NAG Library Function Document nag_wav_2d_coeff_ext (c09eyc)

1 Purpose

nag_wav_2d_coeff_ext (c09eyc) extracts a selected set of discrete wavelet transform (DWT) coefficients from the full set of coefficients stored in compact form, as computed by nag_mldwt_2d (c09ecc) (twodimensional DWT).

2 Specification

```
#include <nag.h>
#include <nagc09.h>
void nag_wav_2d_coeff_ext (Integer ilev, Integer cindex, Integer lenc,
    const double c[], double d[], Integer pdd, Integer icomm[],
    NagError *fail)
```


3 Description

nag_wav_2d_coeff_ext (c09eyc) is intended to be used after a call to nag_mldwt_2d (c09ecc) (twodimensional DWT), which in turn should be preceded by a call to nag_wfilt_2d (c09abc) (twodimensional wavelet filter initialization). Given an initial two-dimensional data set A, a prior call to nag_mldwt_2d (c09ecc) computes the approximation coefficients (at the highest requested level) and three sets of detail coeficients at all levels and stores these in compact form in a one-dimensional array \mathbf{c}. nag_wav_2d_coeff_ext (c09eyc) can then extract either the approximation coefficients or one of the sets of detail coefficients at one of the levels into a matrix D. The dimensions of D depend on the level extracted and are available from the arrays dwtlvm and dwtlvn as returned by nag_mldwt_2d (c09ecc) which contain the first and second dimensions respectively. See Section 2.1 in the c09 Chapter Introduction for a discussion of the two-dimensional DWT.

4 References

None.

5 Arguments

Note: the following notation is used in this section:
n_{cm} is the number of wavelet coefficients in the first dimension, which, at level ilev, is equal to dwtlvm[nwl - ilev] as returned by a call to nag_mldwt_2d (c09ecc) transforming nwl levels.
n_{cn} is the number of wavelet coefficients in the second dimension, which, at level ilev, is equal to dwtlvn[nwl - ilev] as returned by a call to nag_mldwt_2d (c09ecc) transforming nwl levels..

1: \quad ilev - Integer
Input
On entry: the level at which coefficients are to be extracted.
Constraints:
$1 \leq \mathbf{i l e v} \leq \mathbf{n w l}$, where $\mathbf{n w l}$ is as used in a preceding call to nag_mldwt_2d (c09ecc);
if cindex $=0$, ilev $=$ nwl.

2: cindex - Integer
Input
On entry: identifies which coefficients to extract. The coefficients are identified as follows:
cindex $=0$
The approximation coefficients, produced by application of the low pass filter over columns and rows of the original matrix (LL). The approximation coefficients are available only for $\mathbf{i l e v}=\mathbf{n w l}$, where nwl is the value used in a preceding call to nag_mldwt_2d (c09ecc).
cindex $=1$
The vertical detail coefficients produced by applying the low pass filter over columns of the original matrix and the high pass filter over rows (LH).
cindex $=2$
The horizontal detail coefficients produced by applying the high pass filter over columns of the original matrix and the low pass filter over rows (HL).
cindex $=3$
The diagonal detail coefficients produced by applying the high pass filter over columns and rows of the original matrix (HH).
Constraint: $0 \leq$ cindex ≤ 3 when ilev $=\mathbf{n w l}$ as used in nag_mldwt_2d (c09ecc), otherwise
$1 \leq$ cindex ≤ 3.
3: lenc - Integer
Input
On entry: the dimension of the array \mathbf{c}.
Constraint: lenc must be unchanged from the value used in the preceding call to nag_mldwt_2d (c09ecc)..

4: $\mathbf{c}[\mathbf{l e n c}]$ - const double Input
On entry: DWT coefficients, as computed by a preceding call to nag_mldwt_2d (c09ecc).
5: $\quad \mathbf{d}[$ dim $]$ - double
Output
Note: the dimension, dim, of the array d must be at least pdd $\times n_{\mathrm{cn}}$.
On exit: the requested coefficients.
If ilev $=$ nwl (as used in nag_mldwt_2d (c09ecc)) and cindex $=0$, the $n_{c m}$ by $n_{c n}$ approximation coefficients $a_{i j}$ are stored in $\mathbf{d}[(j-1) \times \mathbf{p d d}+i-1]$, for $i=1,2, \ldots, n_{c m}$ and $j=1,2, \ldots, n_{c n}$.
Otherwise the $n_{c m}$ by $n_{c n}$ level ilev detail coefficients (of type specified by cindex) $d_{i j}$ are stored in $\mathbf{d}[(j-1) \times \mathbf{p d d}+i-1]$, for $i=1,2, \ldots, n_{c m}$ and $j=1,2, \ldots, n_{c n}$.
pdd - Integer Input
On entry: the stride separating row elements in the two-dimensional data stored in the array d.
Constraint: pdd $>n_{\mathrm{cm}}$.
7: icomm [180] - Integer
Communication Array
On entry: contains details of the discrete wavelet transform and the problem dimension as setup in the call to the initialization function nag_wfilt_2d (c09abc).
fail - NagError *
Input/Output
The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument \langle value \rangle had an illegal value.

NE_INITIALIZATION

Either the initialization function has not been called first or icomm has been corrupted.
Either the initialization function was called with wtrans $=$ Nag_SingleLevel or icomm has been corrupted.

NE_INT

On entry, cindex $=\langle$ value \rangle.
Constraint: cindex ≤ 3.
On entry, cindex $=\langle$ value \rangle.
Constraint: cindex ≥ 0.
On entry, ilev $=\langle$ value \rangle.
Constraint: ilev ≥ 1.

NE_INT_2

On entry, ilev $=\langle$ value \rangle and $\mathbf{n w l}=\langle$ value \rangle.
Constraint: ilev $\leq \mathbf{n w l}$, where nwl is the number of levels used in the call to nag_mldwt_2d (c09ecc).
On entry, lenc $=\langle$ value \rangle and $n_{\text {ct }}=\langle$ value \rangle.
Constraint: lenc $\geq n_{\mathrm{ct}}$, where n_{ct} is the number of DWT coefficients computed in a previous call to nag_mldwt_2d (c09ecc).
On entry, pdd $=\langle$ value \rangle and $n_{\mathrm{cm}}=\langle$ value \rangle.
Constraint: pdd $\geq n_{\mathrm{cm}}$, where n_{cm} is the number of DWT coefficients in the first dimension at the selected level ilev.

NE_INT_3

On entry, ilev $=\langle$ value \rangle and $\mathbf{n w l}=\langle$ value \rangle, but cindex $=0$.
Constraint: cindex >0 when ilev $<$ nwl in the preceding call to nag_mldwt_2d (c09ecc).

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

7 Accuracy

Not applicable.

8 Parallelism and Performance

Not applicable.

9 Further Comments

None.

10 Example

See Section 10 in nag_wfilt_2d (c09abc), nag_mldwt_2d (c09ecc) and nag_wav_2d_coeff_ins (c09ezc).

