NAG Library Function Document

nag_idwt_3d (c09fbc)

1 Purpose

nag_idwt_3d (c09fbc) computes the three-dimensional inverse discrete wavelet transform (IDWT) at a single level. The initialization function nag_wfilt_3d (c09acc) must be called first to set up the DWT options.

2 Specification

3 Description

nag_idwt_3d (c09fbc) performs the inverse operation of function nag_dwt_3d (c09fac). That is, given sets of wavelet coefficients computed by function nag_dwt_3d (c09fac) using a DWT as set up by the initialization function nag_wfilt_3d (c09acc), on a real data array, B, nag_idwt_3d (c09fbc) will reconstruct B.

4 References

None.

5 Arguments

1: **m** – Integer

On entry: the number of rows of each two-dimensional frame.

Constraint: this must be the same as the value **m** passed to the initialization function nag_wfilt_3d (c09acc).

2: **n** – Integer

On entry: the number of columns of each two-dimensional frame.

Constraint: this must be the same as the value **n** passed to the initialization function nag_wfilt_3d (c09acc).

3: **fr** – Integer

On entry: the number two-dimensional frames.

Constraint: this must be the same as the value **fr** passed to the initialization function nag_wfilt_3d (c09acc).

4: **lenc** – Integer

On entry: the dimension of the array c.

Constraint: lenc $\geq n_{ct}$, where n_{ct} is the total number of wavelet coefficients, as returned by nag_wfilt_3d (c09acc).

Input

Input

Input

Input

5: c[lenc] - const double

On entry: the coefficients of the discrete wavelet transform. This will normally be the result of some transformation on the coefficients computed by function nag_dwt_3d (c09fac).

Note that the coefficients in c may be extracted according to type into three-dimensional arrays using nag wav 3d coeff ext (c09fyc), and inserted using nag wav 3d coeff ins (c09fzc).

6: $\mathbf{b}[dim] - double$

Note: the dimension, *dim*, of the array **b** must be at least $ldb \times sdb \times fr$.

On exit: the m by n by fr reconstructed array, B, with B_{ijk} stored in $\mathbf{b}[(k-1) \times \mathbf{ldb} \times \mathbf{sdb} + (j-1) \times \mathbf{ldb} + i - 1]$. The reconstruction is based on the input wavelet coefficients and the transform options supplied to the initialization function nag wfilt 3d (c09acc).

7: **ldb** – Integer

On entry: the stride separating row elements of each of the sets of frame coefficients in the threedimensional data stored in **b**.

Constraint: $ldb \ge m$.

8: **sdb** – Integer

On entry: the stride separating corresponding coefficients of consecutive frames in the threedimensional data stored in **b**.

Constraint: $sdb \ge n$.

9: icomm[260] – const Integer

On entry: contains details of the discrete wavelet transform and the problem dimension as setup in the call to the initialization function nag_wfilt_3d (c09acc).

10: fail – NagError *

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument $\langle value \rangle$ had an illegal value.

NE_INITIALIZATION

Either the communication array **icomm** has been corrupted or there has not been a prior call to the initialization function nag_wfilt_3d (c09acc).

The initialization function was called with $wtrans = Nag_MultiLevel$.

NE_INT

On entry, $\mathbf{fr} = \langle value \rangle$. Constraint: $\mathbf{fr} = \langle value \rangle$, the value of \mathbf{fr} on initialization (see nag_wfilt_3d (c09acc)).

On entry, $\mathbf{m} = \langle value \rangle$.

Constraint: $\mathbf{m} = \langle value \rangle$, the value of \mathbf{m} on initialization (see nag_wfilt_3d (c09acc)).

On entry, $\mathbf{n} = \langle value \rangle$.

Constraint: $\mathbf{n} = \langle value \rangle$, the value of \mathbf{n} on initialization (see nag_wfilt_3d (c09acc)).

Communication Array

Input/Output

Output

Input

Input

Input

NE_INT_2

On entry, $\mathbf{ldb} = \langle value \rangle$ and $\mathbf{m} = \langle value \rangle$. Constraint: $\mathbf{ldb} \geq \mathbf{m}$.

On entry, $\text{lenc} = \langle value \rangle$ and $n_{ct} = \langle value \rangle$. Constraint: $\text{lenc} \geq n_{ct}$, where n_{ct} is the number of DWT coefficients returned by nag_wfilt_3d (c09acc) in argument **nwct**.

On entry, $\mathbf{sdb} = \langle value \rangle$ and $\mathbf{n} = \langle value \rangle$. Constraint: $\mathbf{sdb} \ge \mathbf{n}$.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

7 Accuracy

The accuracy of the wavelet transform depends only on the floating-point operations used in the convolution and downsampling and should thus be close to *machine precision*.

8 Parallelism and Performance

nag_idwt_3d (c09fbc) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.

Please consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

See Section 10 in nag_dwt_3d (c09fac).