
NAG Library Function Document

nag_2d_spline_interpolant (e01dac)

1 Purpose

nag_2d_spline_interpolant (e01dac) computes a bicubic spline interpolating surface through a set of data
values, given on a rectangular grid in the x-y plane.

2 Specification

#include <nag.h>
#include <nage01.h>

void nag_2d_spline_interpolant (Integer mx, Integer my, const double x[],
const double y[], const double f[], Nag_2dSpline *spline,
NagError *fail)

3 Description

nag_2d_spline_interpolant (e01dac) determines a bicubic spline interpolant to the set of data points
xq; yr ; fq;r

� �
, for q ¼ 1; 2; . . . ;mx and r ¼ 1; 2; . . . ;my. The spline is given in the B-spline

representation

s x; yð Þ ¼
Xmx

i¼1

Xmy

j¼1

cijMi xð ÞNj yð Þ

such that

s xq; yr
� �

¼ fq;r;

where Mi xð Þ and Nj yð Þ denote normalized cubic B-splines, the former defined on the knots �i to �iþ4

and the latter on the knots �j to �jþ4, and the cij are the spline coefficients. These knots, as well as the
coefficients, are determined by the function, which is derived from the routine B2IRE in Anthony et al.
(1982). The method used is described in Section 9.1.

For further information on splines, see Hayes and Halliday (1974) for bicubic splines and de Boor
(1972) for normalized B-splines.

Values and derivatives of the computed spline can subsequently be computed by calling
nag_2d_spline_eval (e02dec), nag_2d_spline_eval_rect (e02dfc) and nag_2d_spline_deriv_rect
(e02dhc) as described in Section 9.2.

4 References

Anthony G T, Cox M G and Hayes J G (1982) DASL – Data Approximation Subroutine Library National
Physical Laboratory

Cox M G (1975) An algorithm for spline interpolation J. Inst. Math. Appl. 15 95–108

de Boor C (1972) On calculating with B-splines J. Approx. Theory 6 50–62

Hayes J G and Halliday J (1974) The least squares fitting of cubic spline surfaces to general data sets J.
Inst. Math. Appl. 14 89–103

e01 – Interpolation e01dac

Mark 24 e01dac.1

../E02/e02dec.pdf
../E02/e02dfc.pdf
../E02/e02dhc.pdf
../E02/e02dhc.pdf

5 Arguments

1: mx – Integer Input
2: my – Integer Input

On entry: mx and my must specify mx and my respectively, the number of points along the x and
y axis that define the rectangular grid.

Constraint: mx � 4 and my � 4.

3: x½mx� – const double Input
4: y½my� – const double Input

On entry: x½q � 1� and y½r� 1� must contain xq , for q ¼ 1; 2; . . . ;mx, and yr , for r ¼ 1; 2; . . . ;my,
respectively.

Constraints:

x½q � 1� < x½q�, for q ¼ 1; 2; . . . ;mx � 1;
y½r � 1� < y½r �, for r ¼ 1; 2; . . . ;my � 1.

5: f½mx�my� – const double Input

On entry: f ½my � q � 1ð Þ þ r � 1� must contain fq;r , for q ¼ 1; 2; . . . ;mx and r ¼ 1; 2; . . . ;my.

6: spline – Nag_2dSpline *

Pointer to structure of type Nag_2dSpline with the following members:

nx – Integer Output
ny – Integer Output

On exit: nx and ny contain mx þ 4 and my þ 4, the total number of knots of the computed
spline with respect to the x and y variables, respectively.

lamda – double * Output

On exit: the pointer to which memory of size nx is internally allocated. lamda contains the
complete set of knots �i associated with the x variable, i.e., the interior knots lamda½4�,
lamda½5�, . . ., lamda½nx� 5�, a s w e l l a s t h e a d d i t i o n a l k n o t s
lamda½0� ¼ lamda½1� ¼ lamda½2� ¼ lamda½3� ¼ x½0� a n d
lamda½nx� 4� ¼ lamda½nx� 3� ¼ lamda½nx� 2� ¼ lamda½nx� 1� ¼ x½mx� 1� n e e d e d
for the B-spline representation.

mu – double * Output

On exit: the pointer to which memory of size ny is internally allocated. mu contains the
corresponding complete set of knots �i associated with the y variable.

c – double * Output

On exit: the pointer to which memory of size mx�my is internally allocated. c holds the
coefficients of the spline interpolant. c½my � i� 1ð Þ þ j� 1� contains the coefficient cij
described in Section 3.

Note that when the information contained in the pointers lamda, mu and c is no longer of use, or
before a new call to nag_2d_spline_interpolant (e01dac) with the same spline, you should free
these pointers using the NAG macro NAG_FREE. This storage will not have been allocated if this
function returns with fail:code 6¼ NE_NOERROR.

7: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

e01dac NAG Library Manual

e01dac.2 Mark 24

../GENINT/essint.pdf
../GENINT/essint.pdf

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_DATA_ILL_CONDITIONED

An intermediate set of linear equations is singular, the data is too ill-conditioned to compute B-
spline coefficients.

NE_INT_ARG_LT

On entry, mx ¼ valueh i.
Constraint: mx � 4.

On entry, my ¼ valueh i.
Constraint: my � 4.

NE_NOT_STRICTLY_INCREASING

The sequence x is not strictly increasing: x½ valueh i� ¼ valueh i, x½ valueh i� ¼ valueh i.
The sequence y is not strictly increasing: y½ valueh i� ¼ valueh i, y½ valueh i� ¼ valueh i.

7 Accuracy

The main sources of rounding errors are in steps 1., 3., 6. and 7. of the algorithm described in
Section 9.1. It can be shown (Cox (1975)) that the matrix Ax formed in step 2. has elements differing
relatively from their true values by at most a small multiple of 3�, where � is the machine precision. Ax

is ‘totally positive’, and a linear system with such a coefficient matrix can be solved quite safely by
elimination without pivoting. Similar comments apply to steps 6. and 7.. Thus the complete process is
numerically stable.

8 Parallelism and Performance

Not applicable.

9 Further Comments

The time taken by nag_2d_spline_interpolant (e01dac) is approximately proportional to mxmy.

9.1 Outline of Method Used

The process of computing the spline consists of the following steps:

1. choice of the interior x-knots �5, �6; . . . ; �mx
as �i ¼ xi�2, for i ¼ 5; 6; . . . ;mx,

2. formation of the system

AxE ¼ F;

where Ax is a band matrix of order mx and bandwidth 4, containing in its qth row the values at xq
of the B-splines in x, F is the mx by my rectangular matrix of values fq;r, and E denotes an mx

by my rectangular matrix of intermediate coefficients,

3. use of Gaussian elimination to reduce this system to band triangular form,

4. solution of this triangular system for E,

5. choice of the interior y knots �5, �6; . . . ; �my
as �i ¼ yi�2, for i ¼ 5; 6; . . . ;my,

6. formation of the system

AyC
T ¼ ET;

e01 – Interpolation e01dac

Mark 24 e01dac.3

where Ay is the counterpart of Ax for the y variable, and C denotes the mx by my rectangular
matrix of values of cij,

7. use of Gaussian elimination to reduce this system to band triangular form,

8. solution of this triangular system for CT and hence C.

For computational convenience, steps 2. and 3., and likewise steps 6. and 7., are combined so that the
formation of Ax and Ay and the reductions to triangular form are carried out one row at a time.

9.2 Evaluation of Computed Spline

The values of the computed spline at the points tx r � 1½ �; ty r � 1½ �ð Þ, for r ¼ 1; 2; . . . ; n, may be
obtained in the array ff, of length at least n, by the following call:

e02dec (n, tx, ty, ff, &spline, &fail)

where spline is a structure of type Nag_2dSpline which is the output argument of
nag_2d_spline_interpolant (e01dac).

To evaluate the computed spline on a kx by ky rectangular grid of points in the x-y plane, which is
defined by the x coordinates stored in tx q � 1½ �, for q ¼ 1; 2; . . . ; kx, and the y coordinates stored in
ty r � 1½ �, for r ¼ 1; 2; . . . ; ky, returning the results in the array fg which is of length at least kx� ky, the
following call may be used:

e02dfc (kx, ky, tx, ty, fg, &spline, &fail)

where spline is a structure of type Nag_2dSpline which is the output argument of
nag_2d_spline_interpolant (e01dac). The result of the spline evaluated at grid point q; rð Þ is returned
in element ky� q � 1ð Þ þ r� 1½ � of the array fg.

10 Example

This program reads in values of mx, xq , for q ¼ 1; 2; . . . ;mx, my and yr , for r ¼ 1; 2; . . . ;my, followed
by values of the ordinates fq;r defined at the grid points xq; yr

� �
. It then calls nag_2d_spline_interpolant

(e01dac) to compute a bicubic spline interpolant of the data values, and prints the values of the knots
and B-spline coefficients. Finally it evaluates the spline at a small sample of points on a rectangular grid.

10.1 Program Text

/* nag_2d_spline_interpolant (e01dac) Example Program.
*
* Copyright 1991 Numerical Algorithms Group.
*
* Mark 2, 1991.
*
* Mark 6 revised, 2000.
* Mark 8 revised, 2004.
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nage01.h>
#include <nage02.h>

#define F(I, J) f[my*(I)+(J)]
#define FG(I, J) fg[npy*(I)+(J)]
#define C(I, J) spline.c[my*(I)+(J)]
int main(void)
{

Integer exit_status = 0, i, j, mx, my, npx, npy;
NagError fail;
Nag_2dSpline spline;
double *f = 0, *fg = 0, step, *tx = 0, *ty = 0, *x = 0, xhi, xlo;
double *y = 0, yhi, ylo;

e01dac NAG Library Manual

e01dac.4 Mark 24

../E02/e02dec.pdf

INIT_FAIL(fail);

/* Initialise spline */
spline.lamda = 0;
spline.mu = 0;
spline.c = 0;

printf(
"nag_2d_spline_interpolant (e01dac) Example Program Results\n");

scanf("%*[^\n]"); /* Skip heading in data file */
/* Read the number of x points, mx, and the values of the
* x co-ordinates.
*/

scanf("%ld%ld", &mx, &my);
if (mx >= 4 && my >= 4)

{
if (!(f = NAG_ALLOC(mx*my, double)) ||

!(x = NAG_ALLOC(mx, double)) ||
!(y = NAG_ALLOC(my, double)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}
}

else
{

printf("Invalid mx or my.\n");
exit_status = 1;
return exit_status;

}
for (i = 0; i < mx; i++)

scanf("%lf", &x[i]);
/* Read the number of y points, my, and the values of the
* y co-ordinates.
*/

for (i = 0; i < my; i++)
scanf("%lf", &y[i]);

/* Read the function values at the grid points. */
for (j = 0; j < my; j++)

for (i = 0; i < mx; i++)
scanf("%lf", &F(i, j));

/* Generate the (x,y,f) interpolating bicubic B-spline. */
/* nag_2d_spline_interpolant (e01dac).
* Interpolating function, bicubic spline interpolant, two
* variables
*/

nag_2d_spline_interpolant(mx, my, x, y, f, &spline, &fail);
if (fail.code != NE_NOERROR)

{
printf("Error from nag_2d_spline_interpolant (e01dac).\n%s\n",

fail.message);
exit_status = 1;
goto END;

}

/* Print the knot sets, lamda and mu. */
printf("Distinct knots in x direction located at\n");
for (j = 3; j < spline.nx-3; j++)

printf("%12.4f%s", spline.lamda[j],
((j-3)%5 == 4 || j == spline.nx-4)?"\n":" ");

printf("\nDistinct knots in y direction located at\n");
for (j = 3; j < spline.ny-3; j++)

printf("%12.4f%s", spline.mu[j],
((j-3)%5 == 4 || j == spline.ny-4)?"\n":" ");

/* Print the spline coefficients. */
printf("\nThe B-Spline coefficients:\n");
for (i = 0; i < mx; i++)

{
for (j = 0; j < my; j++)

printf("%9.4f", C(i, j));

e01 – Interpolation e01dac

Mark 24 e01dac.5

printf("\n");
}

/* Evaluate the spline on a regular rectangular grid at npx*npy
* points over the domain (xlo to xhi) x (ylo to yhi).
*/

scanf("%ld%lf%lf", &npx, &xlo, &xhi);
scanf("%ld%lf%lf", &npy, &ylo, &yhi);
if (npx >= 1 && npy >= 1)

{
if (!(fg = NAG_ALLOC(npx*npy, double)) ||

!(tx = NAG_ALLOC(npx, double)) ||
!(ty = NAG_ALLOC(npy, double)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}
}

else
{

printf("Invalid npx or npy.\n");
exit_status = 1;
return exit_status;

}
step = (xhi-xlo)/(double)(npx-1);
printf("\nSpline evaluated on a regular mesh "

" (x across, y down): \n ");
/* Generate nx equispaced x co-ordinates. */
for (i = 0; i < npx; i++)

{
tx[i] = MIN(xlo+i*step, xhi);
printf(" %5.2f ", tx[i]);

}
step = (yhi-ylo)/(npy-1);
for (i = 0; i < npy; i++)

ty[i] = MIN(ylo+i*step, yhi);

/* Evaluate the spline. */
/* nag_2d_spline_eval_rect (e02dfc).
* Evaluation of bicubic spline, at a mesh of points
*/

nag_2d_spline_eval_rect(npx, npy, tx, ty, fg, &spline, &fail);
if (fail.code != NE_NOERROR)

{
printf("Error from nag_2d_spline_eval_rect (e02dfc).\n%s\n",

fail.message);
exit_status = 1;
goto END;

}

/* Print the results. */
printf("\n");
for (j = 0; j < npy; j++)

{
printf("%5.2f", ty[j]);
for (i = 0; i < npx; i++)

printf("%8.3f ", FG(i, j));
printf("\n");

}
/* Free memory allocated by nag_2d_spline_interpolant (e01dac) */

END:
NAG_FREE(spline.lamda);
NAG_FREE(spline.mu);
NAG_FREE(spline.c);
NAG_FREE(f);
NAG_FREE(x);
NAG_FREE(y);
NAG_FREE(fg);
NAG_FREE(tx);
NAG_FREE(ty);

e01dac NAG Library Manual

e01dac.6 Mark 24

return exit_status;
}

10.2 Program Data

nag_2d_spline_interpolant (e01dac) Example Program Data
7 6
1.00 1.10 1.30 1.50 1.60 1.80 2.00
0.00 0.10 0.40 0.70 0.90 1.00
1.00 1.21 1.69 2.25 2.56 3.24 4.00
1.10 1.31 1.79 2.35 2.66 3.34 4.10
1.40 1.61 2.09 2.65 2.96 3.64 4.40
1.70 1.91 2.39 2.95 3.26 3.94 4.70
1.90 2.11 2.59 3.15 3.46 4.14 4.90
2.00 2.21 2.69 3.25 3.56 4.24 5.00
6 1.0 2.0
6 0.0 1.0

10.3 Program Results

nag_2d_spline_interpolant (e01dac) Example Program Results
Distinct knots in x direction located at

1.0000 1.3000 1.5000 1.6000 2.0000

Distinct knots in y direction located at
0.0000 0.4000 0.7000 1.0000

The B-Spline coefficients:
1.0000 1.1333 1.3667 1.7000 1.9000 2.0000
1.2000 1.3333 1.5667 1.9000 2.1000 2.2000
1.5833 1.7167 1.9500 2.2833 2.4833 2.5833
2.1433 2.2767 2.5100 2.8433 3.0433 3.1433
2.8667 3.0000 3.2333 3.5667 3.7667 3.8667
3.4667 3.6000 3.8333 4.1667 4.3667 4.4667
4.0000 4.1333 4.3667 4.7000 4.9000 5.0000

Spline evaluated on a regular mesh (x across, y down):
1.00 1.20 1.40 1.60 1.80 2.00

0.00 1.000 1.440 1.960 2.560 3.240 4.000
0.20 1.200 1.640 2.160 2.760 3.440 4.200
0.40 1.400 1.840 2.360 2.960 3.640 4.400
0.60 1.600 2.040 2.560 3.160 3.840 4.600
0.80 1.800 2.240 2.760 3.360 4.040 4.800
1.00 2.000 2.440 2.960 3.560 4.240 5.000

e01 – Interpolation e01dac

Mark 24 e01dac.7 (last)

	e01dac
	1 Purpose
	2 Specification
	3 Description
	4 References
	Anthony et al. (1982)
	Cox (1975)
	de Boor (1972)
	Hayes and Halliday (1974)

	5 Arguments
	mx
	my
	x
	y
	f
	spline
	nx
	ny
	lamda
	mu
	c

	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_DATA_ILL_CONDITIONED
	NE_INT_ARG_LT
	NE_NOT_STRICTLY_INCREASING

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	9.1 Outline of Method Used
	9.2 Evaluation of Computed Spline

	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Library Manual, Mark 24
	Introduction
	Essential Introduction
	NAG C Library News, Mark 24
	Multithreaded Functions
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords and GAMS Search

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	c09 - Wavelet Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d04 - Numerical Differentiation
	Chapter Introduction

	d05 - Integral Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	e05 - Global Optimization of a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

	x07 - IEEE Arithmetic
	Chapter Introduction

