NAG Library Function Document nag_idwt (c09cbc)

1 Purpose

nag_idwt (c09cbc) computes the inverse one-dimensional discrete wavelet transform (DWT) at a single level. The initialization function nag wfilt (c09aac) must be called first to set up the DWT options.

2 Specification

3 Description

nag_idwt (c09cbc) performs the inverse operation of nag_dwt (c09cac). That is, given sets of n_c approximation coefficients and detail coefficients, computed by nag_dwt (c09cac) using a DWT as set up by the initialization function nag_wfilt (c09aac), on a real data array of length n, nag_idwt (c09cbc) will reconstruct the data array y_i , for i = 1, 2, ..., n, from which the coefficients were derived.

4 References

None.

5 Arguments

1: **lenc** – Integer *Input*

On entry: the dimension of the arrays ca and cd.

Constraint: lenc $\geq n_c$, where n_c is the value returned in **nwc** by the call to the initialization function nag wfilt (c09aac).

2: **ca[lenc**] – const double

Input

On entry: the n_c approximation coefficients, C_a . These will normally be the result of some transformation on the coefficients computed by nag_dwt (c09cac).

3: **cd[lenc]** – const double

Input

On entry: the n_c detail coefficients, C_d . These will normally be the result of some transformation on the coefficients computed by nag dwt (c09cac).

4: \mathbf{n} – Integer Input

On entry: n, the length of the original data array from which the wavelet coefficients were computed by nag_dwt (c09cac) and the length of the data array y that is to be reconstructed by this function.

Constraint: This must be the same as the value \mathbf{n} passed to the initialization function nag_wfilt (c09aac).

Mark 24 c09cbc.1

c09cbc NAG Library Manual

5: $\mathbf{y}[\mathbf{n}]$ – double

On exit: the reconstructed data based on approximation and detail coefficients C_a and C_d and the transform options supplied to the initialization function nag wfilt (c09aac).

6: **icomm**[100] – const Integer

Communication Array

On entry: contains details of the discrete wavelet transform and the problem dimension and, possibly, additional information on the previously computed forward transform.

7: **fail** – NagError *

Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_ARRAY_DIM_LEN

On entry, array dimension **lenc** not large enough: **lenc** = $\langle value \rangle$ but must be at least $\langle value \rangle$.

NE BAD PARAM

On entry, argument $\langle value \rangle$ had an illegal value.

NE INITIALIZATION

Either the initialization function has not been called first or array icomm has been corrupted.

Either the initialization function was called with **wtrans** = Nag_MultiLevel or array **icomm** has been corrupted.

On entry, **n** is inconsistent with the value passed to the initialization function: $\mathbf{n} = \langle value \rangle$, **n** should be $\langle value \rangle$.

NE INTERNAL ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

7 Accuracy

The accuracy of the wavelet transform depends only on the floating-point operations used in the convolution and downsampling and should thus be close to *machine precision*.

8 Parallelism and Performance

Not applicable.

9 Further Comments

None.

10 Example

See Section 10 in nag dwt (c09cac).

c09cbc.2 (last) Mark 24