom - user(1)[i]
        fjacc[i, 1] <- 1
        dummy <- -1/(denom %*% denom)
        fjacc[i, 2] <- user(2)[i, 1] %*% user(2)[i, 2] %*% dummy
        fjacc[i, 3] <- user(2)[i, 1] %*% user(2)[i, 3] %*% dummy
    }
    list(FVEC = as.matrix(fvec), FJAC = as.matrix(fjacc))
}
lshes2 = function(m, n, fvec, xc, lb) {
    b <- as.matrix(mat.or.vec(lb, 1))
    sum22 <- 0
    sum32 <- 0
    sum33 <- 0
    for (i in c(1:m)) {
        dummy <- 2 %*% user(2)[i, 1]/(xc[2] %*% user(2)[i, 2] +
            xc[3] %*% user(2)[i, 3])^3
            sum22 <- sum22 + fvec[i] %*% dummy %*% user(2)[i, 2]^2
            sum32 <- sum32 + fvec[i] %*% dummy %*% user(2)[i, 2] %**
                user(2)[i, 3]
            sum33 <- sum33 + fvec[i] %*% dummy %*% user(2)[i, 3]^2
    }
    b[3] <- sum22
    b[5] <- sum32
    b[6] <- sum33
    list(B = as.matrix(b))
}
m <- 15
x <- matrix(c(0.5, 1, 1.5), nrow = 3, ncol = 1, byrow = TRUE)
x <- matrix(c(0.5, 1, 1.5), nrow = 3, ncol = 1, byrow = TRUE)
```

```
y <- matrix(c(0.14, 0.18, 0.22, 0.25, 0.29, 0.32,
    0.35, 0.39, 0.37, 0.58, 0.73, 0.96, 1.34, 2.1, 4.39), nrow = 1,
    ncol = 15, byrow = TRUE)
t <- matrix(c(1, 15, 1, 2, 14, 2, 3, 13, 3, 4, 12,
    4, 5, 11, 5, 6, 10, 6, 7, 9, 7, 8, 8, 8, 9, 7, 7, 10, 6,
    6, 11, 5, 5, 12, 4, 4, 13, 3, 3, 14, 2, 2, 15, 1, 1), nrow = 15,
    ncol = 3, byrow = TRUE)
user <- function(switch_integer) {
    switch(switch_integer, y, t, 3)
}
e04hy(m, lsfun2, lshes2, x)
```


e04jc

e04jc: Minimum by quadratic approximation, function of several variables, simple bounds, using function values only

Description

e04jc is an easy-to-use algorithm that uses methods of quadratic approximation to find a minimum of an objective function F over $x \in R^{n}$, subject to fixed lower and upper bounds on the independent variables $x_{1}, x_{2}, \ldots, x_{n}$. Derivatives of F are not required.
The function is intended for functions that are continuous and that have continuous first and second derivatives (although it will usually work even if the derivatives have occasional discontinuities). Efficiency is maintained for large n.

Usage

```
e04jc(objfun, npt, \(x, b l, b u, r h o b e g, ~ r h o e n d, ~ m o n f u n, ~ m a x c a l, ~\)
    n \(=\) nrow (x) )
```


Arguments

objfun	function objfun must evaluate the objective function F at a specified vector x. $(F, I N F O R M)=O b j f u n ~$ npt $n, x)$
integer	
$m, t h e ~ n u m b e r ~ o f ~ i n t e r p o l a t i o n ~ c o n d i t i o n s ~ i m p o s e d ~ o n ~ t h e ~ q u a d r a t i c ~ a p p r o x i m a-~$	
tion at each iteration.	

bu	double array
	The fixed vectors of bounds: the lower bounds ℓ and the upper bounds u, respectively. To signify that a variable is unbounded you should choose a large scalar r appropriate to your problem, then set the lower bound on that variable to $-r$ and the upper bound to r. For well-scaled problems $r=r_{\text {max }}^{\frac{1}{4}}$ may be suitable, where $r_{\text {max }}$ denotes the largest positive model number (see x02al).
rhobeg	double
	An initial lower bound on the value of the trust-region radius.
rhoend	double
	A final lower bound on the value of the trust-region radius.
monfun	function
	monfun may be used to monitor the optimization process. It is invoked every time a new trust-region radius is chosen.
	(INFORM) $=$ monfun($\mathrm{n}, \mathrm{nf}, \mathrm{x}, \mathrm{f}, \mathrm{rho}$)
maxcal	integer
	The maximum permitted number of calls to objfun.
n	integer: default $=\operatorname{nrow}(\mathrm{x})$
	n, the number of independent variables.

Details

R interface to the NAG Fortran routine E04JCF.

Value

X double array
The lowest point found during the calculations. Thus, if ifail $=0$ on exit, x is the position of the minimum.

F
double
The function value at the lowest point found (x).
NF
integer
Unless ifail $=1$, ifail $=-999$ on exit, the total number of calls made to objfun.
IFAIL integer
ifail $=0$ unless the function detects an error or a warning has been flagged (see the Errors section in Fortran library documentation).

Author(s)

NAG

References

Examples

```
ifail <- 0
maxcal <- 500
rhobeg <- 0.1
rhoend <- 1e-06
n <- 4
npt <- 2 * n + 1
infbnd <- x02al()[["result"]]^0.25
bl <- matrix(c(1, -2, -infbnd, 1), nrow = 4, ncol = 1,
    byrow = TRUE)
bu <- matrix(c(3, 0, infbnd, 3), nrow = 4, ncol = 1,
    byrow = TRUE)
x <- matrix(c(3, -1, 0, 1), nrow = 4, ncol = 1, byrow = TRUE)
e04jc_objfun = function(n, x) {
    inform <- 0
    f <- (x[1] + 10 %*% x[2])^2 + 5 % *% (x[3] - x[4])^2 + (x[2] -
        2 %*% x[3])^4 + 10 %*% (x[1] - x[4])^4
    list(F = f, INFORM = as.integer(inform))
}
e04jc_monfun = function(n, nf, x, f, rho) {
    inform <- 0
    writeLines(sprintf("\nNew rho = %13.5e, number of function evaluations = %d\n",
        rho, nf))
    writeLines(sprintf("Current function value = %13.5en",
        f))
    writeLines(sprintf("The corresponding X is:",
        "\n"))
    writeLines(sprintf(" %13.5e", x, "\n"))
    writeLines(sprintf("\n", "\n"))
```

```
    list(INFORM = as.integer(inform))
}
ans <- e04jc(e04jc_objfun, npt, x, bl, bu, rhobeg,
    rhoend, e04jc_monfun, maxcal)
```

print (ans\$X)
print (ans\$F)
print (ans\$NF)
print(ans\$IFAIL)
e04jy e04jy: Minimum, function of several variables, quasi-Newton algo-
rithm, simple bounds, using function values only (easy-to-use)

Description

e04jy is an easy-to-use quasi-Newton algorithm for finding a minimum of a function $F\left(x_{1} x_{2} \ldots x_{n}\right)$, subject to fixed upper and lower bounds of the independent variables $x_{1}, x_{2}, \ldots, x_{n}$, using function values only.
It is intended for functions which are continuous and which have continuous first and second derivatives (although it will usually work even if the derivatives have occasional discontinuities).

Usage

```
    e04jy(ibound, funct1, bl, bu, x,
    n=nrow(bl),
    liw=n+2,
    lw=max(n* (n-1)/2+12*n, 13)
    )
```


Arguments

ibound	integer Indicates whether the facility for dealing with bounds of special forms is to be used. void function You must supply functl to calculate the value of the function $F(x)$ at any point x. It should be tested separately before being used with e04jy (see the E04 chapter introduction in the Fortran Library documentation). double array The lower bounds l_{j}. bl bu\quaddouble array The upper bounds u_{j}. double array
x \quadminimum for $j=1 \ldots n$.	

$\left.\begin{array}{ll}\mathrm{n} & \text { integer: default }=\text { nrow }(\mathrm{bl}) \\ & \begin{array}{l}\text { The number } n \text { of independent variables. } \\ \text { liw }\end{array} \\ \text { integer: default }=\mathrm{n}+2\end{array}\right\}$

Details

R interface to the NAG Fortran routine E04JYF.

Value

bl
bu

X
f
iw
w
double array
The lower bounds actually used by e 04 jy .
double array
The upper bounds actually used by e04jy.
double array
The lowest point found during the calculations. Thus, if ifail $=0$ on exit, $x(j)$ is the j th component of the position of the minimum.
double
The value of $F(x)$ corresponding to the final point stored in x .
integer array
If ifail $=0$, ifail $=3$, ifail $=5$, the first n elements of iw contain information about which variables are currently on their bounds and which are free. Specifically, if x_{i} is:
-: fixed on its upper bound, $i w(i)$ is -1 ;
-: fixed on its lower bound, $i w(i)$ is -2 ;
-: effectively a constant (i.e., $l_{j}=u_{j}$), $i w(i)$ is -3 ;

- : free, $i w(i)$ gives its position in the sequence of free variables.
double array
If ifail $=0$, ifail $=3$, ifail $=5, w(i)$ contains a finite difference approximation to the i th element of the projected gradient vector g_{z} for $i=1 \ldots n$. In addition, $w(n+1)$ contains an estimate of the condition number of the projected Hessian matrix (i.e., k). The rest of the array is used as workspace.

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04jyf.pdf

Examples

```
e04jy_funct1 = function(n, xc, fc) {
    fc <- (xc[1] + 10 * xc[2])^2 + 5 * (xc[3] - xc[4])^2 + (xc[2] -
        2 * xc[3])^4 + 10 * (xc[1] - xc[4])^4
    list(FC = fC)
}
```

```
ibound <- 0
bl <- matrix(c(1, -2, -1e+06, 1), nrow = 4, ncol = 1,
    byrow = TRUE)
bu <- matrix(c(3, 0, 1e+06, 3), nrow = 4, ncol = 1,
    byrow = TRUE)
x <- matrix(c(3, -1, 0, 1), nrow = 4, ncol = 1, byrow = TRUE)
e04jy(ibound, e04jy_funct1, bl, bu, x)
```

e 04 kd e04kd: Minimum, function of several variables, modified Newton algorithm, simple bounds, using first derivatives (comprehensive)

Description

e04kd is a comprehensive modified Newton algorithm for finding:

- an unconstrained minimum of a function of several variables;
- a minimum of a function of several variables subject to fixed upper and/or lower bounds on the variables.

First derivatives are required. The function is intended for functions which have continuous first and second derivatives (although it will usually work even if the derivatives have occasional discontinuities).

Usage

```
e04kd(funct, monit, eta, ibound, bl, bu, x, lh, iw, w,
n=nrow(bl),
iprint=1,
maxcal=50,
xtol=0.0,
delta=0.0,
stepmx=100000.0)
```


Arguments

funct	void function
funct must evaluate the function $F(x)$ and its first derivatives $\frac{\partial F}{\partial x_{j}}$ at a specified	
point. (However, if you do not wish to calculate F or its first derivatives at a	
particular x, there is the option of setting a argument to cause e 04 kd to terminate	
immediately.)	
monit \quad	void function If iprint ≥ 0, you must supply monit which is suitable for monitoring the minimization process. monit must not change the values of any of its arguments.

eta	double
	Every iteration of e 04 kd involves a linear minimization (i.e., minimization of $F(x+\alpha p)$ with respect to α). eta specifies how accurately these linear minimizations are to be performed. The minimum with respect to α will be located more accurately for small values of eta (say, 0.01) than large values (say, 0.9). integer
ibound	Indicates whether the problem is unconstrained or bounded. If there are bounds on the variables, ibound can be used to indicate whether the facility for dealing with bounds of special forms is to be used. It must be set to one of the following values: i bound $=0$: If the variables are bounded and you are supplying all the l_{j} and u_{j} individually. ibound $=1$: If the problem is unconstrained. ibound $=2$: If the variables are bounded, but all the bounds are of the form $0 \leq x_{j}$. ibound $=3$: If all the variables are bounded, and $l_{1}=l_{2}=\cdots=l_{n}$ and $u_{1}=u_{2}=\cdots=u_{n}$. ibound $=4$: If the problem is unconstrained. (The ibound $=4$ option is provided for consistency with other functions. In e04kd it produces the same effect as ibound $=1$.)
bl	double array
	The fixed lower bounds l_{j}.
bu	double array
	The fixed upper bounds u_{j}. double array
x	$x(j)$ must be set to a guess at the j th component of the position of the minimum for $j=1 \ldots n$.
1 h	integer
iw	integer array
w	double array
n	integer: default $=$ nrow(bl)
	The number n of independent variables.
iprint	integer: $\mathbf{d e f a u l t ~ = ~} 1$
	The frequency with which monit is to be called. iprint >0 : monit is called once every iprint iterations and just before exit from e04kd. iprint $=0$: monit is just called at the final point. iprint <0 : monit is not called at all.
maxcal	integer: default $=50$
	The maximum permitted number of evaluations of $F(x)$, i.e., the maximum permitted number of calls of funct with iflag set to 2 . It should be borne in mind that, in addition to the calls of funct which are limited directly by maxcal, there will be calls of funct (with iffag set to 1) to evaluate only first derivatives.
xtol	double: default $=0.0$
	The accuracy in x to which the solution is required.

delta \quad double: default $=0.0$
The differencing interval to be used for approximating the second derivatives of $F(x)$. Thus, for the finite difference approximations, the first derivatives of $F(x)$ are evaluated at points which are delta apart. If ϵ is the machine precision, then $\sqrt{\epsilon}$ will usually be a suitable setting for delta. If you set delta to 0.0 (or to any positive value less than ϵ), e04kd will automatically use $\sqrt{\epsilon}$ as the differencing interval.
stepmx double: default $=100000.0$
An estimate of the Euclidean distance between the solution and the starting point supplied by you. (For maximum efficiency a slight overestimate is preferable.)

Details

R interface to the NAG Fortran routine E04KDF.

Value

bl double array
The lower bounds actually used by e 04 kd , e.g., If ibound $=2, b l(1)=b l(2)=$ $\cdots=b l(n)=0.0$.
bu double array
The upper bounds actually used by e 04 kd , e.g., if ibound $=2, b u(1)=b u(2)=$ $\cdots=b u(n)=10^{6}$.
double array
The final point $x^{(k)}$. Thus, if ifail $=0$ on exit, $x(j)$ is the j th component of the estimated position of the minimum.
hesl double array
During the determination of a direction p_{z} (see the Description in Fortran library documentation), $H+E$ is decomposed into the product $L D L^{T}$, where L is a unit lower triangular matrix and D is a diagonal matrix. (The matrices H, E, L and D are all of dimension n_{z}, where n_{z} is the number of variables free from their bounds. H consists of those rows and columns of the full estimated second derivative matrix which relate to free variables. E is chosen so that $H+E$ is positive definite.)
hesd double array
During the determination of a direction p_{z} (see the Description in Fortran library documentation), $H+E$ is decomposed into the product $L D L^{T}$, where L is a unit lower triangular matrix and D is a diagonal matrix. (The matrices H, E, L and D are all of dimension n_{z}, where n_{z} is the number of variables free from their bounds. H consists of those rows and columns of the full estimated second derivative matrix which relate to free variables. E is chosen so that $H+E$ is positive definite.)
istate integer array
Information about which variables are currently on their bounds and which are free. If $\operatorname{istate}(j)$ is:

- equal to $-1, x_{j}$ is fixed on its upper bound;
- equal to $-2, x_{j}$ is fixed on its lower bound;
- equal to $-3, x_{j}$ is effectively a constant (i.e., $l_{j}=u_{j}$);
- positive, istate (j) gives the position of x_{j} in the sequence of free variables.

```
f
double
The function value at the final point given in x.
double array
The first derivative vector corresponding to the final point given in x. The com-
ponents of g corresponding to free variables should normally be close to zero.
```


Author(s)

NAG

References

```
http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04kdf.pdf
```


Examples

```
e04kd_funct = function(iflag, n, xc, fc, gc) {
    gc <- as.matrix(mat.or.vec(n, 1))
    fc <- 0
    if (iflag != 1) {
        fc <- (xc[1] + 10 * xc[2])^2 + 5 * (xc[3] - xc[4])^2 +
            (xc[2] - 2 * xc[3])^4 + 10 * (xc[1] - xc[4])^4
    }
    gc[1] <- 2 * (xc[1] + 10 * xc[2]) + 40 * (xc[1] - xc[4])^3
    gc[2] <- 20 * (xc[1] + 10 * xc[2]) + 4 * (xc[2] - 2 * xc[3])^3
    gc[3] <- 10 * (xc[3] - xc[4]) - 8 * (xc[2] - 2 * xc[3])^3
    gc[4] <- 10 * (xc[4] - xc[3]) - 40 * (xc[1] - xc[4])^3
    list(IFLAG = iflag, FC = fc, GC = as.matrix(gc))
}
e04kd_monit = function(n, xc, fc, gc, istate, gpjnrm,
    cond, posdef, niter, nf) {
    sprintf("\n Itn Fn evals Fn value Norm of proj gradient\n",
        "\n")
    sprintf(" %3d %5d %20.4f %20.4f\n", niter, nf, fc, gpjnrm,
        "\n")
    sprintf("\n J XJ GJ Status\n", "\n")
    for (j in c(1:n)) {
        isj <- istate[j]
        if (isj > 0) {
            sprintf("%2d %16.4f%20.4f %s\n", j, xc, j, gc, j,
                " Free", "\n")
            }
            else if (isj == -1) {
            }
            else if (isj == -2) {
```

```
            }
            else if (isj == -3) {
            }
        }
    if (cond != 0) {
        if (cond > 1e+06) {
                sprintf("\nEstimated condition number of projected Hessian is more than 1.0e
                    "\n")
            }
            else {
                sprintf("\nEstimated condition number of projected Hessian = %10.2f\n",
                    cond, "\n")
            }
            if (!posdef) {
                sprintf("\nProjected Hessian matrix is not positive definite\n",
                    "\n")
            }
    }
    list()
}
eta <- 0.5
ibound <- 0
bl <- matrix(c(1, -2, -1e+06, 1), nrow = 4, ncol = 1,
    byrow = TRUE)
bu <- matrix(c(3, 0, 1e+06, 3), nrow = 4, ncol = 1,
    byrow = TRUE)
x <- matrix(c(3, -1, 0, 1), nrow = 4, ncol = 1, byrow = TRUE)
```

lh <- 6
iw <- matrix (c (0, 0), nrow = 2, ncol = 1, byrow = TRUE)
w <- as.matrix(mat.or.vec (34, 1))
e04kd(e04kd_funct, e04kd_monit, eta, ibound, bl, bu,
$\mathrm{x}, \mathrm{lh}, \mathrm{iw}, \mathrm{w})$

```
e04ky
```

e04ky: Minimum, function of several variables, quasi-Newton algorithm, simple bounds, using first derivatives (easy-to-use)

Description

e 04 ky is an easy-to-use quasi-Newton algorithm for finding a minimum of a function $F\left(x_{1} x_{2} \ldots x_{n}\right)$, subject to fixed upper and lower bounds on the independent variables $x_{1}, x_{2}, \ldots, x_{n}$, when first derivatives of F are available.

It is intended for functions which are continuous and which have continuous first and second derivatives (although it will usually work even if the derivatives have occasional discontinuities).

Usage

```
e04ky(ibound, funct2, bl, bu, x,
    n = nrow(bl),
    liw = (n+2),
    lw = (max((10*n+n*(n-1)/2),11)))
```


Arguments

ibound	integer
funct 2	Indicates whether the facility for dealing with bounds of special forms is to be used. It must be set to one of the following values: i bound $=0$: If you are supplying all the l_{j} and u_{j} individually. ibound $=1$: If there are no bounds on any x_{j}. ibound $=2$: If all the bounds are of the form $0 \leq x_{j}$. ibound $=3$: If $l_{1}=l_{2}=\cdots=l_{n}$ and $u_{1}=u_{2}=\cdots=u_{n}$. function
	You must supply funct2 to calculate the values of the function $F(x)$ and its first derivative $\frac{\partial F}{\partial x_{j}}$ at any point x. It should be tested separately before being used in conjunction with e04ky (see the E04 chapter introduction in the Fortran Library documentation). $(\mathrm{FC}, \mathrm{GC})=\operatorname{funct} 2(\mathrm{n}, \mathrm{xC})$
bl	double array
	The lower bounds l_{j}.
bu	double array
x	The upper bounds u_{j}. double array
	$x[j]$ must be set to a guess at the j th component of the position of the minimum for $j=1 \ldots n$. The function checks the gradient at the starting point, and is more likely to detect any error in your programming if the initial $x[j]$ are nonzero and mutually distinct.
n	integer: default = nrow(bl)
	The number n of independent variables.
liw	integer: default $=(\mathrm{n}+2)$
lw	integer: default $=\left(\max \left(\left(10^{*} \mathrm{n}+\mathrm{n}^{*}(\mathrm{n}-1) / 2\right), 11\right)\right)$

Details

R interface to the NAG Fortran routine E04KYF.

Value

double array
The lower bounds actually used by e 04 ky .
double array
The upper bounds actually used by e04ky.

BL

Author(s)

NAG
IFAIL
double array
The lowest point found during the calculations. Thus, if ifail $=0$ on exit, $x[j]$ is the j th component of the position of the minimum.
double
The value of $F(x)$ corresponding to the final point stored in x .
double array
The value of $\frac{\partial F}{\partial x_{j}}$ corresponding to the final point stored in x for $j=1 \ldots n$; the value of $g[j]$ for variables not on a bound should normally be close to zero.
integer array
If ifail $=0$, ifail $=3$, ifail $=5$, the first n elements of iw contain information about which variables are currently on their bounds and which are free. Specifically, if x_{i} is:
$-:$ fixed on its upper bound, $i w[i]$ is -1 ;
$-:$ fixed on its lower bound, $i w[i]$ is -2 ;
-: effectively a constant (i.e., $l_{j}=u_{j}$), $i w[i]$ is -3 ;
-: free, $i w[i]$ gives its position in the sequence of free variables.
double array
If ifail $=0$, ifail $=3$, ifail $=5, w[i]$ contains the i th element of the projected gradient vector g_{z} for $i=1 \ldots n$. In addition, $w[n+1]$ contains an estimate of the condition number of the projected Hessian matrix (i.e., k). The rest of the array is used as workspace.
ifail $=0$ unless the function detects an error or a warning has been flagged (see the Errors section in Fortran library documentation).

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04kyf.pdf

Examples

```
ifail<-0
funct2=function(n,xc) {
gc<-as.matrix(mat.or.vec(n,1))
fc<-(xc[1]+10%*%xc[2])^2+5%*%(xc[3]-xc[4])^2+(xc[2]-2%*%xc[3])^4+10%*%(xc[1]-xc[4])^4
gc[1]<-2%*% (xc[1]+10%*%xc[2])+40%*% (xc[1]-xc[4])^3
gc[2]<-20%*%(xc[1]+10%*%xc[2])+4%**(xc[2]-2%*%xc[3])^3
gc[3]<-10%*%(xc[3]-xc[4])-8%*%(xc[2]-2%*%xc[3])^3
```

```
gc[4]<--10%*%(xc[3]-xc[4])-40%*%(xc[1]-xc[4])^3
list(FC=fc,GC=as.matrix(gc))
}
ibound<-0
bl<-matrix(c(1,-2,-1000000,1),nrow=4,ncol=1,byrow=TRUE)
```

bu<-matrix $(c(3,0,1000000,3)$, nrow=4, ncol=1, byrow=TRUE)
$\mathrm{x}<-\operatorname{matrix}(\mathrm{c}(3,-1,0,1)$, nrow=4, ncol=1, byrow=TRUE)
e04ky (ibound, funct $2, b l$, bu, x)

```
e04kz
```

e04kz: Minimum, function of several variables, modified Newton algorithm, simple bounds, using first derivatives (easy-to-use)

Description

e 04 kz is an easy-to-use modified Newton algorithm for finding a minimum of a function $F\left(x_{1} x_{2} \ldots x_{n}\right)$, subject to fixed upper and lower bounds on the independent variables $x_{1}, x_{2}, \ldots, x_{n}$, when first derivatives of F are available. It is intended for functions which are continuous and which have continuous first and second derivatives (although it will usually work even if the derivatives have occasional discontinuities).

Usage

```
    e04kz(ibound, funct2, bl, bu, x,
```

 n=nrow (bl)
)

Arguments

ibound
funct 2
integer
Indicates whether the facility for dealing with bounds of special forms is to be used. It must be set to one of the following values:
ibound $=0$: If you are supplying all the l_{j} and u_{j} individually.
ibound $=1$: If there are no bounds on any x_{j}.
ibound $=2$: If all the bounds are of the form $0 \leq x_{j}$.
ibound $=3$: If $l_{1}=l_{2}=\cdots=l_{n}$ and $u_{1}=u_{2}=\cdots=u_{n}$.
void function
You must supply this function to calculate the values of the function $F(x)$ and its first derivatives $\frac{\partial F}{\partial x_{j}}$ at any point x. It should be tested separately before being used in conjunction with e04kz (see the E04 chapter).

bl	double array The lower bounds l_{j}. double array The upper bounds u_{j}. double array $x(j)$ must be set to a guess at the j th component of the position of the minimum for $j=1 \ldots n . ~ T h e ~ f u n c t i o n ~ c h e c k s ~ t h e ~ g r a d i e n t ~ a t ~ t h e ~ s t a r t i n g ~ p o i n t, ~ a n d ~$ is more likely to detect any error in your programming if the initial $x(j)$ are nonzero and mutually distinct. integer: default $=$ nrow (bl)
n	The number n of independent variables.

Details

R interface to the NAG Fortran routine E04KZF.

Value

bl	double array The lower bounds actually used by e04kz. double array
bu	The upper bounds actually used by e04kz. double array
f	The lowest point found during the calculations of the position of the minimum. double The value of $F(x)$ corresponding to the final point stored in x. double array The value of $\frac{\partial F}{\partial x_{j}}$ corresponding to the final point stored in x for $j=1 \ldots n$; the value of $g(j)$ for variables not on a bound should normally be close to zero.

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04kzf.pdf

Examples

```
e04kz_funct2 = function(n, xc, fc, gc) {
    gc <- as.matrix(mat.or.vec(n, 1))
    fc <- (xc[1] + 10 * xc[2])^2 + 5 * (xc[3] - xc[4])^2 + (xc[2] -
        2 * xc[3])^4 + 10 * (xc[1] - xc[4])^4
    gc[1] <- 2 * (xc[1] + 10 * xc[2]) + 40 * (xc[1] - xc[4])^3
    gc[2] <- 20 * (xc[1] + 10 * xc[2]) + 4 * (xc[2] - 2 * xc[3])^3
    gc[3] <- 10 * (xc[3] - xc[4]) - 8 * (xc[2] - 2 * xc[3])^3
    gc[4] <- -10 * (xc[3] - xc[4]) - 40 * (xc[1] - xc[4])^3
    list(FC = fc, GC = as.matrix(gc))
}
```

```
ibound <- 0
bl <- matrix(c(1, -2, -1e+06, 1), nrow = 4, ncol = 1,
    byrow = TRUE)
bu <- matrix(c(3, 0, 1e+06, 3), nrow = 4, ncol = 1,
    byrow = TRUE)
x <- matrix(c(3, -1, 0, 1), nrow = 4, ncol = 1, byrow = TRUE)
e04kz(ibound, e04kz_funct2, bl, bu, x)
```

e04lb e04lb: Minimum, function of several variables, modified Newton algo-
rithm, simple bounds, using first and second derivatives (comprehen-
sive)

Description

e04lb is a comprehensive modified Newton algorithm for finding:
an unconstrained minimum of a function of several variables
a minimum of a function of several variables subject to fixed upper and/or lower bounds on the variables.

First and second derivatives are required. The function is intended for functions which have continuous first and second derivatives (although it will usually work even if the derivatives have occasional discontinuities).

Usage

```
e04lb(funct, hess, monit, ibound, bl, bu, x, lh, iw, w,
n=nrow(bl),
iprint=1,
maxcal=50,
eta=if(n ==1) 0.0 else 0.9,
xtol=0.0,
stepmx=100000.0
)
```


Arguments

funct void function
funct must evaluate the function $F(x)$ and its first derivatives $\frac{\partial F}{\partial x_{j}}$ at any point x. (However, if you do not wish to calculate $F(x)$ or its first derivatives at a particular x, there is the option of setting a argument to cause e04lb to terminate immediately.)

hess	void function
	h must calculate the second derivatives of F at any point x. (As with funct, there is the option of causing e04lb to terminate immediately.)
monit	void function
	If iprint ≥ 0, you must supply monit which is suitable for monitoring the minimization process. monit must not change the values of any of its arguments.
ibound	integer
	Specifies whether the problem is unconstrained or bounded. If there are bounds on the variables, ibound can be used to indicate whether the facility for dealing with bounds of special forms is to be used. It must be set to one of the following values:
	ibound $=0$: If the variables are bounded and you are supplying all the l_{j} and u_{j} individually.
	i bound $=1$: If the problem is unconstrained.
	ibound $=2$: If the variables are bounded, but all the bounds are of the form $0<x_{j}$.
	ibound $=3$: If all the variables are bounded, and $l_{1}=l_{2}=\cdots=l_{n}$ and $u_{1}=u_{2}=\cdots=u_{n}$.
	ibound $=4$: If the problem is unconstrained. (The ibound $=4$ option is provided purely for consistency with other functions. In e04lb it produces the same effect as ibound $=1$.)
bl	double array
	The fixed lower bounds l_{j}.
bu	double array
	The fixed upper bounds u_{j}.
x	double array
	$x(j)$ must be set to a guess at the j th component of the position of minimum for $j=1 \ldots n$.
1 h	integer
iw	integer array
w	double array
n	integer: default $=$ nrow (bl)
	The number n of independent variables.
iprint	integer: default = 1
	The frequency with which monit is to be called. iprint >0 : monit is called once every iprint iterations and just before exit from e04lb.
	iprint $=0$: monit is just called at the final point.
	iprint <0 : monit is not called at all.
maxcal	integer: default $=50$
	The maximum permitted number of evaluations of $F(x)$, i.e., the maximum permitted number of calls of funct.
eta	double: default $=\operatorname{if}(\mathrm{n}==1) 0.0$ else 0.9 ,
	Every iteration of e04lb involves a linear minimization (i.e., minimization of $F(x+\alpha p)$ with respect to α). eta specifies how accurately these linear minimizations are to be performed. The minimum with respect to α will be located more accurately for small values of eta (say, 0.01) than for large values (say, $0.9)$.

xtol	double: default $=0.0$
The accuracy in x to which the solution is required.	
stepmx	double: default $=100000.0$
	An estimate of the Euclidean distance between the solution and the starting point supplied by you. (For maximum efficiency a slight overestimate is preferable.)

Details

R interface to the NAG Fortran routine E04LBF.

Value

bl	double array
	The lower bounds actually used by e04lb, e.g., if ibound $=2, b l(1)=b l(2)=$ $\cdots=b l(n)=0.0$.
bu	double array
	The upper bounds actually used by e04lb, e.g., if ibound $=2, b u(1)=b u(2)=$ $\cdots=b u(n)=10^{6}$.
x	double array
	The final point $x^{(k)}$. Thus, if ifail $=0$ on exit, $x(j)$ is the j th component of the estimated position of the minimum.
hesl	double array
	During the determination of a direction p_{z} (see the Description in Fortran library documentation), $H+E$ is decomposed into the product $L D L^{T}$, where L is a unit lower triangular matrix and D is a diagonal matrix. (The matrices H, E, L and D are all of dimension n_{z}, where n_{z} is the number of variables free from their bounds. H consists of those rows and columns of the full estimated second derivative matrix which relate to free variables. E is chosen so that $H+E$ is positive definite.)
hesd	double array
	During the determination of a direction p_{z} (see the Description in Fortran library documentation), $H+E$ is decomposed into the product $L D L^{T}$, where L is a unit lower triangular matrix and D is a diagonal matrix. (The matrices H, E, L and D are all of dimension n_{z}, where n_{z} is the number of variables free from their bounds. H consists of those rows and columns of the full second derivative matrix which relate to free variables. E is chosen so that $H+E$ is positive definite.)
istate	integer array
	Information about which variables are currently on their bounds and which are free. If istate (j) is:

 - equal to \(-1, x_{j}\) is fixed on its upper bound;
 - equal to \(-2, x_{j}\) is fixed on its lower bound;
 - equal to \(-3, x_{j}\) is effectively a constant (i.e., \(l_{j}=u_{j}\));
 - positive, \(\operatorname{istate}(j)\) gives the position of \(x_{j}\) in the sequence of free variables.
 The function value at the final point given in x .
double array
The first derivative vector corresponding to the final point given in x . The components of g corresponding to free variables should normally be close to zero.

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04lbf.pdf

Examples

```
e04lb_funct = function(iflag, n, xc, fc, gc) {
    gc <- as.matrix(mat.or.vec(n, 1))
    fc <- (xc[1] + 10 * xc[2])^2 + 5 * (xc[3] - xc[4])^2 + (xc[2] -
        2 * xc[3])^4 + 10 * (xc[1] - xc[4])^4
    gc[1] <- 2 * (xc[1] + 10 * xc[2]) + 40 * (xc[1] - xc[4])^3
    gc[2] <- 20 * (xc[1] + 10 * xc[2]) + 4 * (xc[2] - 2 * xc[3])^3
    gc[3] <- 10 * (xc[3] - xc[4]) - 8 * (xc[2] - 2 * xc[3])^3
    gc[4] <- 10 * (xc[4] - xc[3]) - 40 * (xc[1] - xc[4])^3
    list(IFLAG = iflag, FC = fc, GC = as.matrix(gc))
}
e04lb_hess = function(iflag, n, xc, fhesl, lh, fhesd) {
    fhesl <- as.matrix(mat.or.vec(lh, 1))
    fhesd[1] <- 2 + 120 * (xc[1] - xc[4])^2
    fhesd[2] <- 200 + 12 * (xc[2] - 2 * xc[3])^2
    fhesd[3] <- 10 + 48 * (xc[2] - 2 * xc[3])^2
    fhesd[4] <- 10 + 120 * (xc[1] - xc[4])^2
    fhesl[1] <- 20
    fhesl[2] <- 0
    fhesl[3] <- -24 * (xc[2] - 2 * xc[3])^2
    fhesl[4] <- -120 * (xc[1] - xc[4])^2
    fhesl[5] <- 0
    fhesl[6] <- -10
    list(IFLAG = iflag, FHESL = as.matrix(fhesl), FHESD = as.matrix(fhesd))
}
e04lb_monit = function(n, xc, fc, gc, istate, gpjnrm,
    cond, posdef, niter, nf) {
    sprintf("\n Itn Fn evals Fn value Norm of proj gradient\n",
        "\n")
    sprintf(" %3d %5d %20.4f %20.4f\n", niter, nf, fc, gpjnrm,
        "\n")
    sprintf("\n J XJ GJ Status\n", "\n")
    for (j in c(1:n)) {
        isj <- istate[j]
        if (isj > 0) {
            sprintf("%2d %16.4f%20.4f %s\n", j, xc, j, gc, j,
                " Free", "\n")
        }
        else if (isj == -1) {
```

```
            }
            else if (isj == -2) {
            }
            else if (isj == -3) {
            }
        }
        if (cond != 0) {
            if (cond > 1e+06) {
                sprintf("\nEstimated condition number of projected Hessian is more than 1.0e
                    "\n")
            }
            else {
                sprintf("\nEstimated condition number of projected Hessian = %10.2f\n",
                    cond, "\n")
            }
            if (!posdef) {
                sprintf("\nProjected Hessian matrix is not positive definite\n",
                        "\n")
            }
        }
        list()
}
ibound <- 0
bl <- matrix(c(1, -2, -1e+06, 1), nrow = 4, ncol = 1,
        byrow = TRUE)
bu <- matrix(c(3, 0, 1e+06, 3), nrow = 4, ncol = 1,
    byrow = TRUE)
x <- matrix(c(3, -1, 0, 1), nrow = 4, ncol = 1, byrow = TRUE)
lh <- 6
iw <- matrix(c(0, 0), nrow = 2, ncol = 1, byrow = TRUE)
w <- as.matrix(mat.or.vec(34, 1))
e04lb(e04lb_funct, e04lb_hess, e04lb_monit, ibound,
    bl, bu, x, lh, iw, w)
```


Description

e04ly is an easy-to-use modified-Newton algorithm for finding a minimum of a function, $F\left(x_{1} x_{2} \ldots x_{n}\right)$ subject to fixed upper and lower bounds on the independent variables, $x_{1}, x_{2}, \ldots, x_{n}$ when first and second derivatives of F are available. It is intended for functions which are continuous and which have continuous first and second derivatives (although it will usually work even if the derivatives have occasional discontinuities).

Usage

```
e04ly(ibound, funct2, hess2, bl, bu, x,
n=nrow(bl)
)
```


Arguments

ibound integer
Indicates whether the facility for dealing with bounds of special forms is to be used. It must be set to one of the following values:
ibound $=0$: If you are supplying all the l_{j} and u_{j} individually.
ibound $=1$: If there are no bounds on any x_{j}.
ibound $=2$: If all the bounds are of the form $0 \leq x_{j}$.
ibound $=3$: If $l_{1}=l_{2}=\cdots=l_{n}$ and $u_{1}=u_{2}=\cdots=u_{n}$.
funct2 void function
You must supply this function to calculate the values of the function $F(x)$ and its first derivatives $\frac{\partial F}{\partial x_{j}}$ at any point x. It should be tested separately before being used in conjunction with e04ly (see the E04 chapter introduction in the Fortran Library documentation).
hess2 void function
You must supply this function to evaluate the elements $H_{i j}=\frac{\partial^{2} F}{\partial x_{i} \partial x_{j}}$ of the matrix of second derivatives of $F(x)$ at any point x. It should be tested separately before being used in conjunction with e04ly (see the E04 chapter introduction in the Fortran Library documentation).
bl double array
The lower bounds l_{j}.
bu double array
The upper bounds u_{j}.
X
double array
$x(j)$ must be set to a guess at the j th component of the position of the minimum for $j=1 \ldots n$. The function checks the gradient and the Hessian matrix at the starting point, and is more likely to detect any error in your programming if the initial $x(j)$ are nonzero and mutually distinct.
n
integer: default $=$ nrow $(b l)$
The number n of independent variables.

Details

R interface to the NAG Fortran routine E04LYF.

Value

bl	double array The lower bounds actually used by e04ly. double array
bu	The upper bounds actually used by e04ly. double array
T	The lowest point found during the calculations. Thus, if ifail $=0$ on exit, $x(j)$ is the j th component of the position of the minimum. double
f	The value of $F(x)$ corresponding to the final point stored in x. double array The value of $\frac{\partial F}{\partial x_{j}}$ corresponding to the final point stored in x for $j=1 \ldots n$; the value of $g(j)$ for variables not on a bound should normally be close to zero.

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04lyf.pdf

Examples

```
e04ly_funct2 = function(n, xc, fc, gc) {
    gc <- as.matrix(mat.or.vec(n, 1))
    fc <- (xc[1] + 10 * xc[2])^2 + 5 * (xc[3] - xc[4])^2 + (xc[2] -
        2 * xc[3])^4 + 10 * (xc[1] - xc[4])^4
    gc[1] <- 2 * (xc[1] + 10 * xc[2]) + 40 * (xc[1] - xc[4])^3
    gc[2] <- 20 * (xc[1] + 10 * xc[2]) + 4 * (xc[2] - 2 * xc[3])^3
    gc[3] <- 10 * (xc[3] - xc[4]) - 8 * (xc[2] - 2 * xc[3])^3
    gc[4] <- 10 * (xc[4] - xc[3]) - 40 * (xc[1] - xc[4])^3
    list(FC = fc, GC = as.matrix(gc))
}
e04ly_hess2 = function(n, xc, heslc, lh, hesdc) {
    heslc <- as.matrix(mat.or.vec(lh, 1))
    hesdc <- as.matrix(mat.or.vec(n, 1))
    hesdc[1] <- 2 + 120 * (xc[1] - xc[4])^2
    hesdc[2] <- 200 + 12 * (xc[2] - 2 * xc[3])^2
    hesdc[3] <- 10 + 48 * (xc[2] - 2 * xc[3])^2
    hesdc[4] <- 10 + 120 * (xc[1] - xc[4])^2
    heslc[1] <- 20
    heslc[2] <- 0
    heslc[3] <- -24 * (xc[2] - 2 * xc[3])^2
    heslc[4] <- -120 * (xc[1] - xc[4])^2
    heslc[5] <- 0
    heslc[6] <- -10
```

```
    list(HESLC = as.matrix(heslc), HESDC = as.matrix(hesdc))
}
ibound <- 0
bl <- matrix(c(1, -2, -1e+06, 1), nrow = 4, ncol = 1,
        byrow = TRUE)
bu <- matrix(c(3, 0, 1e+06, 3), nrow = 4, ncol = 1,
    byrow = TRUE)
x <- matrix(c(3, -1, 0, 1), nrow = 4, ncol = 1, byrow = TRUE)
e04ly(ibound, e04ly_funct2, e04ly_hess2, bl, bu, x)
```

```
e04mf e04mf: LP problem (dense)
```


Description

e04mf solves general linear programming problems. It is not intended for large sparse problems.

Usage

```
e04mf(a, bl, bu, cvec, istate, x, optlist,
    n = nrow(x),
    nclin = nrow(a))
```


Arguments

a	double array
	The i th row of a must contain the coefficients of the i th general linear constraint for $i=1 \ldots m_{L}$.
bl	double array
bu	double array
	Must contain the lower bounds and bu the upper bounds, for all the constraints in the following order. The first n elements of each array must contain the bounds on the variables, and the next m_{L} elements the bounds for the general linear constraints (if any). To specify a nonexistent lower bound (i.e., $l_{j}=-\infty$), set $b l[j] \leq-b i g b n d$, and to specify a nonexistent upper bound (i.e., $u_{j}=+\infty$), set $b u[j] \geq b i g b n d$; the default value of bigbnd is 10^{20}, but this may be changed by the optional argument infiniteboundsize. To specify the j th constraint as an equality, set $b l[j]=b u[j]=\beta$, say, where abs $(\beta)<$ bigbnd.
cvec	double array
	The coefficients of the objective function when the problem is of type LP.
istate	integer array
	Need not be set if the (default) optional argument coldstart is used.

```
X
double array
An initial estimate of the solution.
optlist options list
Optional parameters may be listed, as shown in the following table:
```


Name

Check Frequency
Cold Start
Warm Start
Crash Tolerance
Defaults
Expand Frequency
Feasibility Tolerance
Infinite Bound Size
Infinite Step Size
Iteration Limit
Iters
Itns
List
Nolist
Minimum Sum of Infeasibilities no
Monitoring File
Optimality Tolerance
Print Level
Problem Type

Type Default
integer \quad Default $=50$
Default
double \quad Default $=0.01$
integer \quad Default $=5$
double \quad Default $=\sqrt{\epsilon}$
double \quad Default $=10^{20}$
double \quad Default $=\max \left(\right.$ bigbnd, $\left.10^{20}\right)$
integer \quad Default $=\max \left(50,5\left(n+m_{L}\right)\right)$

Default for $e 04 m f=$ list
Default for $e 04 m f=$ nolist
Default $=N O$
integer \quad Default $=-1$
double \quad Default $=\epsilon^{0.8}$
integer $=0$
string \quad Default $=\mathrm{LP}$

```
\begin{tabular}{ll}
n & integer: default \(=\operatorname{nrow}(\mathrm{x})\) \\
& \(n\), the number of variables. \\
nclin & integer: default \(=\operatorname{nrow}(\mathrm{a})\)
\end{tabular}
nclin \(\quad\) integer: default \(=\) nrow \((a)\)
\(m_{L}\), the number of general linear constraints.
```


Details

R interface to the NAG Fortran routine E04MFF.

Value

ISTATE integer array
The status of the constraints in the working set at the point returned in x . The significance of each possible value of istate $[j]$ is as follows:

X
double array
The point at which e 04 mf terminated. If ifail $=0$, ifail $=1$, ifail $=4$, x contains an estimate of the solution.

ITER

OBJ
integer
The total number of iterations performed.
double
The value of the objective function at x if x is feasible, or the sum of infeasibiliites at x otherwise. If the problem is of type FP and x is feasible, obj is set to zero.

```
AX double array
The final values of the linear constraints }Ax\mathrm{ .
CLAMDA double array
The values of the Lagrange multipliers for each constraint with respect to the
current working set. The first n elements contain the multipliers for the bound
constraints on the variables, and the next m}\mp@subsup{m}{L}{}\mathrm{ elements contain the multipliers
for the general linear constraints (if any). If istate [j]=0 (i.e., constraint j is
not in the working set), clamda[j] is zero. If x is optimal, clamda[j] should
be non-negative if istate[j] = 1, non-positive if istate[j] = 2 and zero if
istate[j] = 4.
IFAIL integer
ifail \(=0\) unless the function detects an error or a warning has been flagged (see the Errors section in Fortran library documentation).
```


Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04mff.pdf

Examples

```
optlist<-list()
ifail<-0
a<-matrix(c(1,1,1,1,1,1,1,0.15,0.04,0.02,0.04,0.02,0.01,0.03,0.03,0.05,0.08,0.02,0.06,0.
bl<-matrix(c(-0.01,-0.1,-0.01,-0.04,-0.1,-0.01,-0.01,-0.13,-9.999999999999999e+24,-9.999
```

bu<-matrix(c(0.01,0.15,0.03,0.02,0.05,9.999999999999999e+24,9.999999999999999e+24, -0.13,
cvec<-matrix(c (-0.02,-0.2,-0.2,-0.2,-0.2, 0.04,0.04), nrow=7, ncol=1,byrow=TRUE)
istate<-as.matrix(mat.or. $\operatorname{vec}(14,1)$)
$\mathrm{x}<-\operatorname{matrix}(\mathrm{c}(-0.01,-0.03,0,-0.01,-0.1,0.02,0.01)$, nrow=7, ncol=1, byrow=TRUE)
e04mf(a,bl,bu, cvec, istate, x, optlist)

```
e04nc
```

e04nc: Convex QP problem or linearly-constrained linear least squares problem (dense)

Description

e04nc solves linearly constrained linear least squares problems and convex quadratic programming problems. It is not intended for large sparse problems.

Usage

```
e04nc(c, bl, bu, cvec, istate, kx, x, a, b, optlist,
    m = nrow (a),
    n = nrow(kx),
    nclin = nrow(c))
```


Arguments

c	double array
	The i th row of c must contain the coefficients of the i th general constraint for $i=1 \ldots$ nclin.
bl	double array
bu	double array
cvec	Bl must contain the lower bounds and bu the upper bounds, for all the constraints, in the following order. The first n elements of each array must contain the bounds on the variables, and the next n_{L} elements must contain the bounds for the general linear constraints (if any). To specify a nonexistent lower bound (i.e., $l_{j}=-\infty$), set $b l[j] \leq-b i g b n d$, and to specify a nonexistent upper bound (i.e., $u_{j}=+\infty$), set $b u[j] \geq$ bigbnd; the default value of bigbnd is 10^{20}, but this may be changed by the optional argument infiniteboundsize. To specify the j th constraint as an equality, set $b u[j]=b l[j]=\beta$, say, where $\operatorname{abs}(\beta)<b i g b n d$. double array
istate	The coefficients of the explicit linear term of the objective function. integer array
kx	Need not be set if the (default) optional argument coldstart is used. integer array
	Need not be initialized for problems of type FP, LP, QP1, QP2, LS1 (the default) or LS2.
x	double array
	An initial estimate of the solution.
a	double array
	The array a must contain the matrix A as specified in tablel (see the Description in Fortran library documentation).
b	double array
	The m elements of the vector of observations.
optlist	options list
	Optional parameters may be listed, as shown in the following table:

```
Name
Cold Start
Warm Start
Crash Tolerance double Default = 0.01
Defaults
Feasibility Phase Iteration Limit
Feasibility Phase Iteration Limit
Feasibility Tolerance
Hessian
Infinite Bound Size
Infinite Step Size
Iteration Limit
Iters
Itns
List
Nolist
Monitoring File
Print Level
Problem Type
Rank Tolerance
Type Default
Default
integer Default = max (50,5 (n+n
integer }\quad\mathrm{ Default =max(50,5(n+n+n))
double Default }=\sqrt{}{\epsilon
no Default =NO
double Default = 10 20
double Default = max(bigbnd, 10 20}
integer Default = max (50,5 (n+n}\mp@subsup{n}{L}{})
    Default for e04nc = list
    Default for e04nc = nolist
\begin{tabular}{ll} 
& Default for \(e 04 n c=\) list \\
& Default for \(e 04 n c=\) nolist \\
integer & Default \(=-1\) \\
integer & \(=0\) \\
string & Default \(=\) LS1 \\
double & Default \(=100 \epsilon\) or \(10 \sqrt{\epsilon}\) (see below)
\end{tabular}
```

```
m}\quad\mathrm{ integer: default = nrow(a)
```

m}\quad\mathrm{ integer: default = nrow(a)
m, the number of rows in the matrix }A\mathrm{ . If the problem is specified as type FP or
m, the number of rows in the matrix }A\mathrm{ . If the problem is specified as type FP or
LP, m}\mathrm{ is not referenced and is assumed to be zero.
LP, m}\mathrm{ is not referenced and is assumed to be zero.
n integer: default = nrow (kx)
n integer: default = nrow (kx)
n, the number of variables.
n, the number of variables.
nclin integer: default = nrow(c)
nclin integer: default = nrow(c)
n

```
    n
```


Details

R interface to the NAG Fortran routine E04NCF.

Value

ISTATE integer array
The status of the constraints in the working set at the point returned in x . The significance of each possible value of istate $[j]$ is as follows:
KX integer array
Defines the order of the columns of a with respect to the ordering of x , as described above.

X
double array
The point at which e 04 nc terminated. If ifail $=0$, ifail $=1$, ifail $=4, \mathrm{x}$ contains an estimate of the solution.

A
double array
If hessian $=$ NO and the problem is of type LS or QP, a contains the upper triangular Cholesky factor R of eqn8 (see the Fortran library documentation), with columns ordered as indicated by kx. If hessian = YES and the problem is of type LS or QP, a contains the upper triangular Cholesky factor R of the

Hessian matrix H, with columns ordered as indicated by kx. In either case R may be used to obtain the variance-covariance matrix or to recover the upper triangular factor of the original least squares matrix.
B
double array
The transformed residual vector of equation eqn10 (see the Fortran library documentation).
ITER integer
The total number of iterations performed.
OBJ double
The value of the objective function at x if x is feasible, or the sum of infeasibiliites at x otherwise. If the problem is of type FP and x is feasible, obj is set to zero.
CLAMDA double array
The values of the Lagrange multipliers for each constraint with respect to the current working set. The first n elements contain the multipliers for the bound constraints on the variables, and the next n_{L} elements contain the multipliers for the general linear constraints (if any). If istate $[j]=0$ (i.e., constraint j is not in the working set), clamda $[j]$ is zero. If x is optimal, clamda $[j]$ should be nonnegative if $i s t a t e[j]=1$, non-positive if i state $[j]=2$ and zero if istate $[j]=4$.
IFAIL integer
ifail $=0$ unless the function detects an error or a warning has been flagged (see the Errors section in Fortran library documentation).

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04ncf.pdf

Examples

```
optlist<-list()
ifail<-0
c<-matrix(c (1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 2, 3, 4,-2, 1, 1, 1, 1, 1, -1, 1,-1, 1, 1, 1, 1, 1), nrow=3, ncol=9,byrov
bl<-matrix(c(0,0,-9.999999999999999e+24,0,0,0,0,0,0,2,-9.999999999999999e+24,1),nrow=12,r
```

bu<-matrix(c (2, 2, 2, 2, 2, 2, 2, 2, 2, 9.999999999999999e+24, 2, 4), nrow=12, ncol=1, byrow=TRUE)
cvec<-matrix(c(0), nrow=1, ncol=1,byrow=TRUE)

```
istate<-as.matrix(mat.or.vec(12,1))
kx<-as.matrix(mat.or.vec(9,1))
x<-matrix(c(1,0.5,0.3333,0.25,0.2,0.1667,0.1428,0.125,0.1111),nrow=9,ncol=1,byrow=TRUE)
```

a<-matrix $(c(1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,2,0,0,1,1,3,1,1,1,-1,-1,-3,1,1,1,4,1,1,1,1,1,1$,
b<-matrix(c(1, $1,1,1,1,1,1,1,1,1)$, nrow=10, ncol=1, byrow=TRUE)
e04nc(c,bl,bu, cvec, istate, kx, x, a,b,optlist)

e04nf e04nf: QP problem (dense)

Description

e 04 nf solves general quadratic programming problems. It is not intended for large sparse problems.

Usage

```
e04nf(a, bl, bu, cvec, h, qphess, istate, x, optlist,
    n = nrow(x),
    nclin = nrow(a))
```


Arguments

double array
The i th row of a must contain the coefficients of the i th general linear constraint for $i=1 \ldots m_{L}$.
If $n c l i n=0$, a is not referenced.
bl
double array
bu
double array
Bl must contain the lower bounds and bu the upper bounds, for all the constraints in the following order. The first n elements of each array must contain the bounds on the variables, and the next m_{L} elements the bounds for the general linear constraints (if any). To specify a nonexistent lower bound (i.e., $l_{j}=-\infty$), set $b l[j] \leq-b i g b n d$, and to specify a nonexistent upper bound (i.e., $u_{j}=+\infty$), set $b u[j] \geq b i g b n d$; the default value of bigbnd is 10^{20}, but this may be changed by the optional argument infiniteboundsize. To specify the j th constraint as an equality, set $b l[j]=b u[j]=\beta$, say, where $\operatorname{abs}(\beta)<$ bigbnd .

cvec	double array
	The coefficients of the explicit linear term of the objective function when the problem is of type LP, QP2 (the default) and QP4.
	If the problem is of type FP, QP1, or QP3, cvec is not referenced.
h	double array
	May be used to store the quadratic term H of the QP objective function if desired. In some cases, you need not use h to store H explicitly (see the specification of function qphess). The elements of h are referenced only by function qphess. The number of rows of H is denoted by m, whose default value is n. (The optional argument hessianrows may be used to specify a value of $m<n$.) double array
	May be used to store the quadratic term H of the QP objective function if desired. In some cases, you need not use h to store H explicitly (see the specification of function qphess). The elements of h are referenced only by function qphess. The number of rows of H is denoted by m, whose default value is n. (The optional argument hessianrows may be used to specify a value of $m<n$.)
qphess	function
	In general, you need not provide a version of qphess, because a 'default' function with name e 04 nfu is included in the Library. However, the algorithm of e04nf requires only the product of H or $H^{T} H$ and a vector x; and in some cases you may obtain increased efficiency by providing a version of qphess that avoids the need to define the elements of the matrices H or $H^{T} H$ explicitly. $(H X, I W S A V)=q p h e s s(n, j t h c o l, h, x, i w s a v)$
istate	integer array
	Need not be set if the (default) optional argument coldstart is used.
	If the optional argument warmstart has been chosen, istate specifies the desired status of the constraints at the start of the feasibility phase. More precisely, the first n elements of istate refer to the upper and lower bounds on the variables, and the next m_{L} elements refer to the general linear constraints (if any). Possible values for istate $[j]$ are as follows:
x	double array
	An initial estimate of the solution.
optlist	options list
	Optional parameters may be listed, as shown in the following table:

```
Name
Check Frequency
Cold Start
Warm Start
Crash Tolerance
Defaults
Expand Frequency
Feasibility Phase Iteration Limit
Optimality Phase Iteration Limit
Feasibility Tolerance
Hessian Rows
Infinite Bound Size
Infinite Step Size
Iteration Limit
```


Type Default

double \quad Default $=50$
Default
double \quad Default $=0.01$
integer \quad Default $=5$
integer \quad Default $=\max \left(50,5\left(n+m_{L}\right)\right)$
integer \quad Default $=\max \left(50,5\left(n+m_{L}\right)\right)$
double \quad Default $=\sqrt{\epsilon}$
integer \quad Default $=n$
double \quad Default $=10^{20}$
double \quad Default $=\max \left(\right.$ bigbnd, $\left.10^{20}\right)$
integer \quad Default $=\max \left(50,5\left(n+m_{L}\right)\right)$

```
Iters
Itns
List
Nolist
Maximum Degrees of Freedom integer Default =n
Minimum Sum of Infeasibilities string Default =NO
Monitoring File
Optimality Tolerance
Print Level
Problem Type
Rank Tolerance
\(\left.\begin{array}{ll} & \text { Default for } e 04 n f=\text { list } \\
& \text { Default for } e 04 n f=\text { nolist }\end{array}\right\}\)\begin{tabular}{ll} 
integer & Default \(=n\) \\
string & Default \(=N O\) \\
integer & Default \(=-1\) \\
double & Default \(=\epsilon^{0.5}\) \\
integer & \(=0\) \\
string & Default \(=\mathrm{QP} 2\) \\
double & Default \(=100 \epsilon\)
\end{tabular}
\begin{tabular}{ll}
n & integer: default \(=\operatorname{nrow}(\mathrm{x})\) \\
nclin & \(n\), the number of variables. \\
& integer: default \(=\operatorname{nrow}(\mathrm{a})\) \\
& \(m_{L}\), the number of general linear constraints.
\end{tabular}
```


Details

R interface to the NAG Fortran routine E04NFF.

Value

ISTATE	integer array
	The status of the constraints in the working set at the point returned in x. The significance of each possible value of istate $[j]$ is as follows:
X	double array
	The point at which e04nf terminated. If ifail $=0$, ifail $=1$, ifail $=4, \mathrm{x}$ contains an estimate of the solution.
ITER	integer
	The total number of iterations performed.
OBJ	double
	The value of the objective function at x if x is feasible, or the sum of infeasibilities at x otherwise. If the problem is of type FP and x is feasible, obj is set to zero.
AX	double array
	The final values of the linear constraints $A x$.
	If $n c l i n=0$, ax is not referenced.
CLAMDA	double array
	The values of the Lagrange multipliers for each constraint with respect to the current working set. The first n elements contain the multipliers for the bound constraints on the variables, and the next m_{L} elements contain the multipliers for the general linear constraints (if any). If istate $[j]=0$ (i.e., constraint j is not in the working set), clamda $[j]$ is zero. If x is optimal, clamda $[j]$ should be non-negative if istate $[j]=1$, non-positive if istate $[j]=2$ and zero if istate $[j]=4$.
IFAIL	integer
	ifail $=0$ unless the function detects an error or a warning has been flagged (see the Errors section in Fortran library documentation).

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04nff.pdf

Examples

```
optlist <- list()
ifail <- 0
qphess = function(n, jthcol, h, x, iwsav) {
    ldh <- nrow(h)
    if (iwsav[365] == 3 || iwsav[365] == 4) {
        hx <- h %*% x
    } else if (iwsav[365] == 5 || iwsav[365] == 6) {
        hx <- t(h) %*% h % *% x
    } else {
        hx <- as.matrix(mat.or.vec(n, 1))
    }
    list(HX = as.matrix(hx), IWSAV = as.matrix(iwsav))
}
a <- matrix(c(1, 1, 1, 1, 1, 1, 1, 0.15, 0.04, 0.02,
    0.04, 0.02, 0.01, 0.03, 0.03, 0.05, 0.08, 0.02, 0.06, 0.01,
    0, 0.02, 0.04, 0.01, 0.02, 0.02, 0, 0, 0.02, 0.03, 0, 0,
    0.01, 0, 0, 0.7, 0.75, 0.8, 0.75, 0.8, 0.97, 0, 0.02, 0.06,
    0.08, 0.12, 0.02, 0.01, 0.97), nrow = 7, ncol = 7, byrow = TRUE)
bl <- matrix(c(-0.01, -0.1, -0.01, -0.04, -0.1, -0.01,
    -0.01, -0.13, -1e+25, -1e+25, -1e+25, -1e+25, -0.0992, -0.003),
    nrow = 14, ncol = 1, byrow = TRUE)
bu <- matrix(c(0.01, 0.15, 0.03, 0.02, 0.05, 1e+25,
    1e+25, -0.13, -0.0049, -0.0064, -0.0037, -0.0012, 1e+25,
    0.002), nrow = 14, ncol = 1, byrow = TRUE)
cvec <- matrix(c(-0.02, -0.2, -0.2, -0.2, -0.2, 0.04,
    0.04), nrow = 7, ncol = 1, byrow = TRUE)
```

```
h <- matrix(c(2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0,
    0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0,
    0, 2, 0, 0, 0, 0, 0, 0, 0, -2, -2, 0, 0, 0, 0, 0, -2, -2),
    nrow = 7, ncol = 7, byrow = TRUE)
istate <- as.matrix(mat.or.vec(14, 1))
x <- matrix(c(-0.01, -0.03, 0, -0.01, -0.1, 0.02,
    0.01), nrow = 7, ncol = 1, byrow = TRUE)
e04nf(a, bl, bu, cvec, h, qphess, istate, x, optlist)
```

```
e04nk e04nk:LP or QP problem (sparse)
```


Description

e04nk solves sparse linear programming or quadratic programming problems.

Usage

```
e04nk(n, m, iobj, ncolh, qphx, a, ha, ka, bl, bu, start, names, crname, ns, xs,
    nnz = nrow(a),
    nname = nrow(crname))
```


Arguments

1 integer
n, the number of variables (excluding slacks). This is the number of columns in the linear constraint matrix A.
m
integer
m, the number of general linear constraints (or slacks). This is the number of rows in A, including the free row (if any; see iobj).
iobj integer
If $i o b j>0$, row iobj of A is a free row containing the nonzero elements of the vector c appearing in the linear objective term $c^{T} x$.
ncolh integer
n_{H}, the number of leading nonzero columns of the Hessian matrix H. For FP and LP problems, ncolh must be set to zero.
qphx
function
For QP problems, you must supply a version of qphx to compute the matrix product $H x$. If H has zero rows and columns, it is most efficient to order the variables $x=\left(\begin{array}{ll}y & z\end{array}\right)^{T}$ so that

$$
H x=\left(\begin{array}{cc}
H_{1} & 0 \\
0 & 0
\end{array}\right)\binom{y}{z}=\binom{H_{1} y}{0},
$$

where the nonlinear variables y appear first as shown. For FP and LP problems, qphx will never be called by e04nk and hence qphx may be the dummy function e04nku.
(HX) $=$ qphx(nstate, ncolh, x)
double array
The nonzero elements of A, ordered by increasing column index. Note that elements with the same row and column indices are not allowed.
integer array
$h a[i]$ must contain the row index of the nonzero element stored in $a[i]$ for $i=$ $1 \ldots n n z$. Note that the row indices for a column may be supplied in any order. integer array
$k a[j]$ must contain the index in a of the start of the j th column for $j=1 \ldots n$. To specify the j th column as empty, set $k a[j]=k a[j+1]$. Note that the first and last elements of ka must be such that $k a[1]=1$ and $k a[n+1]=n n z+1$.
double array
l, the lower bounds for all the variables and general constraints, in the following order. The first n elements of bl must contain the bounds on the variables x, and the next m elements the bounds for the general linear constraints $A x$ (or slacks s) and the free row (if any). To specify a nonexistent lower bound (i.e., $\left.l_{j}=-\infty\right)$, set $b l[j] \leq-b i g b n d$, where bigbnd is the value of the optional argument infiniteboundsize. To specify the j th constraint as an equality, set $b l[j]=b u[j]=\beta$, say, where $\operatorname{abs}(\beta)<b i g b n d$. Note that the lower bound corresponding to the free row must be set to $-\infty$ and stored in $b l[n+i o b j]$.
double array
u, the upper bounds for all the variables and general constraints, in the following order. The first n elements of bu must contain the bounds on the variables x, and the next m elements the bounds for the general linear constraints $A x$ (or slacks s) and the free row (if any). To specify a nonexistent upper bound (i.e., $u_{j}=+\infty$), set $b u[j] \geq b i g b n d$. Note that the upper bound corresponding to the free row must be set to $+\infty$ and stored in $b u[n+i o b j]$.
string
Indicates how a starting basis is to be obtained.
start $={ }^{\prime} \mathrm{C}^{\prime}$: An internal Crash procedure will be used to choose an initial basis matrix B.
start $={ }^{\prime} \mathrm{W}^{\prime}$: A basis is already defined in istate (probably from a previous call). string array
A set of names associated with the so-called MPSX form of the problem, as follows:
names[1]: Must contain the name for the problem (or be blank).
names[2]: Must contain the name for the free row (or be blank).
names[3]: Must contain the name for the constraint right-hand side (or be blank).
names[4]: Must contain the name for the ranges (or be blank).
names[5]: Must contain the name for the bounds (or be blank).
string array
The optional column and row names, respectively.

ns	integer
	n_{S}, the number of superbasics. For QP problems, ns need not be specified if start $={ }^{\prime} \mathrm{C}^{\prime}$, but must retain its value from a previous call when start $={ }^{\prime} \mathrm{W}^{\prime}$. For FP and LP problems, ns need not be initialized.
xS	double array
	The initial values of the variables and slacks $(x s)$. (See the description for istate.)
istate	integer array
	If start $={ }^{\prime} \mathrm{C}^{\prime}$, the first n elements of istate and xs must specify the initial states and values, respectively, of the variables x. (The slacks s need not be initialized.) An internal Crash procedure is then used to select an initial basis matrix B. The initial basis matrix will be triangular (neglecting certain small elements in each column). It is chosen from various rows and columns of $\left(\begin{array}{ll}A & -I\end{array}\right)$. Possible values for istate $[j]$ are as follows:
leniz	integer
lenz	integer
optlist	options list
	Optional parameters may be listed, as shown in the following table:

Name

```
Check Frequency
Crash Option
Crash Tolerance
Defaults
Expand Frequency
Factorization Frequency
Feasibility Tolerance
Infinite Bound Size
Infinite Step Size
Iteration Limit
Iters
Itns
List
Nolist
LU Factor Tolerance
LU Update Tolerance
LU Singularity Tolerance
Minimize
Maximize
Monitoring File
Optimality Tolerance
Partial Price
Pivot Tolerance
Print Level
Rank Tolerance
Scale Option
Scale Tolerance
Superbasics Limit
```


Type Default

integer \quad Default $=60$
integer \quad Default $=2$
double Default $=0.1$
integer \quad Default $=10000$
integer \quad Default $=100$
double \quad Default $=\max \left(10^{-6}, \sqrt{\epsilon}\right)$
double \quad Default $=10^{20}$
double \quad Default $=\max \left(\right.$ bigbnd, $\left.10^{20}\right)$
integer \quad Default $=\max (50,5(n+m))$

Default for $e 04 n k=l i s t$
Default for $e 04 n k=n o l i s t$
double \quad Default $=100.0$
double \quad Default $=10.0$
double \quad Default $=\epsilon^{0.67}$
Default
integer \quad Default $=-1$
double \quad Default $=\max \left(10^{-6}, \sqrt{\epsilon}\right)$
integer \quad Default $=10$
double \quad Default $=\epsilon^{0.67}$
integer $=0$
double Default $=100 \epsilon$
integer \quad Default $=2$
double \quad Default $=0.9$
integer \quad Default $=\min \left(n_{H}+1, n\right)$

nnz	integer: default $=\operatorname{nrow}(\mathrm{a})$
nname	The number of nonzero elements in A.
integer: default $=$ nrow(crname)	
The number of column (i.e., variable) and row names supplied in crname.	
	nname $=1:$ There are no names. Default names will be used in the printed
output.	
	nname $=n+m:$ All names must be supplied.

Details

R interface to the NAG Fortran routine E04NKF.

Value			
NS	integer		
The final number of superbasics. This will be zero for FP and LP problems.			
double array			
The final values of the variables and slacks $(x s)$.			
integer array			
The final states of the variables and slacks $(x s)$. The significance of each possi-			
ble value of i state j] is as follows:			
integer		\quad	The minimum value of leniz required to start solving the problem. If ifail = 12,
:---			
e04nk may be called again with leniz suitably larger than miniz. (The bigger the			
better, since it is not certain how much workspace the basis factors need.)			
integer			
MINZ			
The minimum value of lenz required to start solving the problem. If ifail $=13$,			
e04nk may be called again with lenz suitably larger than minz. (The bigger the			
better, since it is not certain how much workspace the basis factors need.)			
integer			

Author(s)

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04nkf.pdf

Examples

```
optlist <- list()
ifail <- 0
qphx = function(nstate, ncolh, x) {
    hx <- as.matrix(mat.or.vec(ncolh, 1))
    hx[1] <- 2 %*% x[1]
    hx[2] <- 2 %*% x[2]
    hx[3] <- 2 %*% (x[3] + x[4])
    hx[4] <- hx[3]
    hx[5] <- 2 %*% x[5]
    hx[6] <- 2 %*% (x[6] + x[7])
    hx[7] <- hx[6]
    list(HX = as.matrix(hx))
}
n <- 7
m <- 8
iobj <- 8
ncolh <- 7
a <- matrix(c(0.02, 0.02, 0.03, 1, 0.7, 0.02, 0.15,
    -200, 0.06, 0.75, 0.03, 0.04, 0.05, 0.04, 1, -2000, 0.02,
    1, 0.01, 0.08, 0.08, 0.8, -2000, 1, 0.12, 0.02, 0.02, 0.75,
    0.04, -2000, 0.01, 0.8, 0.02, 1, 0.02, 0.06, 0.02, -2000,
    1, 0.01, 0.01, 0.97, 0.01, 400, 0.97, 0.03, 1, 400), nrow = 48,
    ncol = 1, byrow = TRUE)
ha <- matrix(c(7, 5, 3, 1, 6, 4, 2, 8, 7, 6, 5, 4,
    3, 2, 1, 8, 2, 1, 4, 3, 7, 6, 8, 1, 7, 3, 4, 6, 2, 8, 5,
    6, 7, 1, 2, 3, 4, 8, 1, 2, 3, 6, 7, 8, 7, 2, 1, 8), nrow = 48,
    ncol = 1, byrow = TRUE)
ka <- matrix(c(1, 9, 17, 24, 31, 39, 45, 49), nrow = 8,
    ncol = 1, byrow = TRUE)
bl <- matrix(c(0, 0, 400, 100, 0, 0, 0, 2000, -1e+25,
    -1e+25, -1e+25, -1e+25, 1500, 250, -1e+25), nrow = 15, ncol = 1,
    byrow = TRUE)
```

```
bu <- matrix(c(200, 2500, 800, 700, 1500, 1e+25, 1e+25,
    2000, 60, 100, 40, 30, 1e+25, 300, 1e+25), nrow = 15, ncol = 1,
    byrow = TRUE)
start <- "C"
names <- matrix(c(" ", " ", " ",
    ", " "), nrow = 5, byrow = TRUE)
crname <- matrix(c("...X1...", "...X2...", "...X3...",
    "...X4...", "...X5...", "...X6...", "...X7...", "..ROW1..",
    "..ROW2..", "..ROW3..", "..ROW4..", "..ROW5..", "..ROW6..",
    "..ROW7..", "..COST.."), nrow = 15, byrow = TRUE)
ns <- -1232765364
xs <- matrix(c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0), nrow = 15, ncol = 1, byrow = TRUE)
istate <- as.matrix(mat.or.vec(15, 1))
leniz <- 10000
lenz <- 10000
ans <- e04nk(n, m, iobj, ncolh, qphx, a, ha, ka, bl,
    bu, start, names, crname, ns, xs, istate, leniz, lenz, optlist)
ans
```

```
e04nq
```

e04nq: LP or QP problem (suitable for sparse problems)

Description

e04nq solves sparse linear programming or convex quadratic programming problems. The initialization function e04np must have been called before calling e04nq.

Usage

e04nq(start, qphx, m, n, lenc, ncolh, iobj, objadd, prob, acol, inda, loca, bl, ne $=$ nrow (acol), nname $=$ nrow (names))

Arguments

start	string
Indicates how a starting basis (and certain other items) will be obtained.	
start $=^{\prime} \mathrm{C}^{\prime}:$ Requests that an internal Crash procedure be used to choose an	
initial basis, unless a Basis file is provided via optional arguments oldbasisfile,	
insertfile or loadfile.	
start $=^{\prime} \mathrm{B}^{\prime}:$ Is the same as start $=^{\prime} \mathrm{C}^{\prime}$ but is more meaningful when a Basis	
file is given.	
start $=$ ' W ': Means that a basis is already defined in hs and a start point is	
already defined in x (probably from an earlier call).	
function	
For QP problems, you must supply a version of qphx to compute the matrix	
product $H x$ for a given vector x. If H has rows and columns of zeros, it is most	
efficient to order x so that the nonlinear variables appear first. For example, if	
	$x=(y z)^{T}$ and only y enters the objective quadratically then

inda integer array
inda $[i]$ must contain the row index of the nonzero element stored in $a c o l[i]$ for $i=1 \ldots n e$. Thus a pair of values $(\operatorname{acol}[i] i n d a[i])$ contains a matrix element and its corresponding row index.
loca integer array
loca $[j]$ must contain the index in acol and inda of the start of the j th column for $j=1 \ldots n$. Thus for $j=1: n$, the entries of column j are held in acol $[k: l]$ and their corresponding row indices are in inda $[k: l]$, where $k=l o c a[j]$ and $l=l o c a[j+1]-1$. To specify the j th column as empty, set $l o c a[j]=l o c a[j+1]$. Note that the first and last elements of loca must be loca[1] = 1 and loca $n+$ $1]=n e+1$. If your problem has no constraints, or just bounds on the variables, you may include a dummy 'free' row with a single (zero) element by setting $n e=1$, acol $[1]=0.0$, inda $[1]=1$, loca $[1]=1$, and loca $[j]=2$, for $j=2$: $n+1$. This row is made 'free' by setting its bounds to be bl[n+1]=-bigbnd and $b u[n+1]=$ bigbnd, where bigbnd is the value of the optional argument infiniteboundsize.
double array
l, the lower bounds for all the variables and general constraints, in the following order. The first n elements of bl must contain the bounds on the variables x, and the next m elements the bounds for the general linear constraints $A x$ (which, equivalently, are the bounds for the slacks, s) and the free row (if any). To fix the j th variable, set $b l[j]=b u[j]=\beta$, say, where $\operatorname{abs}(\beta)<$ bigbnd. To specify a nonexistent lower bound (i.e., $l_{j}=-\infty$), set $b l[j] \leq-b i g b n d$. Here, bigbnd is the value of the optional argument infiniteboundsize. To specify the j th constraint as an equality, set $b l[n+j]=b u[n+j]=\beta$, say, where $\operatorname{abs}(\beta)<$ bigbnd. Note that the lower bound corresponding to the free row must be set to $-\infty$ and stored in $b l[n+i o b j]$.
double array
u, the upper bounds for all the variables and general constraints, in the following order. The first n elements of bu must contain the bounds on the variables x, and the next m elements the bounds for the general linear constraints $A x$ (which, equivalently, are the bounds for the slacks, s) and the free row (if any). To specify a nonexistent upper bound (i.e., $u_{j}=+\infty$), set $b u[j] \geq$ bigbnd. Note that the upper bound corresponding to the free row must be set to $+\infty$ and stored in $b u[n+i o b j]$.
double array
Contains the explicit objective vector c (if any). If the problem is of type FP, or if $l e n c=0$, then c is not referenced. (In that case, c may be dimensioned eqn1, or it could be any convenient array.)
double array
Contains the explicit objective vector c (if any). If the problem is of type FP, or if $l e n c=0$, then c is not referenced. (In that case, c may be dimensioned eqn1, or it could be any convenient array.)
string array
The optional column and row names, respectively.
helast integer array
Defines which variables are to be treated as being elastic in elastic mode. The allowed values of helast are: helast need not be assigned if optional argument elasticmode $=0$.

hs	integer array
	If start $={ }^{\prime} \mathrm{C}^{\prime},{ }^{\prime} \mathrm{B}^{\prime}$, and a Basis file of some sort is to be input (see the description of the optional arguments oldbasisfile, insertfile or loadfile), then hs and x need not be set at all.
x	double array
	The initial values of the variables x, and, if start $={ }^{\prime} \mathrm{W}^{\prime}$, the slacks s, i.e., $(x s)$. (See the description for argument hs.)
ns	integer
	n_{S}, the number of superbasics. For QP problems, ns need not be specified if start $={ }^{\prime} \mathrm{C}^{\prime}$, but must retain its value from a previous call when start $={ }^{\prime} \mathrm{W}^{\prime}$. For FP and LP problems, ns need not be initialized.
optlist	options list
	Optional parameters may be listed, as shown in the following table

Name

Check Frequency
Crash Option
Crash Tolerance
Defaults
Dump File
Load File
Elastic Mode
Elastic Objective
Elastic Weight
Expand Frequency
Factorization Frequency
Feasibility Tolerance
Infinite Bound Size
Iterations Limit
LU Density Tolerance
LU Singularity Tolerance
LU Factor Tolerance
LU Update Tolerance
LU Partial Pivoting
LU Complete Pivoting
LU Rook Pivoting
Minimize
Maximize
Feasible Point
New Basis File
Backup Basis File
Save Frequency
Nolist
List
Old Basis File
Optimality Tolerance
Partial Price
Pivot Tolerance
Print File
Print Frequency
Print Level

Type Default

integer \quad Default $=60$
integer \quad Default $=3$
double Default $=0.1$
integer \quad Default $=0$
integer Default $=0$
integer \quad Default $=1$
integer \quad Default $=1$
double \quad Default $=1.0$
integer \quad Default $=10000$
integer \quad Default $=100(L P)$ or $50(Q P)$
double \quad Default $=\max \left\{10^{-6} \sqrt{\epsilon}\right\}$
double \quad Default $=10^{20}$
integer \quad Default $=\max \{1000010 \max \{m n\}\}$
double \quad Default $=0.6$
double \quad Default $=\epsilon^{\frac{2}{3}}$
double \quad Default $=100.0$
double \quad Default $=10.0$
Default

Default
integer \quad Default $=0$
integer \quad Default $=0$
integer \quad Default $=100$
Default
integer \quad Default $=0$
double Default $=\max \left\{10^{-6} \sqrt{\epsilon}\right\}$
integer Default $=10(L P)$ or $1(Q P)$
double Default $=\epsilon^{\frac{2}{3}}$
integer \quad Default $=0$
integer \quad Default $=100$
integer \quad Default $=1$

Punch File	integer	Default $=0$
Insert File	integer	Default $=0$
QPSolver Cholesky		Default
QPSolver CG		
QPSolver QN		
Reduced Hessian Dimension	integer	Default $=1(L P)$ or $\min \left(2000 n_{H}+1 n\right)(Q P)$
Scale Option	integer	Default $=2$
Scale Tolerance	double	Default $=0.9$
Scale Print		
Solution File	integer	Default $=0$
Summary File	integer	Default $=0$
Summary Frequency	integer	Default $=100$
Superbasics Limit	integer	Default $=1(L P)$ or $\min \left\{n_{H}+1 n\right\}(Q P)$
Suppress Parameters		
System Information No		Default
System Information Yes		
Timing Level	integer	Default $=0$
Unbounded Step Size	double	Default $=$ infbnd

ne	integer: default $=$ nrow $($ acol $)$
The number of nonzero elements in A.	
nname	integer: default $=$ nrow(names)
The number of column (i.e., variable) and row names supplied in the array	
names.	
	nname $=1:$ There are no names. Default names will be used in the printed
output.	
	$n n a m e=n+m$: All names must be supplied.

Details

R interface to the NAG Fortran routine E04NQF.

Value

HS integer array
The final states of the variables and slacks $(x s)$. The significance of each possible value of $h s[j]$ is as follows:

X

double array
The final values of the variables and slacks $(x s)$.
double array
Contains the dual variables π (a set of Lagrange multipliers (shadow prices) for the general constraints).
double array
Contains the reduced costs, $g-\left(\begin{array}{cc}A & -I\end{array}\right)^{T} \pi$. The vector g is the gradient of the objective if x is feasible, otherwise it is the gradient of the Phase 1 objective. In the former case, $g(i)=0$, for $i=n+1: m$, hence $r c(n+1: m)=\pi$.
integer
The final number of superbasics. This will be zero for FP and LP problems.

NINF	integer
The number of infeasibilities.	
SINF	double The sum of the scaled infeasibilities. This will be zero if $\operatorname{nin} f=0$, and is most meaningful when scaleoption $=0$.
OBJ	double The value of the objective function.
IFAIL	integer ifail $=0$ unless the function detects an error or a warning has been flagged (see the Errors section in Fortran library documentation).

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04nqf.pdf

Examples

```
optlist<-list()
ifail<-0
qphx=function(ncolh,x,nstate) {
hx<-as.matrix(mat.or.vec(ncolh,1))
hx[1]<-2%*%x[1]
hx[2]<-2%*%x[2]
hx[3]<-2%*%(x[3]+x[4])
hx[4]<-hx[3]
hx[5]<-2%*%x[5]
hx[6]<-2%*%(x[6]+x[7])
hx[7]<-hx[6]
list(HX=as.matrix(hx))
}
start<-'C'
m<-8
n<-7
lenc<-0
ncolh<-7
iobj<-8
objadd<-0
prob<-''
```

```
acol<-matrix \((c(0.02,0.02,0.03,1,0.7,0.02,0.15,-200,0.06,0.75,0.03,0.04,0.05,0.04,1,-2000\)
```

inda<-matrix $(c(7,5,3,1,6,4,2,8,7,6,5,4,3,2,1,8,2,1,4,3,7,6,8,1,7,3,4,6,2,8,5,6,7,1,2,3,4$
loca<-matrix(c (1, 9, 17, 24, 31, 39, 45, 49) , nrow=8, ncol=1, byrow=TRUE)
bl<-matrix (c ($0,0,400,100,0,0,0,2000,-9.999999999999999 e+24,-9.999999999999999 e+24,-9.999$
bu<-matrix (c $(200,2500,800,700,1500,9.999999999999999 e+24,9.999999999999999 e+24,2000,60,10$
c<-matrix(c(0), nrow=1, ncol=1, byrow=TRUE)
names<-matrix(c('...X1...','...X2...','...X3...','...X4...','...X5...','...X6...','...X7
helast<-matrix $(c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)$, nrow $=15$, ncol $=1$, byrow=TRUE $)$
hs<-matrix (c ($0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)$, nrow=15, ncol=1, byrow=TRUE)
$x<-\operatorname{matrix}(c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)$, nrow=15, ncol=1,byrow=TRUE)
$n s<-0$
e04nq(start, qphx,m,n,lenc, ncolh, iobj, objadd, prob, acol, inda, loca,bl,bu, c, names, helast, hs,

e04uc

e04uc: Minimum, function of several variables, sequential $Q P$ method, nonlinear constraints, using function values and optionally first derivatives (comprehensive)

Description

e04uc is designed to minimize an arbitrary smooth function subject to constraints (which may include simple bounds on the variables, linear constraints and smooth nonlinear constraints) using
a sequential quadratic programming (SQP) method. As many first derivatives as possible should be supplied by you; any unspecified derivatives are approximated by finite differences. It is not intended for large sparse problems.
e04uc may also be used for unconstrained, bound-constrained and linearly constrained optimization.
e04uc uses forward communication for evaluating the objective function, the nonlinear constraint functions, and any of their derivatives.

Usage

```
e04uc(a, bl, bu, confun, objfun, istate, cjac, clamda, r, x, optlist,
    n = nrow(x),
    nclin = nrow(a),
    ncnln = nrow(cjac))
```


Arguments

a double array
The i th row of a contains the i th row of the matrix A_{L} of general linear constraints in eqn1. That is, the i th row contains the coefficients of the i th general linear constraint for $i=1 \ldots$ nclin.
bl double array
bu double array
Bl must contain the lower bounds and bu the upper bounds for all the constraints in the following order. The first n elements of each array must contain the bounds on the variables, the next n_{L} elements the bounds for the general linear constraints (if any) and the next n_{N} elements the bounds for the general nonlinear constraints (if any). To specify a nonexistent lower bound (i.e., $l_{j}=-\infty$), set $b l[j] \leq-b i g b n d$, and to specify a nonexistent upper bound (i.e., $u_{j}=+\infty$), set $b u[j] \geq b i g b n d$; the default value of bigbnd is 10^{20}, but this may be changed by the optional argument infiniteboundsize. To specify the j th constraint as an equality, set $b l[j]=b u[j]=\beta$, say, where abs $(\beta)<$ bigbnd .
confun function
confun must calculate the vector $c(x)$ of nonlinear constraint functions and (optionally) its Jacobian $\left(=\frac{\partial c}{\partial x}\right)$ for a specified n element vector x. If there are no nonlinear constraints (i.e., ncnln $=0$), confun will never be called by e04uc and confun may be the dummy function e04udm. (e04udm is included in the NAG Library.) If there are nonlinear constraints, the first call to confun will occur before the first call to objfun.

$$
(M O D E, C, C J A C)=\operatorname{confun}(m o d e, n c n l n, n, \text { needc, } x, c j a c, n s t a t e)
$$

objfun function
objfun must calculate the objective function $F(x)$ and (optionally) its gradient $g(x)=\frac{\partial F}{\partial x}$ for a specified n-vector x.
(MODE, OBJF,OBJGRD) = objfun(mode,n, x, objgrd, nstate)
istate integer array
Need not be set if the (default) optional argument coldstart is used.
cjac double array
In general, cjac need not be initialized before the call to e04uc. However, if derivativelevel $=2,3$, you may optionally set the constant elements of cjac

	(see argument nstate in the description of confun). Such constant elements need not be re-assigned on subsequent calls to confun. double array Need not be set if the (default) optional argument coldstart is used.
x	Nouble array doma Need not be initialized if the (default) optional argument coldstart is used. double array
optlist \quadAn initial estimate of the solution. options list Optional parameters may be listed, as shown in the following table:	

Name	Type	Default
Central Difference Interval	double	Default values are computed
Cold Start		Default
Warm Start		
Crash Tolerance	double	Default $=0.01$
Defaults		
Derivative Level	integer	Default $=3$
Difference Interval	double	Default values are computed
Feasibility Tolerance	double	Default $=\sqrt{\epsilon}$
Function Precision	double	Default $=\epsilon^{0.9}$
Hessian	no	Default $=N O$
Infinite Bound Size	double	Default $=10^{20}$
Infinite Step Size	double	Default $=\max \left(\right.$ bigbnd, $\left.10^{20}\right)$
Line Search Tolerance	double	Default $=0.9$
Linear Feasibility Tolerance	double	Default $=\sqrt{\epsilon}$
Nonlinear Feasibility Tolerance List	double	Default $=\epsilon^{0.33}$ or $\sqrt{\epsilon}$
Nolist		
Major Iteration Limit	integer	Default $=\max \left(50,3\left(n+n_{L}\right)+10 n_{N}\right)$
Iteration Limit		
Iters		
Itns		
Major Print Level	integer	Default for $e 04 u c=10$
Print Level	integer	Default for $e 04 u c=0$
Minor Iteration Limit	integer	Default $=\max \left(50,3\left(n+n_{L}+n_{N}\right)\right)$
Minor Print Level	integer	Default $=0$
Monitoring File	integer	Default $=-1$
Optimality Tolerance	double	Default $=\epsilon_{R}^{0.8}$
Start Objective Check At Variable	integer	Default $=1$
Stop Objective Check At Variable	integer	Default $=n$
Start Constraint Check At Variable	integer	Default $=1$
Stop Constraint Check At Variable	integer	Default $=n$
Step Limit	double	Default $=2.0$
Verify Level	integer	Default $=0$
Verify	integer	
Verify Constraint Gradients	integer	
Verify Gradients	integer	
Verify Objective Gradients	integer	

```
n integer: default = nrow(x)
    n, the number of variables.
nclin integer: default = nrow(a)
    n
ncnln integer: default = nrow(cjac)
    n
```


Details

R interface to the NAG Fortran routine E04UCF.

Value

ITER	integer
	The number of major iterations performed.
ISTATE	integer array
	The status of the constraints in the QP working set at the point returned in x . The significance of each possible value of istate $[j]$ is as follows:
C	double array
	If $n c n l n>0, c[i]$ contains the value of the i th nonlinear constraint function c_{i} at the final iterate for $i=1 \ldots n c n l n$.
CJAC	double array
	If $n c n l n>0$, cjac contains the Jacobian matrix of the nonlinear constraint functions at the final iterate, i.e., $c j a c[i, j]$ contains the partial derivative of the i th constraint function with respect to the j th variable for $j=1 \ldots n$ for $i=$ $1 \ldots n c n l n$. (See the discussion of argument cjac under confun.)
CLAMDA	double array
	The values of the QP multipliers from the last QP subproblem. clamda $[j]$ should be non-negative if i state $[j]=1$ and non-positive if i state $[j]=2$.
OBJF	double
	The value of the objective function at the final iterate.
OBJGRD	double array
	The gradient of the objective function at the final iterate (or its finite difference approximation).

double array
If hessian $=$ NO, r contains the upper triangular Cholesky factor R of $Q^{T} \tilde{H} Q$, an estimate of the transformed and reordered Hessian of the Lagrangian at x (see eqn6 in the optional parameter description in the Fortran Library documentation). If hessian $=$ YES, r contains the upper triangular Cholesky factor R of H, the approximate (untransformed) Hessian of the Lagrangian, with the variables in the natural order.
double array
The final estimate of the solution.
IFAIL
integer
ifail $=0$ unless the function detects an error or a warning has been flagged (see the Errors section in Fortran library documentation).

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04ucf.pdf

Examples

```
optlist <- list()
ifail <- 0
confun = function(mode, ncnln, n, needc, x, cjac,
    nstate) {
    ldcj <- nrow(cjac)
    c <- as.matrix(mat.or.vec(ncnln, 1))
    if (nstate == 1) {
        cjac <- as.matrix(mat.or.vec(ldcj, n))
    }
    if (needc[1] > 0) {
        if (mode == 0 || mode == 2) {
            c[1] <- x[1]^2 + x[2]^2 + x[3]^2 + x[4]^2
        }
        if (mode == 1 || mode == 2) {
            cjac[1, 1] <- 2 %*% x[1]
            cjac[1, 2] <- 2 %** x[2]
            cjac[1, 3] <- 2 %*% x[3]
            cjac[1, 4] <- 2 %*% x[4]
        }
    }
    if (needc[2] > 0) {
        if (mode == 0 || mode == 2) {
            c[2] <- x[1] %*% x[2] %*% x[3] %*% x[4]
        }
        if (mode == 1 || mode == 2) {
            cjac[2, 1] <- x[2] %*% x[3] %*% x[4]
```

```
                cjac[2, 2] <- x[1] %*% x[3] %*% x[4]
                cjac[2, 3] <- x[1] %*% x[2] %*% x[4]
                cjac[2, 4] <- x[1] %*% x[2] %*% x[3]
                }
    }
    list(MODE = as.integer(mode), C = as.matrix(c), CJAC = as.matrix(cjac))
}
objfun = function(mode, n, x, objgrd, nstate) {
    if (mode == 0 | | mode == 2) {
        objf <- x[1] %*% x[4] %*% (x[1] + x[2] + x[3]) + x[3]
    }
    else {
        objf <- 0
    }
    if (mode == 1 | | mode == 2) {
        objgrd[1] <- x[4] %*% (2 %*% x[1] + x[2] + x[3])
        objgrd[2] <- x[1] %*% x[4]
        objgrd[3] <- x[1] %*% x[4] + 1
        objgrd[4] <- x[1] %*% (x[1] + x[2] + x[3])
    }
    list(MODE = as.integer(mode), OBJF = objf, OBJGRD = as.matrix(objgrd))
}
a <- matrix(c(1, 1, 1, 1), nrow = 1, ncol = 4, byrow = TRUE)
bl <- matrix(c(1, 1, 1, 1, -1e+25, -1e+25, 25), nrow = 7,
    ncol = 1, byrow = TRUE)
bu <- matrix(c(5, 5, 5, 5, 20, 40, 1e+25), nrow = 7,
    ncol = 1, byrow = TRUE)
istate <- as.matrix(mat.or.vec(7, 1))
cjac <- as.matrix(mat.or.vec(2, 4))
clamda <- as.matrix(mat.or.vec(7, 1))
```

```
r <- as.matrix(mat.or.vec(4, 4))
x <- matrix(c(1, 5, 5, 1), nrow = 4, ncol = 1, byrow = TRUE)
e04uc(a, bl, bu, confun, objfun, istate, cjac, clamda,
    r, x, optlist)
```

```
e04uf
```

e04uf: Minimum, function of several variables, sequential QP method, nonlinear constraints, using function values and optionally first derivatives (reverse communication, comprehensive)

Description

e04uf is designed to minimize an arbitrary smooth function subject to constraints (which may include simple bounds on the variables, linear constraints and smooth nonlinear constraints) using a sequential quadratic programming (SQP) method. As many first derivatives as possible should be supplied by you; any unspecified derivatives are approximated by finite differences. It is not intended for large sparse problems.
e04uf may also be used for unconstrained, bound-constrained and linearly constrained optimization.
e04uf uses reverse communication for evaluating the objective function, the nonlinear constraint functions and any of their derivatives.

Usage

```
e04uf(irevcm, nclin, a, bl, bu, iter, istate, c, cjac, clamda, objf, objgrd, r,
    n = nrow(objgrd),
    ncnln = nrow(c))
```


Arguments

irevem integer

Must be set to 0 .
must remain unchanged, unless you wish to terminate the solution to the current problem. In this case irevcm may be set to a negative value and then e04uf will take a final exit with ifail set to this value of irevem.
a
bl
integer
n_{L}, the number of general linear constraints.
double array
The i th row of the array a must contain the i th row of the matrix A_{L} of general linear constraints in eqn1. That is, the i th row contains the coefficients of the i th general linear constraint for $i=1 \ldots$ nclin.

bu	double array
	Bl must contain the lower bounds and bu the upper bounds, for all the constraints in the following order. The first n elements of each array must contain the bounds on the variables, the next n_{L} elements the bounds for the general linear constraints (if any) and the next n_{N} elements the bounds for the general nonlinear constraints (if any). To specify a nonexistent lower bound (i.e., $l_{j}=-\infty$), set $b l[j] \leq-b i g b n d$, and to specify a nonexistent upper bound (i.e., $u_{j}=+\infty$), set bu $[j] \geq$ bigbnd; the default value of bigbnd is 10^{20}, but this may be changed by the optional argument infiniteboundsize. To specify the j th constraint as an equality, set $b l[j]=b u[j]=\beta$, say, where $\operatorname{abs}(\beta)<\operatorname{bigbnd}$.
iter	integer
istate	Must remain unchanged from a previous call to e04uf. integer array
c	Need not be set if the (default) optional argument coldstart is used. double array
	Need not be set.
	If irevcm $=4,6$ and needc $[i]>0, c[i]$ must contain the value of the i th constraint at x. The remaining elements of c , corresponding to the non-positive elements of needc, are ignored.
cjac	double array
	In general, cjac need not be initialized before the call to e04uf. However, if the optional argument derivativelevel $=2,3$, you may optionally set the constant elements of cjac. Such constant elements need not be re-assigned on subsequent intermediate exits.
	If irevcm $=5,6$ and needc $[i]>0$, the i th row of cjac must contain the available elements of the vector ∇c_{i} given by
	$\nabla c_{i}=\left(\frac{\partial c_{i}}{\partial x_{1}}, \frac{\partial c_{i}}{\partial x_{2}}, \ldots, \frac{\partial c_{i}}{\partial x_{n}}\right)^{T}$
	where $\frac{\partial c_{i}}{\partial x_{j}}$ is the partial derivative of the i th constraint with respect to the j th variable, evaluated at the point x. The remaining rows of cjac, corresponding to non-positive elements of needc, are ignored.
clamda	double array
	Need not be set if the (default) optional argument coldstart is used.
objf	double
	Need not be set.
objgrd	If irevcm $=1,3$, objf must be set to the value of the objective function at x. double array
	Need not be set.
	If irevcm $=2,3$, objgrd must contain the available elements of the gradient evaluated at x.
r	double array
x	Need not be initialized if the (default) optional argument coldstart is used. double array
	An initial estimate of the solution.
iwork	integer array

work	double array
cwsav	string arraystring array
lwsav	boolean array
iwsav	integer array
rwsav	double array The arrays lwsav, iwsav, rwsav and cwsav must not be altered between calls to any of the functions e04wb, e04uf, e04ud e04ue.
opt list	options list Optional parameters may be listed, as shown in the following table:

Name

```
Central Difference Interval
Cold Start
Warm Start
Crash Tolerance
Defaults
Derivative Level
Difference Interval
Feasibility Tolerance
Function Precision
Hessian
Infinite Bound Size
Infinite Step Size
Line Search Tolerance
Linear Feasibility Tolerance
Nonlinear Feasibility Tolerance
List
Nolist
Iteration Limit
Iters
Itns
Major Print Level integer
Major Print Level integer
Print Level
Print Level
Minor Iteration Limit
Minor Print Level
Monitoring File
Optimality Tolerance
Start Objective Check At Variable
Stop Objective Check At Variable
Start Constraint Check At Variable
Stop Constraint Check At Variable
Step Limit
Verify Level
Verify
Verify Constraint Gradients
Verify Gradients
Verify Objective Gradients
```

Major Iteration Limit \quad integer \quad Default $=\max \left(50,3\left(n+n_{L}\right)+10 n_{N}\right)$

TypedoubleDefaultDefault values are computed
Default
double

 Default \(=0.01\)
 integer
Default $=3$
double
double
double
Default $=\sqrt{\epsilon}$
Default $=\epsilon^{0.9}$
Default $=N O$
double Default $=10^{20}$
double \quad Default $=\max \left(\right.$ bigbnd, $\left.10^{20}\right)$
double Default $=0.9$
double \quad Default $=\sqrt{\epsilon}$
double
Default $=\epsilon^{0.33}$ or $\sqrt{\epsilon}$
integer
integer
$=0$
$=0$
integer \quad Default $=\max \left(50,3\left(n+n_{L}+n_{N}\right)\right)$
integer Default $=0$
integer Default $=-1$
double \quad Default $=\epsilon_{r}^{0.8}$
integer Default $=1$
integer \quad Default $=n$
integer \quad Default $=1$
integer \quad Default $=n$
double Default $=2.0$
integer \quad Default $=0$

```
n integer: default = nrow(objgrd)
    n, the number of variables.
ncnln integer: default = nrow(c)
n
```


Details

R interface to the NAG Fortran routine E04UFF.

Value

IREVCM	integer
	Specifies what values the calling program must assign to arguments of e04uf before re-entering the function. irevem $=1$: Set objf to the value of the objective function $F(x)$. irevcm $=2$: Set objgrd $[<j]$ to the value $\frac{\partial F}{\partial x_{j}}$ if available for $j=1 \ldots n$. irevcm $=3$: Set objf and objgrd $[j]$ as for irevcm $=1$ and irevcm $=2$. irevem $=4$: Set $c[i]$ to the value of the constraint function $c_{i}(x)$, for each i such that needc $[i]>0$. irevcm $=5$: Set $\operatorname{cjac}[i, j]$ to the value $\frac{\partial c_{i}}{\partial x_{j}}$ if available, for each i such that needc $[i]>0$ and $j=1,2, \ldots, n$. irevcm $=6$: Set $c[i]$ and $c j a c[i, j]$ as for irevcm $=4$ and irevcm $=5$. irevcm $=0$.
ITER	integer
ISTATE	The number of major iterations performed. integer array
	The status of the constraints in the QP working set at the point returned in x . The significance of each possible value of istate $[j]$ is as follows:
C	double array
	If $n c n l n>0, c[i]$ contains the value of the i th nonlinear constraint function c_{i} at the final iterate for $i=1 \ldots n c n l n$.
CJAC	double array
	If ncnln >0, cjac contains the Jacobian matrix of the nonlinear constraint functions at the final iterate, i.e., $c j a c[i, j]$ contains the partial derivative of the i th constraint function with respect to the j th variable for $j=1 \ldots n$ for $i=$ $1 . . . n c n l n$.
CLAMDA	double array
	The values of the QP multipliers from the last QP subproblem. clamda $[j]$ should be non-negative if i state $[j]=1$ and non-positive if i state $[j]=2$.
OBJF	double
	The value of the objective function at the final iterate.
OBJGRD	double array
	The gradient of the objective function at the final iterate (or its finite difference approximation).
R	double array
	If hessian $=\mathrm{NO}, \mathrm{r}$ contains the upper triangular Cholesky factor R of $Q^{T} \tilde{H} Q$, an estimate of the transformed and reordered Hessian of the Lagrangian at x (see eqn6 in the optional parameter description in the Fortran Library documentation).

double array
The point x at which the objective function, constraint functions or their derivatives are to be evaluated.
The final estimate of the solution.
NEEDC integer array
If irevcm ≥ 4, needc specifies the indices of the elements of c and/or cjac that must be assigned. If needc $[i]>0$, then the i th element of c and/or the available elements of the i th row of cjac must be evaluated at x.

IWORK integer array
WORK double array
The amounts of workspace provided and required may be (by default for e04uf) output on the current advisory message unit (as defined by x04ab). As an alternative to computing liwork and lwork from the formulae given above, you may prefer to obtain appropriate values from the output of a preliminary run with liwork and lwork set to 1 . (e04uf will then terminate with ifail $=9$.)

CWSAV string array
The arrays lwsav, iwsav, rwsav and cwsav must not be altered between calls to any of the functions e04wb, e04uf, e04ud e04ue.
string array
The arrays lwsav, iwsav, rwsav and cwsav must not be altered between calls to any of the functions e04wb, e04uf, e04ud e04ue.

LWSAV	boolean array The arrays lwsav, iwsav, rwsav and cwsav must not be altered between calls to any of the functions e04wb, e04uf, e04ud e04ue.
IWSAV	integer array
The arrays lwsav, iwsav, rwsav and cwsav must not be altered between calls to	
any of the functions e04wb, e04uf, e04ud e04ue.	
RWSAV	double array
The arrays lwsav, iwsav, rwsav and cwsav must not be altered between calls to	
any of the functions e04wb, e04uf, e04ud e04ue.	
integer	
ifail $=0$ unless the function detects an error or a warning has been flagged (see	
the Errors section in Fortran library documentation).	

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04uff.pdf

Examples

```
optlist <- list()
ifail <- 0
iwork <- as.matrix(mat.or.vec(0, 0))
```

```
work <- as.matrix(mat.or.vec(0, 0))
cwsav <- as.matrix(mat.or.vec(0, 0))
lwsav <- as.matrix(mat.or.vec(0, 0))
iwsav <- as.matrix(mat.or.vec(0, 0))
rwsav <- as.matrix(mat.or.vec(0, 0))
irevcm <- 0
nclin <- 1
a <- matrix(c(1, 1, 1, 1), nrow = 1, ncol = 4, byrow = TRUE)
bl <- matrix(c(1, 1, 1, 1, -1e+25, -1e+25, 25), nrow = 7,
    ncol = 1, byrow = TRUE)
bu <- matrix(c(5, 5, 5, 5, 20, 40, 1e+25), nrow = 7,
    ncol = 1, byrow = TRUE)
iter <- 0
istate <- as.matrix(mat.or.vec(7, 1))
c <- matrix(c(0, 0), nrow = 2, ncol = 1, byrow = TRUE)
cjac <- matrix(c(0, 0, 0, 0, 0, 0, 0, 0), nrow = 2,
    ncol = 4, byrow = TRUE)
clamda <- as.matrix(mat.or.vec(7, 1))
objf <- 0
objgrd <- as.matrix(mat.or.vec(4, 1))
r <- as.matrix(mat.or.vec(4, 4))
x <- matrix(c(1, 5, 5, 1), nrow = 4, ncol = 1, byrow = TRUE)
```

iwork <- as.matrix(mat.or.vec (17, 1))
work <- as.matrix(mat.or. $\operatorname{vec}(192,1))$
if (ifail == 0) \{
ans <- e04uf(irevcm, nclin, a, bl, bu, iter, istate, c, cjac,
clamda, objf, objgrd, r, x, iwork, work, cwsav, lwsav,

```
    iwsav, rwsav, optlist)
irevcm <- ans$IREVCM
iter <- ans$ITER
istate <- ans$ISTATE
c <- ans$C
cjac <- ans$CJAC
clamda <- ans$CLAMDA
objf <- ans$OBJF
objgrd <- ans$OBJGRD
r <- ans$R
x <- ans$X
needc <- ans$NEEDC
iwork <- ans$IWORK
work <- ans$WORK
cwsav <- ans$CWSAV
lwsav <- ans$LWSAV
iwsav <- ans$IWSAV
rwsav <- ans$RWSAV
ifail <- ans$IFAIL
while (irevcm > 0) {
    if (irevcm == 1 || irevcm == 3) {
        objf <- x[1] %*% x[4] %*% (x[1] + x[2] + x[3]) +
            x[3]
    }
    if (irevcm == 2 || irevcm == 3) {
        objgrd[1] <- x[4] %*% (2 %*% x[1] + x[2] + x[3])
        objgrd[2] <- x[1] %*% x[4]
        objgrd[3] <- x[1] %*% x[4] + 1
        objgrd[4] <- x[1] %*% (x[1] + x[2] + x[3])
    }
    if (irevcm == 4 | | irevcm == 6) {
        if (needc[1] > 0) {
            c[1] <- x[1]^2 + x[2]^2 + x[3]^2 + x[4]^2
        }
        if (needc[2] > 0) {
            c[2] <- x[1] %*% x[2] %*% x[3] %*% x[4]
        }
    }
    if (irevcm == 5 || irevcm == 6) {
        if (needc[1] > 0) {
            cjac[1, 1] <- 2 %*% x[1]
            cjac[1, 2] <- 2 %*% x[2]
```

```
            cjac[1, 3] <- 2 %*% x[3]
            cjac[1, 4] <- 2 %*% x[4]
        }
        if (needc[2] > 0) {
            cjac[2, 1] <- x[2] %*% x[3] %*% x[4]
            cjac[2, 2] <- x[1] %*% x[3] %*% x[4]
            cjac[2, 3] <- x[1] %*% x[2] %*% x[4]
            cjac[2, 4] <- x[1] %*% x[2] %*% x[3]
        }
    }
ans <- e04uf(irevcm, nclin, a, bl, bu, iter, istate,
        c, cjac, clamda, objf, objgrd, r, x, iwork, work,
        cwsav, lwsav, iwsav, rwsav, optlist)
irevcm <- ans$IREVCM
iter <- ans$ITER
istate <- ans$ISTATE
c <- ans$C
cjac <- ans$CJAC
clamda <- ans$CLAMDA
objf <- ans$OBJF
objgrd <- ans$OBJGRD
r <- ans$R
x <- ans$X
needc <- ans$NEEDC
iwork <- ans$IWORK
work <- ans$WORK
Cwsav <- ans$CWSAV
lwsav <- ans$LWSAV
iwsav <- ans$IWSAV
rwsav <- ans$RWSAV
ifail <- ans$IFAIL
}
if (ifail == 0) {
writeLines(toString(cat(sprintf("\n Varbl Istate Value Lagr Mult\n",
    "\n"))) )
for (i in c(1:4)) {
        istate <- ans$ISTATE
        x <- ans$X
        clamda <- ans$CLAMDA
        writeLines(toString(cat(sprintf(" V %3d %3d %14.4f %12.4f \n",
        i, istate[i], x[i], clamda[i], "\n"))))
    }
```

```
        ax<- a %*% x
        writeLines(toString(cat(sprintf("\n L Con Istate Value Lagr Mult\n",
        "\n"))) )
        for (i in c(5:(4 + nclin))) {
        j<- i - 4
        istate <- ans$ISTATE
        clamda <- ans$CLAMDA
        writeLines(toString(cat(sprintf(" L %3d %3d %14.4f %12.4f\n",
            j, istate[i], ax[j], clamda[i], "\n"))))
            }
                writeLines(toString(cat(sprintf("\n L Con Istate Value Lagr Mult\n",
                "\n"))))
                for (i in c((5 + nclin):(6 + nclin))) {
        j <- i - 4 - nclin
        istate <- ans$ISTATE
        c <- ans$C
        clamda <- ans$CLAMDA
        writeLines(toString(cat(sprintf(" N %3d %3d %14.4f%12.4f\n",
                j, istate[i], c[j], clamda[i], "\n"))))
            }
                objf <- ans$OBJF
                writeLines(toString(cat(sprintf("\n Final objective value = %15.7f\n",
        objf, "\n"))))
    }
    }
```

e04ug e04ug: NLP problem (sparse)

Description

e04ug solves sparse nonlinear programming problems.

Usage


```
nnz = nrow(a),
nname = nrow(names),
leniz = (1000),
lenz = (1000))
```


Arguments

```
    confun
```

 objfun
 n
m
iobj
n
m
function
confun must calculate the vector $F(x)$ of nonlinear constraint functions and (optionally) its Jacobian $\left(=\frac{\partial F}{\partial x}\right)$ for a specified $n_{1}^{\prime \prime}(\leq n)$ element vector x. If there are no nonlinear constraints (i.e., $n c n l n=0$), confun will never be called by e04ug and confun may be the dummy function e04ugm. (e04ugm is included in the NAG Library.) If there are nonlinear constraints, the first call to confun will occur before the first call to objfun.
(MODE,F,FJAC) = confun(mode, ncnln, njnln, nnzjac, x,fjac, nstate)
objfun function
objfun must calculate the nonlinear part of the objective function $f(x)$ and (optionally) its gradient $\left(=\frac{\partial f}{\partial x}\right)$ for a specified $n_{1}^{\prime}(\leq n)$ element vector x. If there are no nonlinear objective variables (i.e., nonln $=0$), objfun will never be called by e04ug and objfun may be the dummy function e04ugn. (e04ugn is included in the NAG Library.)

```
(MODE, OBJF,OBJGRD) = objfun(mode, nonln,x,objgrd,nstate)
```

integer
n, the number of variables (excluding slacks). This is the number of columns in the full Jacobian matrix A.
integer
m, the number of general constraints (or slacks). This is the number of rows in A, including the free row (if any; see iobj). Note that A must contain at least one row. If your problem has no constraints, or only upper and lower bounds on the variables, then you must include a dummy 'free' row consisting of a single (zero) element subject to 'infinite' upper and lower bounds. Further details can be found under the descriptions for iobj, nnz, a, ha, ka, bl and bu.
n_{N}, the number of nonlinear constraints.
integer
n_{1}^{\prime}, the number of nonlinear objective variables. If the objective function is nonlinear, the leading n_{1}^{\prime} columns of A belong to the nonlinear objective variables. (See also the description for njnln.)
integer
$n_{1}^{\prime \prime}$, the number of nonlinear Jacobian variables. If there are any nonlinear constraints, the leading $n_{1}^{\prime \prime}$ columns of A belong to the nonlinear Jacobian variables. If $n_{1}^{\prime}>0$ and $n_{1}^{\prime \prime}>0$, the nonlinear objective and Jacobian variables overlap. The total number of nonlinear variables is given by $\bar{n}=\max \left(n_{1}^{\prime}, n_{1}^{\prime \prime}\right)$.
integer
If $i o b j>n c n l n$, row iobj of A is a free row containing the nonzero elements of the linear part of the objective function.
$i o b j=0$: There is no free row.
$i o b j=-1$: There is a dummy 'free' row.
double array
The nonzero elements of the Jacobian matrix A, ordered by increasing column index. Since the constraint Jacobian matrix $J\left(x^{\prime \prime}\right)$ must always appear in the top left-hand corner of A, those elements in a column associated with any nonlinear constraints must come before any elements belonging to the linear constraint matrix G and the free row (if any; see iobj).
integer array
$h a[i]$ must contain the row index of the nonzero element stored in $a[i]$ for $i=1 \ldots n n z$. The row indices for a column may be supplied in any order subject to the condition that those elements in a column associated with any nonlinear constraints must appear before those elements associated with any linear constraints (including the free row, if any). Note that confun must define the Jacobian elements in the same order. If $\operatorname{iobj}=-1$, set $h a[1]=1$.
integer array
$k a[j]$ must contain the index in a of the start of the j th column for $j=1 \ldots n$. To specify the j th column as empty, set $k a[j]=k a[j+1]$. Note that the first and last elements of ka must be such that $k a[1]=1$ and $k a[n+1]=n n z+1$. If $\operatorname{iobj}=-1$, set $k a[j]=2$ for $j=2 \ldots n$.
double array
l, the lower bounds for all the variables and general constraints, in the following order. The first n elements of bl must contain the bounds on the variables x, the next nenln elements the bounds for the nonlinear constraints $F(x)$ (if any) and the next ($m-n c n l n$) elements the bounds for the linear constraints $G x$ and the free row (if any). To specify a nonexistent lower bound (i.e., $l_{j}=-\infty$), set $b l[j] \leq-b i g b n d$. To specify the j th constraint as an equality, set $b l[j]=$ $b u[j]=\beta$, say, where $\operatorname{abs}(\beta)<$ bigbnd. If $\operatorname{iobj}=-1$, set $b l[n+\operatorname{abs}(i o b j)] \leq$ -bigbnd.
double array
u, the upper bounds for all the variables and general constraints, in the following order. The first n elements of bu must contain the bounds on the variables x, the next nenln elements the bounds for the nonlinear constraints $F(x)$ (if any) and the next ($m-n c n l n$) elements the bounds for the linear constraints $G x$ and the free row (if any). To specify a nonexistent upper bound (i.e., $u_{j}=+\infty$), set $b u[j] \geq b i g b n d$. To specify the j th constraint as an equality, set $b u[j]=b l[j]=$ β, say, where $\operatorname{abs}(\beta)<b i g b n d$. If $\operatorname{iobj}=-1$, set $b u[n+\operatorname{abs}(i o b j)] \geq b i g b n d$.
string
Indicates how a starting basis is to be obtained.
start $={ }^{\prime} \mathrm{C}^{\prime}$: An internal Crash procedure will be used to choose an initial basis. start $={ }^{\prime} \mathrm{W}^{\prime}$: A basis is already defined in istate and ns (probably from a previous call).
string array
Specifies the column and row names to be used in the printed output.
integer
n_{S}, the number of superbasics. It need not be specified if $s t a r t={ }^{\prime} \mathrm{C}^{\prime}$, but must retain its value from a previous call when start $=$ ' W '.
double array
The initial values of the variables and slacks $(x s)$. (See the description for istate.)

istate	integer array
	If start $={ }^{\prime} \mathrm{C}^{\prime}$, the first n elements of istate and xs must specify the initial states and values, respectively, of the variables x. (The slacks s need not be initialized.) An internal Crash procedure is then used to select an initial basis matrix B. The initial basis matrix will be triangular (neglecting certain small elements in each column). It is chosen from various rows and columns of ($\left.\begin{array}{ll}A & -I\end{array}\right)$. Possible values for istate $[j]$ are as follows:
clamda	double array
	If $n c n l n>0$, clamda $[j]$ must contain a Lagrange multiplier estimate for the j th nonlinear constraint $F_{j}(x)$ for $j=n+1 \ldots n+n c n l n$. If nothing special is known about the problem, or there is no wish to provide special information, you may set clamda $[j]=0.0$. The remaining elements need not be set.
optlist	options list
	Optional parameters may be listed, as shown in the following table:

Name

Central Difference Interval
Check Frequency
Crash Option
Crash Tolerance
Defaults
Derivative Level
Derivative Linesearch
Nonderivative Linesearch
Elastic Weight
Expand Frequency
Factorization Frequency
Infeasible Exit
Feasible Exit
Minimize
Maximize
Feasible Point
Forward Difference Interval
Function Precision
Hessian Frequency
Hessian Full Memory
Hessian Limited Memory
Hessian Updates
Infinite Bound Size
Iteration Limit
Linesearch Tolerance
List
Nolist
LU Density Tolerance
LU Singularity Tolerance
LU Factor Tolerance
LU Update Tolerance
Major Feasibility Tolerance
Major Iteration Limit
Major Optimality Tolerance Optimality Tolerance Major Print Level

Type Default
double \quad Default $=\sqrt[3]{\text { functionprecision }}$
integer \quad Default $=60$
integer Default $=0$ or 3
double Default $=0.1$
integer \quad Default $=3$
Default
double \quad Default $=1.0$ or 100.0
integer \quad Default $=10000$
integer Default $=50$ or 100 Default

Default
double Default $=\sqrt{\text { functionprecision }}$
double \quad Default $=\epsilon^{0.8}$
integer \quad Default $=99999999$
Default when $\bar{n}<75$
Default when $\bar{n} \geq 75$
integer \quad Default $=20$ or 99999999
double \quad Default $=10^{20}$
integer \quad Default $=10000$
double \quad Default $=0.9$
Default for $e 04 u g=l i s t$
Default for $e 04 u g=$ nolist
double Default $=0.6$
double \quad Default $=\epsilon^{0.67}$
double Default $=5.0$ or 100.0
double Default $=5.0$ or 10.0
double \quad Default $=\sqrt{\epsilon}$
integer \quad Default $=1000$
double \quad Default $=\sqrt{\epsilon}$
double
integer $=0$

```
Print Level
Major Step Limit
Minor Feasibility Tolerance
Feasibility Tolerance
Minor Iteration Limit
Minor Optimality Tolerance
Minor Print Level
Monitoring File
Partial Price
Pivot Tolerance
Scale Option
Scale Tolerance
Start Objective Check At Column
Stop Objective Check At Column
Start Constraint Check At Column
Stop Constraint Check At Column
Superbasics Limit
Unbounded Objective
Unbounded Step Size
Verify Level
Violation Limit
\begin{tabular}{ll}
\begin{tabular}{ll} 
double \\
double
\end{tabular} & \begin{tabular}{l} 
Default \(=2.0\) \\
default \(=\sqrt{\epsilon}\) \\
double
\end{tabular} \\
integer & Default \(=500\) \\
double & Default \(=\sqrt{\epsilon}\) \\
integer & Default \(=0\) \\
integer & Default \(=-1\) \\
integer & Default \(=1\) or 10 \\
double & Default \(=\epsilon^{0.67}\) \\
integer & Default \(=1\) or 2 \\
double & Default \(=0.9\) \\
integer & Default \(=1\) \\
integer & Default \(=n_{1}^{\prime}\) \\
integer & Default \(=1\) \\
integer & Default \(=n_{1}^{\prime \prime}\) \\
integer & Default \(=\min (500, \bar{n}+1)\) \\
double & Default \(=10^{15}\) \\
double & Default \(=\max \left(\right.\) bigbnd, \(\left.10^{20}\right)\) \\
integer & Default \(=0\) \\
double & Default \(=10.0\)
\end{tabular}
\begin{tabular}{|c|c|}
\hline \(n n z\) & integer: default = nrow \((\mathrm{a})\) \\
\hline & The number of nonzero elements in \(A\) (including the Jacobian for any nonlinear constraints). If \(\operatorname{iobj}=-1\), set \(n n z=1\). \\
\hline \multirow[t]{4}{*}{nname} & integer: default \(=\) nrow(names) \\
\hline & The number of column (i.e., variable) and row (i.e., constraint) names supplied in names. \\
\hline & nname \(=1\) : There are no names. Default names will be used in the printed output. \\
\hline & nname \(=n+m\) : All names must be supplied. \\
\hline \multirow[t]{2}{*}{leniz} & integer: default \(=(\max (500,(\mathrm{n}+\mathrm{m}))\) ) \\
\hline & integer: default \(=(\max (500,(\mathrm{n}+\mathrm{m}))\) ) \\
\hline lenz & integer: default \(=(500)\) \\
\hline & integer: default \(=(500)\) \\
\hline
\end{tabular}
```


Details

R interface to the NAG Fortran routine E04UGF.

Value

A double array
Elements in the nonlinear part corresponding to nonlinear Jacobian variables are overwritten.

NS
integer
The final number of superbasics.
XS
double array
The final values of the variables and slacks $(x s)$.

ISTATE	integer array
	The final states of the variables and slacks $(x s)$. The significance of each possible value of i state $[j]$ is as follows:
CLAMDA	double array
	A set of Lagrange multipliers for the bounds on the variables (reduced costs) and the general constraints (shadow costs). More precisely, the first n elements contain the multipliers for the bounds on the variables, the next ncnln elements contain the multipliers for the nonlinear constraints $F(x)$ (if any) and the next ($m-n c n l n$) elements contain the multipliers for the linear constraints $G x$ and the free row (if any).
MINIZ	integer
	The minimum value of leniz required to start solving the problem. If ifail $=12$, e04ug may be called again with leniz suitably larger than miniz. (The bigger the better, since it is not certain how much workspace the basis factors need.)
MINZ	integer
	The minimum value of lenz required to start solving the problem. If ifail $=13$, e04ug may be called again with lenz suitably larger than minz. (The bigger the better, since it is not certain how much workspace the basis factors need.)
NINF	integer
	The number of constraints that lie outside their bounds by more than the value of the optional argument minorfeasibilitytolerance.
SINF	double
	The sum of the infeasibilities of constraints that lie outside their bounds by more than the value of the optional argument minorfeasibilitytolerance.
OBJ	double
	The value of the objective function.
IFAIL	integer
	ifail $=0$ unless the function detects an error or a warning has been flagged (see the Errors section in Fortran library documentation).

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04ugf.pdf

Examples

```
optlist <- list()
ifail <- 0
confun = function(mode, ncnln, njnln, nnzjac, x, fjac,
    nstate) {
    f <- as.matrix(mat.or.vec(ncnln, 1))
    if (mode == 0 | | mode == 2) {
```

```
        f[1] <- 1000 %*% sin(-x[1] - 0.25) + 1000 %*% sin(-x[2] -
                0.25)
            f[2] <- 1000 %*% sin(x[1] - 0.25) + 1000 %*% sin(x[1] -
                x[2] - 0.25)
            f[3] <- 1000 %*% sin(x[2] - x[1] - 0.25) + 1000 %*% sin(x[2] -
                0.25)
    }
    if (mode == 1 | | mode == 2) {
            fjac[1] <- -1000 %*% cos(-x[1] - 0.25)
            fjac[2] <- 1000 %*% cos(x[1] - 0.25) + 1000 %*% cos(x[1] -
                x[2] - 0.25)
            fjac[3] <- -1000 %*% cos(x[2] - x[1] - 0.25)
            fjac[4] <- -1000 %*% cos(-x[2] - 0.25)
            fjac[5] <- -1000 %*% cos(x[1] - x[2] - 0.25)
            fjac[6] <- 1000 %*% cos(x[2] - x[1] - 0.25) + 1000 %*%
                cos(x[2] - 0.25)
                            }
                            list(MODE = as.integer(mode), F = as.matrix(f), FJAC = as.matrix(fjac))
}
objfun = function(mode, nonln, x, objgrd, nstate) {
    if (mode == 0 | | mode == 2) {
            objf <- 1e-06 %*% x[3]^3 + 2e-06 %*% x[4]^3/3
    }
    if (mode == 1 | | mode == 2) {
            objgrd[1] <- 0
            objgrd[2] <- 0
            objgrd[3] <- 3e-06 %*% x[3]^2
            objgrd[4] <- 2e-06 %*% x[4]^2
            }
                            list(MODE = as.integer(mode), OBJF = objf, OBJGRD = as.matrix(objgrd))
}
n <- 4
m<- 6
```

```
ncnln <- 3
nonln <- 4
njnln <- 2
iobj <- 6
a <- matrix(c(1e+25, 1e+25, 1e+25, 1, -1, 1e+25, 1e+25,
    1e+25, -1, 1, 3, -1, -1, 2), nrow = 14, ncol = 1, byrow = TRUE)
ha <- matrix(c(1, 2, 3, 5, 4, 1, 2, 3, 5, 4, 6, 1,
    2, 6), nrow = 14, ncol = 1, byrow = TRUE)
ka <- matrix(c(1, 6, 11, 13, 15), nrow = 5, ncol = 1,
    byrow = TRUE)
bl <- matrix(c(-0.55, -0.55, 0, 0, -894.8, -894.8,
    -1294.8, -0.55, -0.55, -1e+25), nrow = 10, ncol = 1, byrow = TRUE)
bu <- matrix(c(0.55, 0.55, 1200, 1200, -894.8, -894.8,
    -1294.8, 1e+25, 1e+25, 1e+25), nrow = 10, ncol = 1, byrow = TRUE)
start <- "C"
names <- matrix(c("Varble 1", "Varble 2", "Varble 3",
    "Varble 4", "NlnCon 1", "NlnCon 2", "NlnCon 3", "LinCon 1",
    "LinCon 2", "Free Row"), nrow = 10, byrow = TRUE)
ns <- 0
xs <- matrix(c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0), nrow = 10,
    ncol = 1, byrow = TRUE)
istate <- as.matrix(mat.or.vec(10, 1))
clamda <- matrix(c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
    nrow = 10, ncol = 1, byrow = TRUE)
leniz <- 1000
```

```
lenz <- 1000
e04ug(confun, objfun, n, m, ncnln, nonln, njnln,
    iobj, a, ha, ka, bl, bu, start, names, ns, xs, istate, clamda,
    optlist)
```

e04us e04us: Minimum of a sum of squares, nonlinear constraints, sequential QP method, using function values and optionally first derivatives (comprehensive)

Description

e04us is designed to minimize an arbitrary smooth sum of squares function subject to constraints (which may include simple bounds on the variables, linear constraints and smooth nonlinear constraints) using a sequential quadratic programming (SQP) method. As many first derivatives as possible should be supplied by you; any unspecified derivatives are approximated by finite differences. See the description of the optional argument derivativelevel, in the Fortran library documentation. It is not intended for large sparse problems.
e04us may also be used for unconstrained, bound-constrained and linearly constrained optimization.

Usage

```
e04us(a, bl, bu, y, confun, objfun, istate, cjac, fjac, clamda, r, x, optlist,
    m = nrow (y),
    n = nrow (x),
    nclin = nrow(a),
    ncnln = nrow(cjac))
```


Arguments

a
bl
bu
double array

Must contain the lower bounds and bu the upper bounds, for all the constraints in the following order. The first n elements of each array must contain the bounds on the variables, the next n_{L} elements the bounds for the general linear constraints (if any) and the next n_{N} elements the bounds for the general nonlinear constraints (if any). To specify a nonexistent lower bound (i.e., $l_{j}=-\infty$), set $b l[j] \leq-b i g b n d$, and to specify a nonexistent upper bound (i.e., $u_{j}=+\infty$), set $b u[j] \geq$ bigbnd; the default value of bigbnd is 10^{20}, but this may be changed by the optional argument infiniteboundsize. To specify the j th constraint as an equality, set $b l[j]=b u[j]=\beta$, say, where $\operatorname{abs}(\beta)<$ bigbnd.
double array
The i th row of a contains the i th row of the matrix A_{L} of general linear constraints in eqn1. That is, the i th row contains the coefficients of the i th general
linear constraint for $i=1 \ldots$ nclin.
double array
double array
The coefficients of the constant vector y of the objective function.

confun	function
	confun must calculate the vector $c(x)$ of nonlinear constraint functions and (optionally) its Jacobian $\left(=\frac{\partial c}{\partial x}\right.$) for a specified n element vector x. If there are no nonlinear constraints (i.e., $n c n l n=0$), confun will never be called by e04us and confun may be the dummy function e04udm. (e04udm is included in the NAG Library.) If there are nonlinear constraints, the first call to confun will occur before the first call to objfun. (MODE, C, CJAC) $=$ confun(mode, ncnln, n, needc, $x, C j a c, n s t a t$
objfun	function
	objfun must calculate either the i th element of the vector $f(x)=\left(f_{1}(x) f_{2}(x) \ldots\right.$ or all m elements of $f(x)$ and (optionally) its Jacobian $\left(=\frac{\partial f}{\partial x}\right.$) for a specified n element vector x. (MODE, F, FJAC) = objfun(mode,m,n,needfi, x,fjac,nstate)
istate	integer array
cjac	Need not be set if the (default) optional argument coldstart is used. double array
	In general, cjac need not be initialized before the call to e04us. However, if derivativelevel $=3$, you may optionally set the constant elements of cjac (see argument nstate in the description of confun). Such constant elements need not be re-assigned on subsequent calls to confun.
fjac	double array
	In general, fjac need not be initialized before the call to e04us. However, if derivativelevel $=3$, you may optionally set the constant elements of fjac (see argument nstate in the description of objfun). Such constant elements need not be re-assigned on subsequent calls to objfun.
clamda	double array
	Need not be set if the (default) optional argument coldstart is used.
r	double array
	Need not be initialized if the (default) optional argument coldstart is used.
x	double array
	An initial estimate of the solution.
optlist	options list
	Optional parameters may be listed, as shown in the following table:

Name	Type Central Difference Interval Cold Start	Default Default values are computed Default
Warm Start	double	Default $=0.01$
Crash Tolerance		
Defaults	integer	Default $=3$
Derivative Level	double	Default values are computed
Difference Interval	double	Default $=\sqrt{\epsilon}$
Feasibility Tolerance	double	Default $=\epsilon^{0.9}$
Function Precision	no	Default $=N O$
Hessian	double	Default $=10^{20}$
Infinite Bound Size	double	Default $=\max \left(\right.$ bigbnd, $\left.10^{20}\right)$
Infinite Step Size		

```
JTJ Initial Hessian
Unit Initial Hessian
Line Search Tolerance
Linear Feasibility Tolerance
Nonlinear Feasibility Tolerance
List
Nolist
Major Iteration Limit
Iteration Limit
Iters
Itns
Major Print Level integer
Print Level
Minor Iteration Limit
Minor Print Level
Monitoring File
Optimality Tolerance
Reset Frequency
Start Objective Check At Variable
Stop Objective Check At Variable
Start Constraint Check At Variable
Stop Constraint Check At Variable
Step Limit
Verify Level
Verify
Verify Constraint Gradients
Verify Gradients
Verify Objective Gradients
```


Default

double \quad Default $=0.9$
double \quad Default $=\sqrt{\epsilon}$
double Default $=\epsilon^{0.33}$ or $\sqrt{\epsilon}$
Default for $e 04 u s=l i s t$ Default for $e 04 u s=$ nolist
integer \quad Default $=\max \left(50,3\left(n+n_{L}\right)+10 n_{N}\right)$
integer
$=0$
integer \quad Default $=\max \left(50,3\left(n+n_{L}+n_{N}\right)\right)$
integer \quad Default $=0$
integer \quad Default $=-1$
double \quad Default $=\epsilon_{R}^{0.8}$
integer \quad Default $=2$
integer \quad Default $=1$
integer \quad Default $=n$
integer \quad Default $=1$
integer \quad Default $=n$
double \quad Default $=2.0$
integer \quad Default $=0$

m	integer: default $=\operatorname{nrow}(\mathrm{y})$
m	m, the number of subfunctions associated with $F(x)$.
integer: default $=\operatorname{nrow}(\mathrm{x})$	
nclin	n, the number of variables.
ncnln	integer: default $=\operatorname{nrow}(\mathrm{a})$ n_{L}, the number of general linear constraints. integer: default $=$ nrow (cjac) n_{N}, the number of nonlinear constraints.

Details

R interface to the NAG Fortran routine E04USF.

Value

ITER	integer
The number of major iterations performed.	
ISTATE	integer array
	The status of the constraints in the QP working set at the point returned in x. The significance of each possible value of i state $[j]$ is as follows:

C	double array
	If $n c n l n>0, c[i]$ contains the value of the i th nonlinear constraint function c_{i} at the final iterate for $i=1 \ldots n c n l n$.
CJAC	double array
	If ncnln >0, cjac contains the Jacobian matrix of the nonlinear constraint functions at the final iterate, i.e., $c j a c[i, j]$ contains the partial derivative of the i th constraint function with respect to the j th variable for $j=1 \ldots n$ for $i=$ $1 \ldots n c n l n$. (See the discussion of argument cjac under confun.)
F	double array
	$f[i]$ contains the value of the i th function f_{i} at the final iterate for $i=1 \ldots m$. double array
FJAC	The Jacobian matrix of the functions $f_{1}, f_{2}, \ldots, f_{m}$ at the final iterate, i.e., fjac $[i, j]$ contains the partial derivative of the i th function with respect to the j th variable for $j=1 \ldots n$ for $i=1 \ldots m$. (See also the discussion of argument fjac under objfun.)
CLAMDA	double array
	The values of the QP multipliers from the last QP subproblem. clamda $[j]$ should be non-negative if i state $[j]=1$ and non-positive if i state $[j]=2$.
OBJF	double
	The value of the objective function at the final iterate.
R	double array
	If hessian $=$ NO, r contains the upper triangular Cholesky factor R of $Q^{T} \tilde{H} Q$, an estimate of the transformed and reordered Hessian of the Lagrangian at x (see eqn6). If hessian $=$ YES, r contains the upper triangular Cholesky factor R of H, the approximate (untransformed) Hessian of the Lagrangian, with the variables in the natural order.
X	double array
	The final estimate of the solution.
IFAIL	integer
	ifail $=0$ unless the function detects an error or a warning has been flagged (see the Errors section in Fortran library documentation).

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04usf.pdf

Examples

```
optlist <- list()
ifail <- 0
confun = function(mode, ncnln, n, needc, x, cjac,
    nstate) {
    ldcj <- nrow(cjac)
```

```
    c <- as.matrix(mat.or.vec(ncnln, 1))
    if (nstate == 1) {
            cjac <- as.matrix(mat.or.vec(ncnln, n))
    }
    if (needc[1] > 0) {
            if (mode == 0 | | mode == 2) {
                    C[1] <- -0.09 - x[1] %*% x[2] + 0.49 %*% x[2]
            }
            if (mode == 1 || mode == 2) {
                    cjac[1, 1] <- -x[2]
                    cjac[1, 2] <- -x[1] + 0.49
            }
        }
    list(MODE = as.integer(mode), C = as.matrix(c), CJAC = as.matrix(cjac))
}
objfun = function(mode, m, n, needfi, x, fjac, nstate) {
    ldfj <- nrow(fjac)
    f <- as.matrix(mat.or.vec(m, 1))
    a <- matrix(c(8, 8, 10, 10, 10, 10, 12, 12, 12, 12, 14, 14,
            14, 16, 16, 16, 18, 18, 20, 20, 20, 22, 22, 22, 24, 24,
            24, 26, 26, 26, 28, 28, 30, 30, 30, 32, 32, 34, 36, 36,
            38, 38, 40, 42), nrow = 1, ncol = 44, byrow = TRUE)
    for (i in c(1:m)) {
            temp <- exp(-x[2] %*% (a[i] - 8))
            if (mode == 0 | | mode == 2) {
            f[i] <- x[1] + (0.49 - x[1]) %*% temp
            }
            if (mode == 1 || mode == 2) {
            fjac[i, 1] <- 1 - temp
            fjac[i, 2] <- -(0.49 - x[1]) %*% (a[i] - 8) %*% temp
            }
        }
    list(MODE = as.integer(mode), F = as.matrix(f), FJAC = as.matrix(fjac))
}
a <- matrix(c(1, 1), nrow = 1, ncol = 2, byrow = TRUE)
bl <- matrix(c(0.4, -4, 1, 0), nrow = 4, ncol = 1,
```

```
    byrow = TRUE)
bu <- matrix(c(1e+25, 1e+25, 1e+25, 1e+25), nrow = 4,
    ncol = 1, byrow = TRUE)
y <- matrix(c(0.49, 0.49, 0.48, 0.47, 0.48, 0.47,
    0.46, 0.46, 0.45, 0.43, 0.45, 0.43, 0.43, 0.44, 0.43, 0.43,
    0.46, 0.45, 0.42, 0.42, 0.43, 0.41, 0.41, 0.4, 0.42, 0.4,
    0.4, 0.41, 0.4, 0.41, 0.41, 0.4, 0.4, 0.4, 0.38, 0.41, 0.4,
    0.4,0.41, 0.38, 0.4, 0.4, 0.39, 0.39), nrow = 44, ncol = 1,
    byrow = TRUE)
istate <- as.matrix(mat.or.vec(4, 1))
cjac <- matrix(c(0, 0), nrow = 1, ncol = 2, byrow = TRUE)
fjac <- matrix(c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0), nrow = 44, ncol = 2, byrow = TRUE)
clamda <- as.matrix(mat.or.vec(4, 1))
r <- matrix(c(0, 0, 0, 0), nrow = 2, ncol = 2, byrow = TRUE)
x <- matrix(c(0.4, 0), nrow = 2, ncol = 1, byrow = TRUE)
e04us(a, bl, bu, y, confun, objfun, istate, cjac,
    fjac, clamda, r, x, optlist)
```

 \(\mathrm{e} 04 \mathrm{vj} \quad\) e04vj: Determine the pattern of nonzeros in the Jacobian matrix for
 e04vh

Description

e04vj may be used before e04vh to determine the sparsity pattern for the Jacobian.

Usage

```
e04vj(nf, usrfun, lena, leng, x, xlow, xupp,
    n = nrow(x))
```


Arguments

nf	integer
	$n f$, the number of problem functions in $F(x)$, including the objective function (if any) and the linear and nonlinear constraints. Simple upper and lower bounds on x can be defined using the arguments xlow and xupp and should not be included in F.
usrfun	function
	usrfun must define the problem functions $F(x)$. This function is passed to e 04 vj as the external argument usrfun.
	$(S T A T U S, F, G)=u s r f u n(s t a t u s, n, x, n e e d f, n f, f, n e e d g, l e n g, g)$
lena	integer
	Lena should be an overestimate of the number of elements in the linear part of the Jacobian.
leng	integer
	Leng should be an overestimate of the number of elements in the nonlinear part of the Jacobian.
x	double array
	An initial estimate of the variables x. The contents of x will be used by e 04 vj in the call of usrfun, and so each element of x should be within the bounds given by xlow xupp.
xlow	double array
xupp	double array
	Contain the lower and upper bounds l_{x} and u_{x} on the variables x.
n	integer: default $=\operatorname{nrow}(\mathrm{x})$
	n, the number of variables.

Details

R interface to the NAG Fortran routine E04VJF.

Value

IAFUN	integer array
JAVAR	integer array
NEA	integer
A	Is the number of nonzero entries in A such that $F(x)=f(x)+A x$. double array Define the coordinates $(i j)$ and values $A_{i j}$ of the nonzero elements of the linear part A of the function $F(x)=f(x)+A x$. integer array

```
JGVAR integer array
    Define the coordinates (ij) of the nonzero elements of G, the nonlinear part of
    the derivatives }J(x)=G(x)+A\mathrm{ of the function }F(x)=f(x)+Ax\mathrm{ .
NEG integer
    The number of nonzero entries in G
IFAIL integer
    ifail = 0 unless the function detects an error or a warning has been flagged (see
    the Errors section in Fortran library documentation).
```


Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04vjf.pdf

Examples

```
optlist <- list()
ifail <- 0
usrfun = function(status, n, x, needf, nf, f, needg,
    leng, g) {
    f[1] <- 1000 %*% sin(-x[1] - 0.25) + 1000 %*% sin(-x[2] -
        0.25) - x[3]
    f[2] <- 1000 %*% sin(x[1] - 0.25) + 1000 %*% sin(x[1] - x[2] -
        0.25) - x[4]
    f[3] <- 1000 %*% sin(x[2] - x[1] - 0.25) + 1000 %*% sin(x[2] -
        0.25)
    f[4] <- -x[1] + x[2]
    f[5] <- x[1] - x[2]
    f[6]<- 1e-06 %*% x[3]^3 + 2e-06 %*% x[4]^3/3 + 3%*% x[3] +
        2 %*% x[4]
    list(STATUS = as.integer(status), F = as.matrix(f), G = as.matrix(g))
}
nf <- 6
lena <- 300
leng <- 300
x <- matrix(c(0, 0, 0, 0), nrow = 4, ncol = 1, byrow = TRUE)
xlow <- matrix(c(-0.55, -0.55, 0, 0), nrow = 4, ncol = 1,
    byrow = TRUE)
xupp <- matrix(c(0.55, 0.55, 1200, 1200), nrow = 4,
```

```
    ncol = 1, byrow = TRUE)
e04vj(nf, usrfun, lena, leng, x, xlow, xupp)
```

e04wd e04wd: Solves the nonlinear programming (NP) problem

Description

e04wd is designed to minimize an arbitrary smooth function subject to constraints (which may include simple bounds on the variables, linear constraints and smooth nonlinear constraints) using a sequential quadratic programming (SQP) method. As many first derivatives as possible should be supplied by you; any unspecified derivatives are approximated by finite differences. It is not intended for large sparse problems.
e04wd may also be used for unconstrained, bound-constrained and linearly constrained optimization.
e04wd uses forward communication for evaluating the objective function, the nonlinear constraint functions, and any of their derivatives.

The initialization function e04wc must have been called before to calling e04wd.

Usage

```
e04wd(a, bl, bu, confun, objfun, istate, ccon, cjac, clamda, h, x, optlist,
    n = nrow(x),
    nclin = nrow(a),
    ncnln = nrow(cjac))
```


Arguments

a double array
The i th row of a contains the i th row of the matrix A_{L} of general linear constraints in eqn1. That is, the i th row contains the coefficients of the i th general linear constraint for $i=1 \ldots$ nclin.
bl double array
bu double array
Bl must contain the lower bounds and bu the upper bounds for all the constraints, in the following order. The first n elements of each array must contain the bounds on the variables, the next n_{L} elements the bounds for the general linear constraints (if any) and the next n_{N} elements the bounds for the general nonlinear constraints (if any). To specify a nonexistent lower bound (i.e., $l_{j}=-\infty$), set $b l[j] \leq-b i g b n d$, and to specify a nonexistent upper bound (i.e., $u_{j}=+\infty$), set $b u[j] \geq$ bigbnd; where bigbnd is the optional argument infiniteboundsize. To specify the j th constraint as an equality, set $b l[j]=b u[j]=\beta$, say, where $\operatorname{abs}(\beta)<$ bigbnd.

confun	function
	confun must calculate the vector $c(x)$ of nonlinear constraint functions and (optionally) its Jacobian, $\frac{\partial c}{\partial x}$, for a specified n-vector x. If there are no nonlinear constraints (i.e., ncnln $=0$), e04wd will never call confun, so it may be the dummy function e04wdp. (e04wdp is included in the NAG Library). If there are nonlinear constraints, the first call to confun will occur before the first call to objfun.
objfun	function
	objfun must calculate the objective function $F(x)$ and (optionally) its gradient $g(x)=\frac{\partial F}{\partial x}$ for a specified n-vector x.
	(MODE, OBJF, GRAD) = objfun (mode, $\mathrm{n}, \mathrm{x}, \mathrm{grad}, \mathrm{nstate}$)
istate	integer array
	Is an integer array that need not be initialized if e04wd is called with the coldstart option (the default).
ccon	double array
cjac	Ccon need not be initialized if the (default) optional argument coldstart is used. double array
	In general, cjac need not be initialized before the call to e04wd. However, if derivativelevel $=2,3$, any constant elements of cjac may be initialized. Such elements need not be reassigned on subsequent calls to confun.
clamda	double array
	Need not be set if the (default) optional argument coldstart is used.
h	double array
	H need not be initialized if the (default) optional argument coldstart is used, and will be set to the identity.
x	double array
	An initial estimate of the solution.
optlist	options list
	Optional parameters may be listed, as shown in the following table:

Name

Central Difference Interval
Check Frequency
Cold Start
Warm Start
Crash Option
Crash Tolerance
Defaults
Derivative Level
Derivative Linesearch
Nonderivative Linesearch
Difference Interval
Dump File
Load File
Elastic Weight
Expand Frequency

Type Default

double \quad Default $=\epsilon_{r}^{\frac{1}{3}}$
integer Default $=60$
Default
integer \quad Default $=3$
double \quad Default $=0.1$
integer \quad Default $=3$
Default
double \quad Default $=\sqrt{\epsilon_{r}}$
integer \quad Default $=0$
integer \quad Default $=0$
double \quad Default $=10^{4}$
integer \quad Default $=10000$

```
Factorization Frequency 
Reduced Hessian Dimension integer Default =min(2000n)
Factorization Frequency 
Factorization Frequency 
Factorization Frequency 
Factorization Frequency 
Factorization Frequency 
Factorization Frequency 
integer Default =50
double Default = \epsilon 0.8
    Default if n}n7
    Default if n>75
integer Default =99999999
integer Default = hessianfrequency if hessianfullmemory, 10
double Default = 10 20
integer Default =max (1000010max (nn L + nN ))
double }\quad\mathrm{ Default =0.9
    Default
double Default = 0.6
double Default = 败
double Default =1.10
double Default =1.10
    Default
double Default = max (10-6}\sqrt{}{\epsilon}
double Default =2max (10-6}\sqrt{}{\epsilon}
integer Default =max (10003max (nn L}+\mp@subsup{n}{N}{})
integer Default =000001
double Default =2.0
    Default
double Default =max {10-6}\sqrt{}{\epsilon}
integer Default =500
integer Default =1
integer Default =0
integer Default =0
integer Default =100
integer Default =99
integer Default =0
integer Default =1
double Default = 教
integer Default =0
integer Default =100
integer Default =1
integer Default =0
integer Default =0
    Default
integer Default =0
double Default = 0.9
integer Default =0
integer Default =1
integer }\quad\mathrm{ Default }=
```

```
Start Constraint Check At Variable integer Default =1
Stop Constraint Check At Variable integer Default = n
Summary File
Summary Frequency
Superbasics Limit
Suppress Parameters
System Information No
System Information Yes
Timing Level integer Default =0
Unbounded Objective double Default =1.0E + 15
Unbounded Step Size double Default = bigbnd
Verify Level
Violation Limit
integer Default =0
integer Default = 100
integer Default =n
integer Default =0
double Default =1.0E+6
```

```
n integer: default = nrow (x)
                                n, the number of variables.
nclin integer: default = nrow(a)
    n
ncnln integer: default = nrow(cjac)
n
```


Details

R interface to the NAG Fortran routine E04WDF.

Value

MAJITS	integer
	The number of major iterations performed. integer array
ISTATE	Describes the status of the constraints $l \leq r(x) \leq u$. For the j th lower or upper bound, $j=1,2, \ldots, n+n c l i n+n c n l n$, the possible values of $i s t a t e[j]$ are as follows (see the figure in the Fortran library documentation). δ is the appropriate feasibility tolerance.
CCON	double array
	If $n c n l n>0$, ccon $[i]$ contains the value of the i th nonlinear constraint function c_{i} at the final iterate for $i=1 \ldots n c n l n$.
CJAC	double array
	If $n c n l n>0$, cjac contains the Jacobian matrix of the nonlinear constraint functions at the final iterate, i.e., $\operatorname{cjac}[i, j]$ contains the partial derivative of the i th constraint function with respect to the j th variable for $j=1 \ldots n$ for $i=$ $1 \ldots n c n l n$. (See the discussion of argument cjac under confun.)
CLAMDA	double array
	The values of the QP multipliers from the last QP subproblem. clamda $[j]$ should be non-negative if i state $[j]=1$ and non-positive if i state $[j]=2$.
OBJF	double
	The value of the objective function at the final iterate.

GRAD	double array The gradient of the objective function (or its finite difference approximation) at the final iterate. double array Contains the Hessian of the Lagrangian at the final estimate x. H
double array	
The final estimate of the solution.	
IFAIL	integer ifail $=0$ unless the function detects an error or a warning has been flagged (see the Errors section in Fortran library documentation).

Author(s)

NAG

References

```
http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04wdf.pdf
```


Examples

```
optlist <- list()
ifail <- 0
confun = function(mode, ncnln, n, needc, x, cjac,
    nstate) {
    ldcj <- nrow(cjac)
    ccon <- as.matrix(mat.or.vec(ncnln, 1))
    if (nstate == 1) {
        cjac <- as.matrix(mat.or.vec(ncnln, n))
    }
    if (needc[1] > 0) {
        if (mode == 0 | mode == 2) {
            ccon[1] <- x[1]^2 + x[2]^2 + x[3]^2 + x[4]^2
        }
        if (mode == 1 || mode == 2) {
            cjac[1, 1] <- 2 %*% x[1]
            cjac[1, 2] <- 2 %*% x[2]
            cjac[1, 3] <- 2 %*% x[3]
            cjac[1, 4] <- 2 %*% x[4]
```

```
            }
        }
    if (needc[2] > 0) {
        if (mode == 0 || mode == 2) {
            ccon[2] <- x[1] %*% x[2] %*% x[3] %*% x[4]
        }
        if (mode == 1 | mode == 2) {
            cjac[2, 1] <- x[2] %*% x[3] %*% x[4]
            cjac[2, 2] <- x[1] %*% x[3] %*% x[4]
            cjac[2, 3] <- x[1] %*% x[2] %*% x[4]
            cjac[2, 4] <- x[1] %*% x[2] %*% x[3]
        }
    }
    list(MODE = as.integer(mode), CCON = as.matrix(ccon), CJAC = as.matrix(cjac))
}
objfun = function(mode, n, x, grad, nstate) {
    if (mode == 0 || mode == 2) {
        objf <- x[1] %*% x[4] %*% (x[1] + x[2] + x[3]) + x[3]
    }
    if (mode == 1 || mode == 2) {
        grad[1] <- x[4] %*% (2 %*% x[1] + x[2] + x[3])
        grad[2] <- x[1] %*% x[4]
        grad[3] <- x[1] %*% x[4] + 1
        grad[4] <- x[1] %*% (x[1] + x[2] + x[3])
    }
    list(MODE = as.integer(mode), OBJF = objf, GRAD = as.matrix(grad))
}
a <- matrix(c(1, 1, 1, 1), nrow = 1, ncol = 4, byrow = TRUE)
bl <- matrix(c(1, 1, 1, 1, -1e+25, -1e+25, 25), nrow = 7,
    ncol = 1, byrow = TRUE)
bu <- matrix(c(5, 5, 5, 5, 20, 40, 1e+25), nrow = 7,
```

```
        ncol = 1, byrow = TRUE)
istate <- as.matrix(mat.or.vec(7, 1))
ccon <- as.matrix(mat.or.vec(2, 1))
cjac <- as.matrix(mat.or.vec(2, 4))
clamda <- as.matrix(mat.or.vec(7, 1))
h <- as.matrix(mat.or.vec(4, 4))
x <- matrix(c(1, 5, 5, 1), nrow = 4, ncol = 1, byrow = TRUE)
e04wd(a, bl, bu, confun, objfun, istate, ccon, cjac,
    clamda, h, x, optlist)
```

e04xa e04xa: Estimate (using numerical differentiation) gradient and/or
Hessian of a function

Description

e04xa computes an approximation to the gradient vector and/or the Hessian matrix for use in conjunction with, or following the use of an optimization function (such as e04uf).

Usage

```
e04xa(msglvl, epsrf, x, mode, objfun, hforw, lwsav, iwsav, rwsav,
    n = nrow(x))
```


Arguments

msglvl	integer Must indicate the amount of intermediate output desired (see the printed output description in the Fortran library documentation for a description of the printed output). All output is written on the current advisory message unit (see x04ab). double Must define e_{R}, which is intended to be a measure of the accuracy with which the problem function $F \operatorname{can}$ be computed. The value of e_{R} should reflect the relative precision of $1+\operatorname{abs}(F(x))$, i.e., acts as a relative precision when abs (F) is large, and as an absolute precision when abs (F) is small. For example, if $F(x)$ is typically of order 1000 and the first six significant digits are known to be correct, an appropriate value for e_{R} would be $1.0 E-6$.
x	double array
	The point x at which the derivatives are to be computed.

```
mode integer
            Indicates which derivatives are required.
                            mode = 0: The gradient and Hessian diagonal values having supplied the ob-
                    jective function via objfun.
                    mode = 1: The Hessian matrix having supplied both the objective function and
                    gradients via objfun.
                            mode =2: The gradient values and Hessian matrix having supplied the objec-
                            tive function via objfun.
objfun function
    If mode = 0, 2, objfun must calculate the objective function; otherwise if
    mode = 1, objfun must calculate the objective function and the gradients.
    (MODE,OBJF,OBJGRD) = objfun(mode,n,x,nstate)
hforw double array
    The initial trial interval for computing the appropriate partial derivative to the
    jth variable.
lwsav boolean array
iwsav integer array
rwsav double array
    These arguments are no longer required by e04xa.
n integer: default = nrow(x)
    The number }n\mathrm{ of independent variables.
```


Details

R interface to the NAG Fortran routine E04XAF.

Value

MODE	integer
	Is changed only if you set mode negative in objfun, i.e., you have requested termination of e04xa.
HFORW	double array
	$h f o r w[j]$ is the best interval found for computing a forward-difference approximation to the appropriate partial derivative for the j th variable.
OBJF	double
	The value of the objective function evaluated at the input vector in x . double array
OBJGRD	If mode $=0,2, \operatorname{objgrd}[j]$ contains the best estimate of the first partial derivative for the j th variable.
HCNTRL	double array
	$h c n t r l[j]$ is the best interval found for computing a central-difference approximation to the appropriate partial derivative for the j th variable.
H	double array
	If mode $=0$, the estimated Hessian diagonal elements are contained in the first column of this array.
IWARN	integer
	$i w a r n=0$ on successful exit.

INFO	integer array
info[$j]$ represents diagnostic information on variable j. (See the Errors section	
in Fortran library documentation for more details.)	
IFAIL	integer ifail $=0$ unless the function detects an error or a warning has been flagged (see the Errors section in Fortran library documentation).

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04xaf.pdf

Examples

```
optlist <- list()
ifail <- 0
objfun = function(mode, n, x, nstate) {
    objgrd <- as.matrix(mat.or.vec(n, 1))
    a <- x[1] + 10 %*% x[2]
    b <- x[3] - x[4]
    c <- x[2] - 2 %*% x[3]
    d <- x[1] - x[4]
    objf <- a^2 + 5 %*% b^2 + c^4 + 10 %*% d^4
    if (mode == 1) {
        objgrd[1] <- 40 %*% x[1]^3 + 2 %*% x[1] - 120 %*% x[4] %*%
            x[1]^2 + 120 %*% x[1] %*% x[4]^2 + 20 %*% x[2] -
            40 %*% x[4]^3
        objgrd[2] <- 200 %*% x[2] + 20 %*% x[1] + 4 %*% x[2]^3 +
            48 %*% x[2] %*% x[3]^2 - 24 %*% x[3] %*% x[2]^2 -
            32%*% x[3]^3
        objgrd[3] <- 10 %*% x[3] - 10 %*% x[4] - 8 %*% x[2]^3 +
            48%*% x[3] %*% x[2]^2 - 96 %*% x[2] %*% x[3]^2 +
            64 %*% x[3]^3
        objgrd[4] <- 10 %*% x[4] - 10 %*% x[3] - 40 %*% x[1]^3 +
            120 %*% x[4] %*% x[1]^2 - 120 %*% x[1] %*% x[4]^2 +
            40 %*% x[4]^3
    }
    list(MODE = as.integer(mode), OBJF = objf, OBJGRD = as.matrix(objgrd))
}
msglvl <- 0
epsrf <- -1
```

```
x <- matrix(c(3, -1, 0, 1), nrow = 4, ncol = 1, byrow = TRUE)
mode <- 0
hforw <- matrix(c(-1, -1, -1, -1), nrow = 4, ncol = 1,
        byrow = TRUE)
lwsav <- as.matrix(mat.or.vec(120, 1))
iwsav <- as.matrix(mat.or.vec(610, 1))
rwsav <- as.matrix(mat.or.vec(475, 1))
e04xa(msglvl, epsrf, x, mode, objfun, hforw, lwsav,
    iwsav, rwsav)
```

e04ya: Check user's function for calculating Jacobian of first deriva-
tives

Description

e04ya checks that a user-supplied function for evaluating a vector of functions and the matrix of their first derivatives produces derivative values which are consistent with the function values calculated.

Usage

$$
\begin{gathered}
\text { e04ya(m, lsqfun, } x, \\
n=\operatorname{nrow}(x))
\end{gathered}
$$

Arguments

$\mathrm{m} \quad$ integer
lsqfun function
1sqfun must calculate the vector of values $f_{i}(x)$ and their first derivatives $\frac{\partial f_{i}}{\partial x_{j}}$ at any point x. (The minimization functions mentioned in the Description in Fortran library documentation give you the option of resetting a argument to terminate immediately. e04ya will also terminate immediately, without finishing the checking process, if the argument in question is reset.)

$$
(I F L A G, F V E C, F J A C)=l s q f u n(i f l a g, m, n, x c, l d f j a c)
$$

X
n
double array
$x[j]$ for $j=1 \ldots n$, must be set to the coordinates of a suitable point at which to check the derivatives calculated by lsqfun. 'Obvious' settings, such as 0 or
1 , should not be used since, at such particular points, incorrect terms may take correct values (particularly zero), so that errors can go undetected. For a similar reason, it is preferable that no two elements of x should have the same value.
integer: default $=\operatorname{nrow}(x)$
The number m of residuals, $f_{i}(x)$, and the number n of variables, x_{j}.

Details

R interface to the NAG Fortran routine E04YAF.

Value

FVEC	double array Unless you set iflag negative in the first call of lsqfun, $f v e c[i]$ contains the value of f_{i} at the point supplied by you in x for $i=1 \ldots m$. double array Unless you set iflag negative in the first call of lsqfun, $f j a c[i, j]$ contains the value of the first derivative $\frac{\partial f_{i}}{\partial x_{j}}$ at the point given in x, as calculated by lsqfun for $j=1 \ldots n$ for $i=1 \ldots m$. IFAIL integer ifail $=0$ unless the function detects an error or a warning has been flagged (see the Errors section in Fortran library documentation).

Author(s)

NAG

References

```
http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04yaf.pdf
```


Examples

```
ifail <- 0
lsqfun = function(iflag, m, n, xc, ljc) {
    fvec <- as.matrix(mat.or.vec(m, 1))
    fjacc <- as.matrix(mat.or.vec(ljc, n))
    for (i in c(1:m)) {
        denom <- xc[2] %*% t[i, 2] + xc[3] %*% t[i, 3]
        if (iflag != 1) {
            fvec[i] <- xc[1] + t[i, 1]/denom - y[i]
        }
        if (iflag != 0) {
            fjacc[i, 1] <- 1
            dummy <- -1/(denom %*% denom)
            fjacc[i, 2] <- t[i, 1] %*% t[i, 2] %*% dummy
            fjacc[i, 3] <- t[i, 1] %*% t[i, 3] %*% dummy
        }
    }
    list(IFLAG = as.integer(iflag), FVEC = as.matrix(fvec), FJAC = as.matrix(fjacc))
}
```

```
m <- 15
x <- matrix(c(0.19, -1.34, 0.88), nrow = 3, ncol = 1,
    byrow = TRUE)
iw <- as.matrix(mat.or.vec(0, 0))
w <- as.matrix(mat.or.vec(69, 1))
y <- matrix(c(0.14, 0.18, 0.22, 0.25, 0.29, 0.32,
    0.35,0.39, 0.37, 0.58, 0.73, 0.96, 1.34, 2.1, 4.39), nrow = 1,
    ncol = 15, byrow = TRUE)
t <- matrix(c(1, 15, 1, 2, 14, 2, 3, 13, 3, 4, 12,
    4, 5, 11, 5, 6, 10, 6, 7, 9, 7, 8, 8, 8, 9, 7, 7, 10, 6,
    6, 11, 5, 5, 12, 4, 4, 13, 3, 3, 14, 2, 2, 15, 1, 1), nrow = 15,
    ncol = 3, byrow = TRUE)
e04ya(m, lsqfun, x)
```

e 04 yb
$\begin{aligned} & \text { e04yb: Check user's function for calculating Hessian of a sum of } \\ & \text { squares }\end{aligned}$

Description

e04yb checks that a user-supplied function for evaluating the second derivative term of the Hessian matrix of a sum of squares is consistent with a user-supplied function for calculating the corresponding first derivatives.

Usage

```
e04yb(m, lsqfun, lsqhes, \(x\), lb, iw, w,
    n \(=\) nrow (x))
```


Arguments

m	integer
lsqfun	function
	lsqun must calculate the vector of values $f_{i}(x)$ and their first derivatives $\frac{\partial f_{i}}{\partial x_{j}}$
at any point x. (e04he gives you the option of resetting arguments of lsfun	
to cause the minimization process to terminate immediately. e04yb will also	
terminate immediately, without finishing the checking process, if the argument	
in question is reset.)	

$$
(I F L A G, F V E C, F J A C)=\text { lsqfun(iflag, } m, n, x c, l d f j a c)
$$

lsqhes function
lsqhes must calculate the elements of the symmetric matrix

$$
B(x)=\sum_{i=1}^{m} f_{i}(x) G_{i}(x),
$$

at any point x, where $G_{i}(x)$ is the Hessian matrix of $f_{i}(x)$. (As with 1sqfun, a argument can be set to cause immediate termination.)

```
(IFLAG,B) = lsqhes(iflag,m,n,fvec,xc,lb)
```

double array
$x[j]$ for $j=1 \ldots n$, must be set to the coordinates of a suitable point at which to check the $b_{j k}$ calculated by lsqhes. 'Obvious' settings, such as 0 or 1 , should not be used since, at such particular points, incorrect terms may take correct values (particularly zero), so that errors could go undetected. For a similar reason, it is preferable that no two elements of x should have the same value.
lb integer
iw integer array
This array appears in the argument list purely so that, if e04yb is called by another library function, the library function can pass quantities to functions lsqfun and lsqhes via iw. iw is not examined or changed by e04yb. In general you must provide an array iw, but are advised not to use it. integer array
This array appears in the argument list purely so that, if e04yb is called by another library function, the library function can pass quantities to functions lsqfun and lsqhes via iw. iw is not examined or changed by e04yb. In general you must provide an array iw, but are advised not to use it.
double array
The actual length of w as declared in the function from which e04yb is called. double array
The actual length of w as declared in the function from which e04yb is called.
integer: default $=\operatorname{nrow}(x)$
The number m of residuals, $f_{i}(x)$, and the number n of variables, x_{j}.

Details

R interface to the NAG Fortran routine E04YBF.

Value

FVEC	double array Unless you set iflag negative in the first call of lsqfun, $f v e c[i]$ contains the value of f_{i} at the point supplied by you in x for $i=1 \ldots m$. double array FJAC Unless you set iflag negative in the first call of 1sqfun, $f j a c[i, j]$ contains the value of the first derivative $\frac{\partial f_{i}}{\partial x_{j}}$ at the point given in x, as calculated by lsqfun for $j=1 \ldots n$ for $i=1 \ldots m$.
B	double array Unless you set iflag negative in lsqhes, $b[j \times(j-1) / 2+k]$ contains the value of $b_{j k}$ at the point given in x as calculated by lsqhes for $k=1 \ldots j$ for $j=1 \ldots n$.

integer array
This array appears in the argument list purely so that, if e 04 yb is called by another library function, the library function can pass quantities to functions lsqfun and lsqhes via iw. iw is not examined or changed by e04yb. In general you must provide an array iw, but are advised not to use it.
integer array
This array appears in the argument list purely so that, if e04yb is called by another library function, the library function can pass quantities to functions lsqfun and lsqhes via iw. iw is not examined or changed by e04yb. In general you must provide an array iw, but are advised not to use it.

W double array
double array
IFAIL integer
ifail $=0$ unless the function detects an error or a warning has been flagged (see the Errors section in Fortran library documentation).

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04ybf.pdf

Examples

```
ifail <- 0
lsqfun = function(iflag, m, n, xc, ljc) {
    fvec <- as.matrix(mat.or.vec(m, 1))
    fjacc <- as.matrix(mat.or.vec(ljc, n))
    for (i in c(1:m)) {
        denom <- xc[2] %*% t[i, 2] + xc[3] %*% t[i, 3]
        fvec[i] <- xc[1] + t[i, 1]/denom - y[i]
        if (iflag != 0) {
            fjacc[i, 1] <- 1
            dummy <- -1/(denom %*% denom)
            fjacc[i, 2] <- t[i, 1] %*% t[i, 2] %*% dummy
            fjacc[i, 3] <- t[i, 1] %*% t[i, 3] %*% dummy
        }
    }
    list(IFLAG = as.integer(iflag), FVEC = as.matrix(fvec), FJAC = as.matrix(fjacc))
}
lsqhes = function(iflag, m, n, fvec, xc, lb) {
```

```
    b <- as.matrix(mat.or.vec(lb, 1))
    sum22 <- 0
    sum32 <- 0
    sum33 <- 0
    for (i in c(1:m)) {
        dummy <- 2 %*% t[i, 1]/(xc[2] %*% t[i, 2] + xc[3] %*%
                t[i, 3])^3
        sum22 <- sum22 + fvec[i] %*% dummy %*% t[i, 2]^2
        sum32 <- sum32 + fvec[i] %*% dummy %*% t[i, 2] %*% t[i,
            3]
        sum33 <- sum33 + fvec[i] %*% dummy %*% t[i, 3]^2
    }
    b[3] <- sum22
    b[5] <- sum32
    b[6] <- sum33
    list(IFLAG = as.integer(iflag), B = as.matrix(b))
}
m <- 15
x <- matrix(c(0.19, -1.34, 0.88), nrow = 3, ncol = 1,
    byrow = TRUE)
lb <- 6
iw <- as.matrix(mat.or.vec(1, 1))
w <- as.matrix(mat.or.vec(78, 1))
y <- matrix(c(0.14, 0.18, 0.22, 0.25, 0.29, 0.32,
    0.35, 0.39, 0.37, 0.58, 0.73, 0.96, 1.34, 2.1, 4.39), nrow = 1,
    ncol = 15, byrow = TRUE)
t <- matrix(c(1, 15, 1, 2, 14, 2, 3, 13, 3, 4, 12,
    4, 5, 11, 5, 6, 10, 6, 7, 9, 7, 8, 8, 8, 9, 7, 7, 10, 6,
    6, 11, 5, 5, 12, 4, 4, 13, 3, 3, 14, 2, 2, 15, 1, 1), nrow = 15,
    ncol = 3, byrow = TRUE)
e04yb(m, lsqfun, lsqhes, x, lb, iw, w)
```


Description

e04yc returns estimates of elements of the variance-covariance matrix of the estimated regression coefficients for a nonlinear least squares problem. The estimates are derived from the Jacobian of the function $f(x)$ at the solution.
This function may be used following any one of the nonlinear least squares functions e04fc e04fy e04gb e04gy e04gd e04gz e04he e04hy.

Usage

```
e04yc(job, m, fsumsq, \(s, ~ v\),
    \(\mathrm{n}=\) nrow (s))
```


Arguments

job integer
Which elements of C are returned as follows:
$j o b=-1$: The n by n symmetric matrix C is returned.
$j o b=0$: The diagonal elements of C are returned.
$j o b>0$: The elements of column job of C are returned.
m integer
The number m of observations (residuals $f_{i}(x)$).
fsumsq double
The sum of squares of the residuals, $F(\bar{x})$, at the solution \bar{x}, as returned by the nonlinear least squares function.
s double array
The n singular values of the Jacobian as returned by the nonlinear least squares function. See the Description in Fortran library documentation for information on supplying s following one of the easy-to-use functions.
v double array
The n by n right-hand orthogonal matrix (the right singular vectors) of J as returned by the nonlinear least squares function. See the Description in Fortran library documentation for information on supplying v following one of the easy-to-use functions.
n integer: default $=\operatorname{nrow}(\mathrm{s})$
The number n of variables $\left(x_{j}\right)$.

Details

R interface to the NAG Fortran routine E04YCF.

Value

V double array
If $j o b \geq 0, \mathrm{v}$ is unchanged.
CJ double array
If $j o b=0, \mathrm{cj}$ returns the n diagonal elements of C.
IFAIL integer
ifail $=0$ unless the function detects an error or a warning has been flagged (see the Errors section in Fortran library documentation).

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04ycf.pdf

Examples

```
ifail <- 0
job <- 0
m <- 15
fsumsq <- 0.00821487730657898
s <- matrix(c(4.096503460741, 1.59495793805472, 0.0612584931217495),
    nrow = 3, ncol = 1, byrow = TRUE)
v <- matrix(c(0.935395908691802, 0.352951220949886,
    -0.0214459700788422, -0.259228425671719, 0.643234592093676,
    -0.72045116618536, -0.240489328924174, 0.679466478322564,
    0.693173995119214), nrow = 3, ncol = 3, byrow = TRUE)
e04yc(job, m, fsumsq, s, v)
```

 e05jb e05jb: Global optimization by multi-level coordinate search, simple bounds, using function values only

Description

e 05 jb is designed to find the global minimum or maximum of an arbitrary function, subject to simple bound-constraints using a multi-level coordinate search method. Derivatives are not required, but convergence is only guaranteed if the objective function is continuous in a neighbourhood of a global optimum. It is not intended for large problems.
The initialization function e05ja must have been called before calling e05jb.

Usage

```
e05jb(objfun, ibound, iinit, bl, bu, list, numpts, initpt, monit, optlist,
    n = nrow(bl),
    sdlist = ncol(list))
```


Arguments

objfun
ibound
bl double array
bu double array
$b l$ is ℓ, the array of lower bounds. $b u$ is u, the array of upper bounds.
list double array
This argument need not be set on entry if you wish to use one of the preset initialization methods (iinit $\neq 3$).
function
objfun must evaluate the objective function $F(x)$ for a specified n-vector x.
(F, INFORM) $=$ objfun($\mathrm{n}, \mathrm{x}, \mathrm{nstate)}$
integer
Indicates whether the facility for dealing with bounds of special forms is to be used. ibound must be set to one of the following values.
ibound $=0$: You will supply ℓ and u individually.
ibound $=1$: There are no bounds on x.
ibound $=2$: There are semi-infinite bounds $0 \leq x$.
ibound $=3$: There are constant bounds $\ell=\ell_{1}$ and $u=u_{1}$.
integer
Selects which initialization method to use.
iinit $=0$: Simple initialization (boundary and midpoint), with numpts $[i]=3$, initpt $[i]=2$ and $\operatorname{list}[i, j]=(b l[i](b l[i]+b u[i]) / 2 b u[i])$, for $i=1,2, \ldots, n$ and $j=1,2,3$.
iinit $=1$: Simple initialization (off-boundary and midpoint), with numpts $[i]=$
3 , initpt $[i]=2$ and list $[i, j]=((5 b l[i]+b u[i]) / 6(b l[i]+b u[i]) / 2(b l[i]+5 b u[i]) / 6)$, for $i=1,2, \ldots, n$ and $j=1,2,3$.
iinit $=2$: Initialization using linesearches.
iinit $=3$: You are providing your own initialization list.
iinit $=4$: Generate a random initialization list.

This argument need not be set on entry if you wish to use one of the preset initialization methods (iinit $\neq 3$).
integer array
This argument need not be set on entry if you wish to use one of the preset initialization methods (iinit $\neq 3$).
function
monit may be used to monitor the optimization process. It is invoked upon every successful completion of the procedure in which a sub-box is considered for splitting. It will also be called just before e 05 jb exits if that splitting procedure was not successful.

```
(INFORM) = monit(n,ncall,xbest,icount,ninit,list,numpts,initpt,nbas
```

options list

Optional parameters may be listed, as shown in the following table:

Name

Defaults

Function Evaluations Limit	integer	Default $=100 n_{r}^{2}$
Infinite Bound Size	double	Default $=r_{\text {max }}^{\frac{1}{4}}$
Local Searches	string	Default $={ }^{\prime} \mathrm{ON}^{\prime}$
Local Searches Limit	integer	Default $=50$
Local Searches Tolerance	double	Default $=2 \epsilon$
Minimize		Default
Maximize		
Nolist		Default
List		
Repeatability	string	Default $={ }^{\prime} \mathrm{OFF}^{\prime}$
Splits Limit	integer	Default $=\left\lfloor d\left(n_{r}+2\right) / 3\right\rfloor$
Static Limit	integer	Default $=3 n_{r}$
Target Objective Error	double	Default $=\epsilon^{\frac{1}{4}}$
Target Objective Safeguard	double	Default $=\epsilon^{\frac{1}{2}}$
Target Objective Value	double	

```
n integer: default = nrow(bl)
n, the number of variables.
sdlist integer: default = ncol(list)
. sdlist is, at least, the maximum over i of the number of points in coordi-
nate i at which to split according to the initialization list list; that is, sdlist }
maxinumpts[i].
```


Details

R interface to the NAG Fortran routine E05JBF.

Value

BL	double array
BU	double array
	Unless ifail $=1$, ifail $=2$ on exit, bl and bu are the actual arrays of bounds used by e05jb.
LIST	double array
	Unless ifail $=1$, ifail $=2$, ifail $=-999$ on exit, the actual initialization data used by e05jb. If you wish to monitor the contents of list you are advised to do so solely through monit, not through the output value here.
NUMP TS	integer array
	Unless ifail $=1$, ifail $=2$, ifail $=-999$ on exit, the actual initialization data used by e05jb.
INITPT	integer array
	Unless ifail $=1$, ifail $=2$, ifail $=-999$ on exit, the actual initialization data used by e05jb.
X	double array
	If ifail $=0$, contains an estimate of the global optimum (see also the Accuracy section in the Fortran library documentation).
OBJ	double
	If ifail $=0$, contains the function value at x .

```
IFAIL integer
    ifail = 0 unless the function detects an error or a warning has been flagged (see
    the Errors section in Fortran library documentation).
```


Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E05/e05jbf.pdf

Examples

```
optlist <- list()
ifail <- 0
peaks <- function(x1, x2) {
    f = 3 * (1 - x1)^2 * exp(-(x1^2) - (x2 + 1)^2) - 10 * (x1/5 -
        x1^3 - x2^5) * exp (-x1^2 - x2^2) - 1/3 * exp (- (x1 + 1)^2 -
        x2^2)
}
objective = function(n, x, nstate) {
print(x[1])
print(x[2])
    if (n == 2) {
        inform <- 0
    }
    else {
        inform <- -1
    }
    if (inform >= 0) {
        if (nstate == 1) {
            writeLines(toString(cat(sprintf("\n", "\n"))))
                writeLines(toString(cat(sprintf("OBJFUN was just called for the first time",
                "\n"))) )
        }
        f <- peaks(x[1], x[2])
    }
    list(F = f, INFORM = as.integer(inform))
```

\}
monitor $=$ function(n, ncall, xbest, icount, ninit,
list, numpts, initpt, nbaskt, xbaskt, boxl, boxu, nstate) \{
inform <- 0
if (nstate $==0$ || nstate $==1$) \{ writeLines(toString(cat(sprintf("\n", "\n")))) writeLines(toString(cat(sprintf("*** Begin monitoring information ***", " ${ }^{\text {n" }}$)))

```
        writeLines(toString(cat(sprintf("\n", "\n"))))
```

 \}
 if (nstate <= 0) \{
 writeLines (toString(cat(sprintf("Total sub-boxes \(=\%\) ",
 toString(icount[1]), "\n"))))
 writeLines(toString(cat(sprintf("Total function evaluations = \%s",
 toString(ncall), "\n"))))
 writeLines (toString (cat (sprintf("Total function evaluations used in local search
 toString(icount[2]), "\n"))))
 writeLines (toString (cat(sprintf("Total points used in local search = \%s",
 toString(icount[3]), "\n"))))
 writeLines(toString(cat(sprintf("Total sweeps through levels = \%s",
 toString(icount[4]), "\n"))))
 writeLines(toString(cat(sprintf("Total splits by init. list = \%s",
 toString(icount[5]), "\n"))))
 writeLines(toString(cat(sprintf("Lowest level with nonsplit boxes = \%s",
 toString(icount[6]), "\n"))))
 writeLines (toString(cat(sprintf("Number of candidate minima in the \%s",
 "shopping basket\%s", " = \%s", toString(nbaskt),
 " \({ }^{\text {n" }}\)))))
 writeLines(toString(cat(sprintf("Shopping basket:", "\n"))))
    ```
        print(xbaskt)
        writeLines(toString(cat(sprintf("\n", "\n"))))
        writeLines(toString(cat(sprintf("*** End monitoring information ***",
                "\n"))))
        writeLines(toString(cat(sprintf("\n", "\n"))))
    }
    list(INFORM = as.integer(inform))
}
prob <- "peaks"
xres <- 100
yres <- 100
bl <- matrix(c(-3, -3), nrow = 2, ncol = 1, byrow = TRUE)
bu <- -bl
fglob <- -6.55
xglob <- matrix(c(0.23, -1.63), nrow = 2, ncol = 1,
    byrow = TRUE)
n <- length(bl)
if (ifail == 0) {
    writeLines(toString(cat(sprintf("\n", "\n"))))
    writeLines(toString(cat(sprintf("Solve with no options or init.-list data",
            "\n"))))
    ibound <- 0
    iinit <- 0
    list <- as.matrix(mat.or.vec(n, 3))
    numpts <- as.matrix(mat.or.vec(n, 1))
    initpt <- as.matrix(mat.or.vec(n, 1))
```

```
    ans <- e05jb(objective, ibound, iinit, bl, bu, list, numpts,
    initpt, monitor, optlist)
    bl <- ans$BL
    bu <- ans$BU
    list <- ans$LIST
    numpts <- ans$NUMPTS
    initpt <- ans$INITPT
    x <- ans$X
    obj <- ans$OBJ
    ifail <- ans$IFAIL
    ifail <- ans$IFAIL
    writeLines(toString(cat(sprintf("e05jbno options exited with ifail = %s",
        toString(ifail), "\n"))))
    if (ifail == 0) {
    writeLines(toString(cat(sprintf("xbest:", "\n"))))
    xbest <- ans$XBEST
print(xbest)
        writeLines(toString(cat(sprintf("\n"))))
        obj <- ans$OBJ
        writeLines(toString(cat(sprintf("obj = %s", toString(obj),
            "\n"))))
    }
    writeLines(toString(cat(sprintf("\n", "\n"))))
    writeLines(toString(cat(sprintf("Solve with options and init.-list data",
        "\n"))))
infbnd <-1.1579+077
    iinit <- 3
    list <- as.matrix(mat.or.vec(n, 3))
    list[, 1] <- bl
    list[, 3] <- bu
    list[, 2] <- matrix(c(-1, 0), nrow = 2, ncol = 1, byrow = TRUE)
    numpts <- 3 * matrix(1, n, 1)
```

```
        initpt <- 2 * matrix(1, n, 1)
        ans <- e05jb(objective, ibound, iinit, bl, bu, list, numpts,
        initpt, monitor, optlist)
        ifail <- ans$IFAIL
        writeLines(toString(cat(sprintf("e05jboptions exited with ifail = %s",
    toString(ifail), "\n"))))
        if (ifail == 0) {
    writeLines(toString(cat(sprintf("xbest:", "\n"))))
    xbest <- ans$X
print(xbest)
    writeLines(toString(cat(sprintf("\n"))))
        obj <- ans$OBJ
        writeLines(toString(cat(sprintf("obj = %s", toString(obj),
            "\n"))))
        }
    }
```

f08fa f08fa: Computes all eigenvalues and, optionally, eigenvectors of a real
symmetric matrix

Description

f08fa computes all the eigenvalues and, optionally, all the eigenvectors of a real n by n symmetric matrix A.

Usage

```
f08fa(jobz, uplo, a,
    n = nrow(a))
```


Arguments

| jobz | string |
| :--- | :--- |
| uplo | If $j o b z={ }^{\prime} \mathrm{N}^{\prime}$, compute eigenvalues only. |
| | string |
| | If uplo $={ }^{\prime} \mathrm{U}^{\prime}$, the upper triangular part of A is stored. |

double array
The n by n matrix A.
See the Fortran Library documentation for a description of the storage layout for this array.
n
integer: default $=\operatorname{nrow}(\mathrm{a})$
n, the order of the matrix A.

Details

R interface to the NAG Fortran routine F08FAF.

Value

A double array
If $j o b z={ }^{\prime} \mathrm{v}^{\prime}$, then if $I N=0$, a contains the orthonormal eigenvectors of the matrix A.

W
double array
If $I N=0$, the eigenvalues in ascending order.
INFO
integer
info $=0$ unless the function detects an error (see the Errors section in Fortran library documentation).

Author(s)

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/F08/f08faf.pdf

Examples

```
jobz<-'Vectors'
uplo<-'Upper'
a<-matrix(c(1,2,3,4,0,2,3,4,0,0,3,4,0,0,0,4),nrow=4,ncol=4,byrow=TRUE)
f08fa(jobz,uplo,a)
```


g02aa g02aa: Computes the nearest correlation matrix to a real square ma-

 trix, using the method of Qi and Sun
Description

g02aa computes the nearest correlation matrix, in the Frobenius norm, to a given square, input matrix.

Usage

g02aa (g,
$\mathrm{n}=\mathrm{nrow}(\mathrm{g})$,
errtol $=0.0$,
maxits = 0,
maxit $=0$)

Arguments

9 double array G, the initial matrix.
$\mathrm{n} \quad$ integer: default $=\operatorname{nrow}(\mathrm{g})$ The size of the matrix G.
errtol double: default $=0.0$
The termination tolerance for the Newton iteration. If errtol ≤ 0.0 then $n \times$ $\sqrt{\text { machineprecision }}$ is used.
maxits \quad integer: default $=0$
Maxits specifies the maximum number of iterations used for the iterative scheme used to solve the linear algebraic equations at each Newton step.
maxit \quad integer: default $=0$
Specifies the maximum number of Newton iterations.

Details

R interface to the NAG Fortran routine G02AAF.

Value
G double array
A symmetric matrix $\frac{1}{2}\left(G+G^{T}\right)$ with the diagonal set to I.
X
double array
Contains the nearest correlation matrix.
ITER integer
The number of Newton steps taken.
FEVAL integer
The number of function evaluations of the dual problem.
NRMGRD double
The norm of the gradient of the last Newton step.

IFAIL integer
ifail $=0$ unless the function detects an error or a warning has been flagged (see the Errors section in Fortran library documentation).

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/G02/g02aaf.pdf

Examples

```
ifail <- 0
g <- matrix(c(2, -1, 0, 0, -1, 2, -1, 0, 0, -1, 2,
    -1, 0, 0, -1, 2), nrow = 4, ncol = 4, byrow = TRUE)
errtol <- 1e-07
maxits <- 200
maxit <- 10
ans <- g02aa(g)
if (ifail == 0) {
    writeLines(sprintf("\n Nearest Correlation Matrix\n",
        "\n"))
    x <- ans$X
    print(x)
    iter <- ans$ITER
    writeLines(sprintf("\n Number of Newton steps taken: %d",
        iter))
    feval <- ans$FEVAL
    writeLines(sprintf(" Number of function evaluations: %d",
        feval))
    nrmgrd <- ans$NRMGRD
    if (nrmgrd > errtol) {
        writeLines(sprintf(" Norm of gradient of last Newton step: %6.4f",
```

\}
g02ab g02ab: Computes the nearest correlation matrix to a real square matrix, augmented g02aa to incorporate weights and bounds

Description

g02ab computes the nearest correlation matrix, in the Frobenius norm or weighted Frobenius norm, and optionally with bounds on the eigenvalues, to a given square, input matrix.

Usage

```
g02ab(g, opt, alpha, w,
    n = nrow(w),
    errtol = 0.0,
    maxits = 0,
    maxit = 0)
```


Arguments

9 double array
opt string
Indicates the problem to be solved.
$o p t={ }^{\prime} \mathrm{A}^{\prime}$: The lower bound problem is solved.
$o p t=' \mathrm{~W}$ ': The weighted norm problem is solved.
$o p t={ }^{\prime} \mathrm{B}^{\prime}$: Both problems are solved.
alpha double
The value of α.
w double array
The square roots of the diagonal elements of W, that is the diagonal of $W^{\frac{1}{2}}$.
$\mathrm{n} \quad$ integer: default $=\operatorname{nrow}(\mathrm{w})$
The size of the matrix G.
errtol double: default $=0.0$
The termination tolerance for the Newton iteration. If errtol ≤ 0.0 then $n \times$ $\sqrt{\text { machineprecision }}$ is used.
maxits \quad integer: default $=0$
Specifies the maximum number of iterations to be used by the iterative scheme to solve the linear algebraic equations at each Newton step.
maxit \quad integer: $\mathbf{d e f a u l t}=0$
Specifies the maximum number of Newton iterations.

Details

R interface to the NAG Fortran routine G02ABF.

Value

G double array
A symmetric matrix $\frac{1}{2}\left(G+G^{T}\right)$ with the diagonal set to I.
W
double array
If $o p t={ }^{\prime} \mathrm{W}^{\prime},{ }^{\prime} \mathrm{B}^{\prime}$, the array is scaled so $\max \left(W_{i}\right)=1$ for $i=1 \ldots n$.
X
double array
Contains the nearest correlation matrix.
ITER

FEVAL

NRMGRD

IFAIL
integer
The number of Newton steps taken.
integer
The number of function evaluations of the dual problem.
double
The norm of the gradient of the last Newton step.
integer
ifail $=0$ unless the function detects an error or a warning has been flagged (see the Errors section in Fortran library documentation).

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/G02/g02abf.pdf

Examples

```
ifail <- 0
opt <- "b"
alpha <- 0.02
g <- matrix(c(2, -1, 0, 0, -1, 2, -1, 0, 0, -1, 2,
    -1, 0, 0, -1, 2), nrow = 4, ncol = 4, byrow = TRUE)
w <- matrix(c(100, 20, 20, 20), nrow = 4, ncol = 1,
    byrow = TRUE)
errtol <- 1e-07
maxits <- 200
```

```
    maxit <- 10
    ans <- g02ab(g, opt, alpha, w)
    if (ifail == 0) {
        writeLines(sprintf("\n Nearest Correlation Matrix\n",
                "\n"))
        x <- ans$X
        print(x)
        iter <- ans$ITER
        writeLines(sprintf("\n Number of Newton steps taken: %d\n",
            iter))
        feval <- ans$FEVAL
        writeLines(sprintf(" Number of function evaluations: %d\n",
            feval))
        alpha <- ans$ALPHA
        writeLines(sprintf(" \n\n Alpha: %30.3f\n",
            alpha))
```

 \}
 g02ae: Computes the nearest correlation matrix with k-factor structure to a real square matrix

Description

g02ae computes the factor loading matrix associated with the nearest correlation matrix with k factor structure, in the Frobenius norm, to a given square, input matrix.

Usage

$$
\begin{aligned}
& \text { g02ae }(\mathrm{g}, \mathrm{k}, \\
& \mathrm{n}=\operatorname{nrow}(\mathrm{g}), \\
& \\
& \quad \text { errtol }=0.0, \\
& \\
& \text { maxit }=0)
\end{aligned}
$$

Arguments

g
double array
G, the initial matrix.
k
integer
k, the number of factors and columns of X.
n
integer: default $=\operatorname{nrow}(\mathrm{g})$
n, the size of the matrix G.
errtol double: default $=0.0$
The termination tolerance for the projected gradient norm. See references for further details. If errtol ≤ 0.0 then 0.01 is used. This is often a suitable default value.
maxit \quad integer: default $=0$
Specifies the maximum number of iterations in the spectral projected gradient method.

Details

R interface to the NAG Fortran routine G02AEF.

Value

G double array
A symmetric matrix $\frac{1}{2}\left(G+G^{T}\right)$ with the diagonal elements set to unity.
$\mathrm{X} \quad$ double array
Contains the matrix X.
ITER integer
The number of steps taken in the spectral projected gradient method.
FEVAL integer
The number of function evaluations.
NRMPGD double
The norm of the projected gradient at the final iteration.
IFAIL integer
ifail $=0$ unless the function detects an error or a warning has been flagged (see the Errors section in Fortran library documentation).

Author(s)

NAG

References

Examples

```
ifail <- 0
errtol <- 1e-07
g <- matrix(c(2, -1, 0, 0, -1, 2, -1, 0, 0, -1, 2,
    -1, 0, 0, -1, 2), nrow = 4, ncol = 4, byrow = TRUE)
k <- 2
maxits <- 200
maxit <- 10
ans <- g02ae(g, k)
if (ifail == 0) {
    writeLines(sprintf("\n Factor Loading Matrix x:\n",
                "\n"))
        x <- ans$X
        print(x)
        iter <- ans$ITER
        writeLines(sprintf("\n Number of Newton steps taken: %d\n",
            iter))
        feval <- ans$FEVAL
        writeLines(sprintf(" Number of function evaluations: %d\n",
            feval))
}
```

NAGFWrappers Provides interfaces to NAG Fortran Library

Description

Provides interfaces to a selection of routines from the NAG Fortran Library

Details

Package: NAGFWrapper

| Type: | Package |
| :--- | :--- |
| Version: | 22.0 |
| Date: | $2011-06-01$ |
| License: | Artistic-2.0 |
| LazyLoad: | yes |

Author(s)

NAG
Maintainer: NAG support@nag.co.uk

References

```
www.nag.co.uk
```

s17dc sl7dc: Bessel functions $Y_{-} n u+a(z)$, real $a>=0$, complex $z, n u=0$,
1,2,...

Description

s17dc returns a sequence of values for the Bessel functions $Y_{\nu+n}(z)$ for complex z, non-negative ν and $n=0,1, \ldots, N-1$, with an option for exponential scaling.

Usage

sl7dc(fnu, $z, n, s c a l)$

Arguments

fnu double ν, the order of the first member of the sequence of functions.
z
complex
z, the argument of the functions.
n
integer
N, the number of members required in the sequence $Y_{\nu}(z), Y_{\nu+1}(z), \ldots, Y_{\nu+N-1}(z)$.
scal string
The scaling option.
scal $=$ ' U ': The results are returned unscaled.
scal $={ }^{\prime} \mathrm{S}^{\prime}$: The results are returned scaled by the factor $e^{-\mathrm{abs}(\operatorname{Im}(z))}$.

Details

R interface to the NAG Fortran routine S17DCF.

Value

| CY | complex array |
| :--- | :--- |
| The N required function values: $c y[i]$ contains $Y_{\nu+i-1}(z)$ for $i=1 \ldots N$. | |
| NZ | integer
 The number of components of cy that are set to zero due to underflow. The
 positions of such components in the array cy are arbitrary.
 integer
 ifail $=0$ unless the function detects an error or a warning has been flagged (see
 the Errors section in Fortran library documentation). |

Author(s)

NAG

References

```
http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/S/s17dcf.pdf
```


Examples

```
ifail<-0
fnu<-0
z<-complex(1,0.3,0.4)
n<-2
scal<-'U'
s17dc(fnu,z,n,scal)
```

```
s17de
s17de: Bessel functions \(J \_n u+a(z)\), real \(a>=0\), complex \(z, n u=0\), 1, 2,...
```


Description

s17de returns a sequence of values for the Bessel functions $J_{\nu+n}(z)$ for complex z, non-negative ν and $n=0,1, \ldots, N-1$, with an option for exponential scaling.

Usage

```
sl7de(fnu, z, n, scal)
```


Arguments

| fnu | double |
| :---: | :---: |
| z | ν, the order of the first member of the sequence of functions. complex |
| n | The argument z of the functions. integer |
| scal | N, the number of members required in the sequence $J_{\nu}(z), J_{\nu+1}(z), \ldots, J_{\nu+N-1}(z)$. string |
| | The scaling option.
 scal $={ }^{\prime} \mathrm{U}^{\prime}$: The results are returned unscaled.
 $s c a l={ }^{\prime} \mathrm{S}^{\prime}$: The results are returned scaled by the factor $e^{-\mathrm{abs}(\operatorname{Im}(z))}$. |

Details

R interface to the NAG Fortran routine S17DEF.

Value

CY complex array
The N required function values: $c y[i]$ contains $J_{\nu+i-1}(z)$ for $i=1 \ldots N$.
NZ
integer
The number of components of cy that are set to zero due to underflow. If $n z>0$, then elements $c y[n-n z+1], c y[n-n z+2], \ldots, c y[n]$ are set to zero.
IFAIL integer
ifail $=0$ unless the function detects an error or a warning has been flagged (see the Errors section in Fortran library documentation).

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/S/s17def.pdf

Examples

```
ifail<-0
fnu<-0
z<-complex(1,0.3,0.4)
n<-2
scal<-'U'
s17de(fnu,z,n,scal)
```

```
s17dg
sl7dg: Airy functions Ai(z) and Ai'(z), complex z
```


Description

s 17 dg returns the value of the Airy function $\operatorname{Ai}(z)$ or its derivative $A i^{\prime}(z)$ for complex z, with an option for exponential scaling.

Usage

```
sl7dg(deriv, z, scal)
```


Arguments

```
deriv string
Specifies whether the function or its derivative is required.
If deriv = ' F', Ai (z) is returned.
If deriv = 'D',Ai'(z) is returned.
complex
The argument z of the function.
scal string
The scaling option.
scal = 'U': The result is returned unscaled.
scal = 'S': The result is returned scaled by the factor }\mp@subsup{e}{}{2z\sqrt{}{z}/3}\mathrm{ .
```


Details

R interface to the NAG Fortran routine S17DGF.

Value

AI complex
The required function or derivative value.
NZ integer
Indicates whether or not ai is set to zero due to underflow. This can only occur when scal $={ }^{\prime} \mathrm{U}^{\prime}$.
$n z=0:$ ai is not set to zero.
$n z=1$: ai is set to zero.
IFAIL integer
ifail $=0$ unless the function detects an error or a warning has been flagged (see the Errors section in Fortran library documentation).

Author(s)

NAG

References

```
http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/S/s17dgf.pdf
```


Examples

```
ifail<-0
deriv<-'F'
z<-complex(1,0.3,0.4)
scal<-'U'
s17dg(deriv,z,scal)
```

```
s17dh sl7dh: Airy functions Bi(z) and Bi'(z), complex z
```


Description

s 17 dh returns the value of the Airy function $\operatorname{Bi}(z)$ or its derivative $B i^{\prime}(z)$ for complex z, with an option for exponential scaling.

Usage

```
sl7dh(deriv, z, scal)
```


Arguments

```
deriv string
            Specifies whether the function or its derivative is required.
            deriv = ' F': Bi (z) is returned.
            deriv = 'D':Bi'(z) is returned.
            complex
            The argument z of the function.
scal string
            The scaling option.
                            scal = 'U': The result is returned unscaled.
                            scal = 'S': The result is returned scaled by the factor e}\mp@subsup{e}{}{\operatorname{abs}(\operatorname{Re}(2z\sqrt{}{z}/3))}\mathrm{ .
```


Details

R interface to the NAG Fortran routine S17DHF.

Value

BI complex
The required function or derivative value.
IFAIL
integer
ifail $=0$ unless the function detects an error or a warning has been flagged (see the Errors section in Fortran library documentation).

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/S/s17dhf.pdf

Examples

```
ifail<-0
deriv<-'F'
z<-complex(1,0.3,0.4)
scal<-'U'
s17dh(deriv,z,scal)
```

s17dl sl7dl: Hankel functions $H_{-} n u+a^{\wedge}(j)(z), j=1,2$, real $a>=0$, complex z, nu=0,1,2,...

Description

s17dl returns a sequence of values for the Hankel functions $H_{\nu+n}^{(1)}(z)$ or $H_{\nu+n}^{(2)}(z)$ for complex z, non-negative ν and $n=0,1, \ldots, N-1$, with an option for exponential scaling.

Usage

s17dl(m, fnu, z, n, scal)

Arguments

$m \quad$ integer
The kind of functions required.
$m=1$: The functions are $H_{\nu}^{(1)}(z)$.
$m=2$: The functions are $H_{\nu}^{(2)}(z)$.
fnu double
ν, the order of the first member of the sequence of functions.
z
complex
The argument z of the functions.
n
integer
N, the number of members required in the sequence $H_{\nu}^{(m)}(z), H_{\nu+1}^{(m)}(z), \ldots, H_{\nu+N-1}^{(m)}(z)$.
scal
string
The scaling option.
$s c a l={ }^{\prime} \mathrm{U}$ ': The results are returned unscaled.
scal $={ }^{\prime} \mathrm{S}^{\prime}$: The results are returned scaled by the factor $e^{-i z}$ when $m=1$, or by the factor $e^{i z}$ when $m=2$.

Details

R interface to the NAG Fortran routine S17DLF.

Value

| CY | complex array |
| :--- | :--- |
| The N required function values: $c y[i]$ contains $H_{\nu+i-1}^{(m)}(z)$ for $i=1 \ldots N$. | |
| integer | |
| | The number of components of cy that are set to zero due to underflow. If $n z>0$, |
| then if $\operatorname{Im}(z)>0.0$ and $m=1$, or $\operatorname{Im}(z)<0.0$ and $m=2$, elements | |
| $c y[1], c y[2], \ldots, c y[n z]$ are set to zero. In the complementary half-planes, nz | |
| simply states the number of underflows, and not which elements they are. | |
| IFAIL | integer |
| ifail $=0$ unless the function detects an error or a warning has been flagged (see | |
| the Errors section in Fortran library documentation). | |

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/S/s17dlf.pdf

Examples

```
ifail<-0
m<-1
fnu<-0
z<-complex(1,0.3,0.4)
n<-2
scal<-'U'
sl7dl(m,fnu,z,n,scal)
```

```
    s18dc sl8dc: Modified Bessel functions K_nu +a(z), real a >= 0, complex
        z,nu=0,l,2,\ldots
```


Description

s18dc returns a sequence of values for the modified Bessel functions $K_{\nu+n}(z)$ for complex z, non-negative ν and $n=0,1, \ldots, N-1$, with an option for exponential scaling.

Usage

```
sl8dc(fnu, z, n, scal)
```


Arguments

| fnu | double |
| :--- | :--- |
| ν, the order of the first member of the sequence of functions. | |
| z | complex
 n |
| The argument z of the functions. | |
| integer | |
| | N, the number of members required in the sequence $K_{\nu}(z), K_{\nu+1}(z), \ldots, K_{\nu+N-1}(z)$. |
| | string |
| | The scaling option.
 $s c a l='^{\prime}:$ |
| | $s c a l={ }^{\prime} \mathrm{S}^{\prime}:$ The results are returned unscaled. |

Details

R interface to the NAG Fortran routine S18DCF.

Value

CY complex array
The N required function values: $c y[i]$ contains $K_{\nu+i-1}(z)$ for $i=1 \ldots N$.
NZ
integer
The number of components of cy that are set to zero due to underflow. If $n z>0$ and $\operatorname{Re}(z) \geq 0.0$, elements $c y[1], c y[2], \ldots, c y[n z]$ are set to zero. If $\operatorname{Re}(z)<$ $0.0, \mathrm{nz}$ simply states the number of underflows, and not which elements they are.
IFAIL integer
ifail $=0$ unless the function detects an error or a warning has been flagged (see the Errors section in Fortran library documentation).

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/S/s18dcf.pdf

Examples

```
ifail<-0
fnu<-0
z<-complex(1,0.3,0.4)
n<-2
```

```
scal<-'U'
s18dc(fnu,z,n,scal)
```

 s18de \(\quad\) s18de: Modified Bessel functions \(I_{-} n u+a(z)\), real \(a>=0\), complex \(z\),
 \(n u=0,1,2, \ldots\)

Description

s18de returns a sequence of values for the modified Bessel functions $I_{\nu+n}(z)$ for complex z, nonnegative ν and $n=0,1, \ldots, N-1$, with an option for exponential scaling.

Usage

sl8de(fnu, z, n, scal)

Arguments

| fnu | double |
| :---: | :---: |
| z | ν, the order of the first member of the sequence of functions. complex |
| | The argument z of the functions. |
| n | integer |
| scal | N, the number of members required in the sequence $I_{\nu}(z), I_{\nu+1}(z), \ldots, I_{\nu+N-1}(z)$. string |
| | The scaling option. |
| | scal $=$ ' U^{\prime} : The results are returned unscaled. |
| | $s c a l={ }^{\prime} \mathrm{S}^{\prime}$: The results are returned scaled by the factor $e^{-\mathrm{abs}(\operatorname{Re}(z))}$. |

Details

R interface to the NAG Fortran routine S18DEF.

Value

| CY | complex array |
| :--- | :--- |
| The N required function values: $c y[i]$ contains $I_{\nu+i-1}(z)$ for $i=1 \ldots N$. | |
| IFAIL | integer
 The number of components of cy that are set to zero due to underflow.
 integer
 ifail $=0$ unless the function detects an error or a warning has been flagged (see
 the Errors section in Fortran library documentation). |

Author(s)

References

http://www.nag.co.uk/numeric/EL/nagdoc_fl23/pdf/S/s18def.pdf

Examples

```
ifail<-0
fnu<-0
z<-complex(1,0.3,-0.4)
n<-2
scal<-'U'
s18de(fnu,z,n,scal)
```

$$
\text { s } 18 \mathrm{gk}
$$

sl8gk: Bessel function of the 1st kind J_alpha +/-n(z)

Description

s18gk returns a sequence of values for the Bessel functions $J_{\alpha+n-1}(z)$ or $J_{\alpha-n+1}(z)$ for complex z, non-negative $\alpha<1$ and $n=1,2, \ldots, \operatorname{abs}(N)+1$.

Usage

```
s18gk(z, a, nl)
```


Arguments

z complex
The argument z of the function.
a
double
The order α of the first member in the required sequence of function values.
nl
integer
The value of N.

Details

R interface to the NAG Fortran routine S18GKF.

Value

B complex array
With ifail $=0$, ifail $=3$, the required sequence of function values: $b[n]$ contains $J_{\alpha+n-1}(z)$ if $n l \geq 0$ and $J_{\alpha-n+1}(z)$ otherwise for $n=1 \ldots$ abs $(n l)+1$.
IFAIL
integer
ifail $=0$ unless the function detects an error or a warning has been flagged (see the Errors section in Fortran library documentation).

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/S/s18gkf.pdf

Examples

```
ifail<-0
z<-complex(1,0.6,-0.8)
a<-0
nl<-3
sl8gk(z,a,nl)
```

s22aa: Legendre functions of 1st kind $P_{_} n^{\wedge} m(x)$ or overline $P _n^{\wedge} m(x)$

Description

s22aa returns a sequence of values for either the unnormalized or normalized Legendre functions of the first kind $P_{n}^{m}(x)$ or $\overline{P_{n}^{m}}(x)$ for real x of a given order m and degree $n=0,1, \ldots, N$.

Usage

s22aa(mode, $x, m, n l)$

Arguments

```
mode integer
    Indicates whether the sequence of function values is to be returned unnormalized
    or normalized.
    mode = 1: The sequence of function values is returned unnormalized.
    mode =2: The sequence of function values is returned normalized.
x
    double
    The argument }x\mathrm{ of the function.
m
    integer
    The order m}\mathrm{ of the function.
nl integer
    The degree N of the last function required in the sequence.
```


Details

R interface to the NAG Fortran routine S22AAF.

Value

P double array
The required sequence of function values as follows:
if mode $=1, p[n]$ contains $P_{n}^{m}(x)$ for $n=0 \ldots N$;
if mode $=2, p[n]$ contains $\overline{P_{n}^{m}}(x)$ for $n=0 \ldots N$.
IFAIL integer
ifail $=0$ unless the function detects an error or a warning has been flagged (see the Errors section in Fortran library documentation).

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/S/s22aaf.pdf

Examples

ifail<-0
mode<-1
$x<-0.5$
$m<-2$
nl<-3
s22aa(mode, x,m,nl)
$\mathrm{x} 02 \mathrm{aj} \quad x 02 a j$: The machine precision

Description

x 02 aj returns ϵ, the value machine precision.

Usage

x02aj()

Details

R interface to the NAG Fortran routine X02AJF.

Value

x02aj returns ϵ, the value machine precision.

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/X02/x02ajf.pdf

Examples

x02aj()[["result"]]

```
x02al x02al: The largest positive model number
```


Description

x 02 al returns the largest positive floating point number.

Usage

x02al()

Details

R interface to the NAG Fortran routine X02ALF.

Value

x 02 al returns the largest positive floating point number.

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/X02/x02alf.pdf

Examples

```
x02al()[["result"]]
```


Index

*Topic Fortran

NAGFWrappers, 140
*Topic NAG
NAGFWrappers, 140

*Topic math

a00ad, 2
e04ab, 5
e04bb, 7
e04cb, 9
e $04 \mathrm{dg}, 11$
e04fc, 13
e04fy, 17
e04gd, 18
e04gy, 22
e04gz, 24
e04hc, 26
e04hd, 28
e04he, 30
e04hy, 34
e04jc, 37
e0 4 jy, 40
e04kd, 42
e04ky, 46
e04kz, 49
e041b, 51
e04ly, 56
e 04 mf , 58
e04nc, 61
e04nf, 64
e $04 \mathrm{nk}, 68$
e04nq, 73
e04uc, 79
e04uf, 85
e04ug, 93
e04us, 101
e04vj, 106
e04wd, 109
e04xa, 115
e04ya, 118
e04yb, 120
e04yc, 123
e05jb, 125
f08fa, 132
g02aa, 134
g02ab, 136
g02ae, 138
s17dc, 141
s17de, 142
s17dg, 144
s17dh, 145
s17dl, 146
s18dc, 147
s18de, 149
s18gk, 150
s22aa, 151
x02aj, 152
x02al, 153
*Topic optimize
e04ab, 5
e04bb, 7
e04cb, 9
e04dg, 11
e04fc, 13
e04fy, 17
e $04 \mathrm{gd}, 18$
e04gy, 22
e04gz, 24
e04hc, 26
e04hd, 28
e04he, 30
e04hy, 34
e04jc, 37
e04 jy, 40
e04kd, 42
e04ky, 46
e04kz, 49
e04lb, 51
e041y, 56
e 04 mf , 58
e04nc, 61
e04nf, 64
e $04 \mathrm{nk}, 68$
e04nq, 73
e04uc, 79
e04uf, 85
e04ug, 93
e04us, 101
e04vj, 106
e04wd, 109
e04xa, 115
e04ya, 118
e $04 \mathrm{yb}, 120$
e04yc, 123
e05jb, 125

*Topic package

NAGFWrappers, 140
a00ad, 2
e04ab, 5
e04bb, 7
e04cb, 9
e04dg, 11
e04fc, 13
e04fy, 17
e04gd, 18
e04gy, 22
e04gz, 24
e04hc, 26
e04hd, 28
e04he, 30
e04hy, 34
e04jc, 37
e04jy, 40
e04kd, 42
e04ky, 46
e04kz, 49
e04lb, 51
e04ly, 55
e 04 mf , 58
e04nc, 61
e04nf, 64
e04nk, 68
e04ng, 73
e04uc, 79
e04uf, 85
e04ug, 93
e04us, 101
e04vj, 106
e04wd, 109
e04xa, 115
e04ya, 118
e04yb, 120
e04yc, 123
e0 0 jb, 125
f08fa, 132
g02aa, 134
g02ab, 136
g02ae, 138
NAGFWrappers, 140
s17dc, 141
s17de, 142
s17dg, 144
s17dh, 145
s17dl, 146
s18dc, 147
s18de, 149
s18gk, 150
s22aa, 151
x02aj, 152
x02al, 153

