NAG Library Function Document nag_wav_3d_coeff_ext (c09fyc)

1 Purpose

nag_wav_3d_coeff_ext (c09fyc) extracts a selected set of discrete wavelet transform (DWT) coefficients from the full set of coefficients stored in compact form, as computed by nag_dwt_3d (c09fac) (single level three-dimensional DWT) or nag_mldwt_3d (c09fcc) (multi-level three-dimensional DWT).

2 Specification

```
#include <nag.h>
#include <nagc09.h>
void nag_wav_3d_coeff_ext (Integer ilev, Integer cindex, Integer lenc,
    const double c[], double d[], Integer ldd, Integer sdd, Integer icomm[],
    NagError *fail)
```


3 Description

nag_wav_3d_coeff_ext (c09fyc) is intended to be used after a call to either nag_dwt_3d (c09fac) (single level three-dimensional DWT) or nag_mldwt_3d (c09fcc) (multi-level three-dimensional DWT), either of which must be preceded by a call to nag_wfilt_3d (c09acc) (three-dimensional wavelet filter initialization). Given an initial three-dimensional data set A, a prior call to nag_dwt_3d (c09fac) or nag_mldwt_3d (c09fcc) computes the approximation coefficients (at the highest requested level in the case of nag_mldwt_3d (c09fcc)) and seven sets of detail coefficients (at all levels in the case of nag_mldwt_3d (c09fcc)) and stores these in compact form in a one-dimensional array c. nag_wav_3 \bar{d} _coeff_ext (c09fyc) can then extract either the approximation coefficients or one of the sets of detail coefficients (at one of the levels following nag_mldwt_3d (c09fcc)) into a threedimensional data set stored in d.

If a multi-level DWT was performed by a prior call to nag_mldwt 3d (c09fcc) then the dimensions of the three-dimensional data stored in depend on the level extracted and are available from the arrays dwtlvm, dwtlvn and dwtlvfr as returned by nag_mldwt_3d (c09fcc) which contain the first, second and third dimensions respectively.

If a single level DWT was performed by a prior call to nag_dwt_3d (c09fac) then the dimensions of the three-dimensional data stored in d can be determined from nwct, nwen and nwcfr as returned by the setup function nag_wfilt_3d (c09acc).
See Section 2.1 in the c09 Chapter Introduction for a discussion of the three-dimensional DWT.

4 References

None.

5 Arguments

Note: the following notation is used in this section:
n_{cm} is the number of wavelet coefficients in the first dimension. Following a call to nag_dwt_3d (c09fac) (i.e., when ilev $=0$) this is equal to nwet $/(8 \times \mathbf{n w c n} \times \mathbf{n w c f r})$ as returned by nag_wfilt_3d (c09acc). Following a call to nag_mldwt_3d (c09fcc) transforming nwl levels, and when extracting at level ilev >0, this is equal to dwtlvm[nwl-ilev].
n_{cn} is the number of wavelet coefficients in the second dimension. Following a call to nag_dwt_3d
(c09fac) (i.e., when ilev $=0$) this is equal to nwen as returned by nag_wfilt_3d (c09acc).

Following a call to nag_mldwt_3d (c09fcc) transforming nwl levels, and when extracting at level ilev >0, this is equal to dwtlvn[nwl-ilev].
$n_{\text {cfr }}$ is the number of wavelet coefficients in the third dimension. Following a call to nag_dwt_3d (c09fac) (i.e., when ilev $=0$) this is equal to nwcfr as returned by nag_wfilt_3d (c09acc). Following a call to nag_mldwt_3d (c09fcc) transforming nwl levels, and when extracting at level ilev >0, this is equal to dwtlvfr $[\mathbf{n w l}-\mathbf{i l e v}]$.

1: \quad ilev - Integer
Input
On entry: the level at which coefficients are to be extracted.
If ilev $=0$, it is assumed that the coefficient array \mathbf{c} was produced by a preceding call to the single level function nag_dwt 3d (c09fac).

If ilev >0, it is assumed that the coefficient array \mathbf{c} was produced by a preceding call to the multilevel function nag_mldwt_3d (c09fcc).

Constraints

ilev $=0$ (following a call to nag_dwt_3d (c09fac));
$0 \leq \mathbf{i l e v} \leq \mathbf{n w l}$, where nwl is as used in a preceding call to nag_mldwt_3d (c09fcc);
if cindex $=0$, $\mathbf{i l e v}=\mathbf{n w l}$ (following a call to nag_mldwt_3d (c09fcc)).
cindex - Integer
Input
On entry: identifies which coefficients to extract. The coefficients are identified as follows:
cindex $=0$
The approximation coefficients, produced by application of the low pass filter over columns, rows and frames of A (LLL). After a call to the multi-level transform function nag_mldwt_3d (c09fcc) (which implies that ilev >0) the approximation coefficients are available only for ilev $=\mathbf{n w l}$, where nwl is the value used in a preceding call to nag_mldwt_3d (c09fcc).
cindex $=1$
The detail coefficients produced by applying the low pass filter over columns and rows of A and the high pass filter over frames (LLH).
cindex $=2$
The detail coefficients produced by applying the low pass filter over columns, high pass filter over rows and low pass filter over frames of A (LHL).
cindex $=3$
The detail coefficients produced by applying the low pass filter over columns of A and high pass filter over rows and frames (LHH).
cindex $=4$
The detail coefficients produced by applying the high pass filter over columns of A and low pass filter over rows and frames (HLL).
cindex $=5$
The detail coefficients produced by applying the high pass filter over columns, low pass filter over rows and high pass filter over frames of A (HLH).
cindex $=6$
The detail coefficients produced by applying the high pass filter over columns and rows of A and the low pass filter over frames (HHL).
cindex $=7$
The detail coefficients produced by applying the high pass filter over columns, rows and frames of $A(\mathrm{HHH})$.

Constraints:

if ilev $=0,0 \leq$ cindex $\leq 7 ;$
if ilev $=$ nwl, following a call to nag_mldwt_3d (c09fcc) transforming nwl levels, $0 \leq$ cindex ≤ 7;
otherwise $1 \leq$ cindex ≤ 7.

3: lenc - Integer
Input
On entry: the dimension of the array \mathbf{c}.
Constraint: lenc must be unchanged from the value used in the preceding call to either nag_dwt_3d (c09fac) or nag_mldwt_3d (c09fcc)..
$\mathbf{c}[$ lenc $]$ - const double
Input
On entry: DWT coefficients, as computed by nag_dwt_3d (c09fac) or nag_mldwt_3d (c09fcc).
5: $\quad \mathbf{d}[\mathrm{dim}]$ - double
Output
Note: the dimension, dim, of the array \mathbf{d} must be at least ldd $\times \mathbf{s d d} \times n_{\text {cfr }}$.
On exit: the requested coefficients.
If the DWT coefficients were computed by nag_dwt_3d (c09fac) then
if cindex $=0$, the approximation coefficients are stored in $\mathbf{d}[(k-1) \times \mathbf{l d d} \times \mathbf{s d d}+(j-1) \times \mathbf{l d d}+i-1]$, for $i=1,2, \ldots, n_{\mathrm{cm}}, j=1,2, \ldots, n_{\mathrm{cn}}$ and $k=1,2, \ldots, n_{\text {cfr }}$;
if $1 \leq$ cindex ≤ 7, the detail coefficients, as indicated by cindex, are stored in $\mathbf{d}[(k-1) \times \mathbf{l d d} \times \mathbf{s d d}+(j-1) \times \mathbf{l d d}+i-1]$, for $i=1,2, \ldots, n_{\mathrm{cm}}, j=1,2, \ldots, n_{\mathrm{cn}}$ and $k=1,2, \ldots, n_{\text {cfr }}$.
If the DWT coefficients were computed by nag_mldwt_3d (c09fcc) then
if cindex $=0$ and $\mathbf{i l e v}=\mathbf{n w l}$, the approximation coefficients are stored in $\mathbf{d}[(k-1) \times \mathbf{l d d} \times \mathbf{s d d}+(j-1) \times \mathbf{l d d}+i-1]$, for $i=1,2, \ldots, n_{\mathrm{cm}}, j=1,2, \ldots, n_{\mathrm{cn}}$ and $k=1,2, \ldots, n_{\text {cfr }}$;
if $1 \leq$ cindex ≤ 7, the detail coefficients, as indicated by cindex, for level ilev are stored in $\mathbf{d}[(k-1) \times \mathbf{l d d} \times \mathbf{s d d}+(j-1) \times \mathbf{l d d}+i-1]$, for $i=1,2, \ldots, n_{\mathrm{cm}}, j=1,2, \ldots, n_{\mathrm{cn}}$ and $k=1,2, \ldots, n_{\text {cfr }}$.

6: Idd - Integer
Input
On entry: the stride separating row elements of each of the sets of frame coefficients in the threedimensional data stored in \mathbf{d}.

Constraint: ldd $>n_{\mathrm{cm}}$.
sdd - Integer
Input
On entry: the stride separating corresponding coefficients of consecutive frames in the threedimensional data stored in \mathbf{d}.

Constraint: $\mathbf{s d d}>n_{\mathrm{cn}}$.
icomm[260] - Integer
Communication Array
On entry: contains details of the discrete wavelet transform and the problem dimension as setup in the call to the initialization function nag_wfilt_3d (c09acc).
fail - NagError *
Input/Output
The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument \langle value \rangle had an illegal value.

NE_INITIALIZATION

Either the initialization function has not been called first or icomm has been corrupted.

NE_INT

On entry, cindex $=\langle$ value \rangle.
Constraint: cindex ≤ 7.
On entry, cindex $=\langle$ value \rangle.
Constraint: cindex ≥ 0.
On entry, ilev $=\langle$ value \rangle.
Constraint: ilev $=0$ following a call to the single level function nag_dwt_3d (c09fac).
On entry, ilev $=\langle$ value \rangle.
Constraint: ilev >0 following a call to the multi-level function nag_mldwt_3d (c09fcc).

NE_INT_2

On entry, ilev $=\langle$ value \rangle and $\mathbf{n w l}=\langle$ value \rangle.
Constraint: ilev $\leq \mathbf{n w l}$, where nwl is the number of levels used in the call to nag_mldwt_3d (c09fcc).
On entry, ldd $=\langle$ value \rangle and $n_{\mathrm{cm}}=\langle$ value \rangle.
Constraint: Idd $\geq n_{\mathrm{cm}}$, where n_{cm} is the number of DWT coefficients in the first dimension following the single level transform.
On entry, lenc $=\langle$ value \rangle and $n_{\mathrm{ct}}=\langle$ value \rangle.
Constraint: lenc $\geq n_{\mathrm{ct}}$, where n_{ct} is the number of DWT coefficients computed in the preceding call to nag_dwt_3d (c09fac).

On entry, lenc $=\langle$ value \rangle and $n_{\mathrm{ct}}=\langle$ value \rangle.
Constraint: lenc $\geq n_{\mathrm{ct}}$, where n_{ct} is the number of DWT coefficients computed in the preceding call to nag_mldwt_3d (c09fcc).
On entry, sdd $=\langle$ value \rangle and $n_{\mathrm{cn}}=\langle$ value \rangle.
Constraint: sdd $\geq n_{\mathrm{cn}}$, where n_{cn} is the number of DWT coefficients in the second dimension following the single level transform.

NE_INT_3

On entry, ilev $=\langle$ value \rangle and $\mathbf{n w l}=\langle$ value \rangle, but cindex $=0$.
Constraint: cindex >0 when ilev $<$ nwl in the preceding call to nag_mldwt_3d (c09fcc).
On entry, ldd $=\langle$ value \rangle and $n_{\mathrm{cm}}=\langle$ value \rangle.
Constraint: Idd $\geq n_{\mathrm{cm}}$, where n_{cm} is the number of DWT coefficients in the first dimension at the selected level ilev.
On entry, sdd $=\langle$ value \rangle and $n_{\mathrm{cn}}=\langle$ value \rangle.
Constraint: sdd $\geq n_{\mathrm{cn}}$, where n_{cn} is the number of DWT coefficients in the second dimension at the selected level ilev.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

7 Accuracy

Not applicable.

8 Parallelism and Performance

Not applicable.

9 Further Comments

None.

10 Example

See Section 10 in nag_wfilt_3d (c09acc), nag_dwt_3d (c09fac), nag_mldwt_3d (c09fcc) and nag_wav_3d_coeff_ins (c09fzc).

