NAG Library Function Document nag_gamma (s14aac)

1 Purpose

nag_gamma (s14aac) returns the value of the gamma function $\Gamma(x)$.

2 Specification

```
#include <nag.h>
#include <nags.h>
double nag_gamma (double x, NagError *fail)
```


3 Description

nag_gamma (s14aac) evaluates an approximation to the gamma function $\Gamma(x)$. The function is based on the Chebyshev expansion:

$$
\Gamma(1+u)=\sum_{r=0}^{\prime} a_{r} T_{r}(t), \quad \text { where } 0 \leq u<1, t=2 u-1
$$

and uses the property $\Gamma(1+x)=x \Gamma(x)$. If $x=N+1+u$ where N is integral and $0 \leq u<1$ then it follows that:

$$
\begin{array}{ll}
\text { for } N>0, & \Gamma(x)=(x-1)(x-2) \cdots(x-N) \Gamma(1+u), \\
\text { for } N=0, & \Gamma(x)=\Gamma(1+u), \\
\text { for } N<0, & \Gamma(x)=\frac{\Gamma(1+u)}{x(x+1)(x+2) \cdots(x-N-1)} .
\end{array}
$$

There are four possible failures for this function:
(i) if x is too large, there is a danger of overflow since $\Gamma(x)$ could become too large to be represented in the machine;
(ii) if x is too large and negative, there is a danger of underflow;
(iii) if x is equal to a negative integer, $\Gamma(x)$ would overflow since it has poles at such points;
(iv) if x is too near zero, there is again the danger of overflow on some machines. For small x, $\Gamma(x) \simeq 1 / x$, and on some machines there exists a range of nonzero but small values of x for which $1 / x$ is larger than the greatest representable value.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover Publications

5 Arguments

1: \mathbf{x} - double Input
On entry: the argument x of the function.
Constraint: \mathbf{x} must not be zero or a negative integer.

2: \quad fail - NagError *
Input/Output
The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

NE_REAL_ARG_GT

On entry, $\mathbf{x}=\langle$ value \rangle.
Constraint: $\mathbf{x} \leq\langle$ value \rangle.
The argument is too large, the function returns the approximate value of $\Gamma(x)$ at the nearest valid argument.

NE_REAL_ARG_LT

On entry, $\mathbf{x}=\langle$ value \rangle. The function returns zero.
Constraint: $\mathbf{x} \geq\langle$ value \rangle.
The argument is too large and negative, the function returns zero.

NE_REAL_ARG_NEG_INT

On entry, $\mathbf{x}=\langle$ value \rangle.
Constraint: \mathbf{x} must not be a negative integer.
The argument is a negative integer, at which values $\Gamma(x)$ is infinite. The function returns a large positive value.

NE_REAL_ARG_TOO_SMALL

On entry, $\mathbf{x}=\langle$ value \rangle.
Constraint: $|\mathbf{x}| \geq\langle$ value \rangle.
The argument is too close to zero, the function returns the approximate value of $\Gamma(x)$ at the nearest valid argument.

7 Accuracy

Let δ and ϵ be the relative errors in the argument and the result respectively. If δ is somewhat larger than the machine precision (i.e., is due to data errors etc.), then ϵ and δ are approximately related by:

$$
\epsilon \simeq|x \Psi(x)| \delta
$$

(provided ϵ is also greater than the representation error). Here $\Psi(x)$ is the digamma function $\frac{\Gamma^{\prime}(x)}{\Gamma(x)}$. Figure 1 shows the behaviour of the error amplification factor $|x \Psi(x)|$.
If δ is of the same order as machine precision, then rounding errors could make ϵ slightly larger than the above relation predicts.
There is clearly a severe, but unavoidable, loss of accuracy for arguments close to the poles of $\Gamma(x)$ at negative integers. However relative accuracy is preserved near the pole at $x=0$ right up to the point of failure arising from the danger of overflow.
Also accuracy will necessarily be lost as x becomes large since in this region

$$
\epsilon \simeq \delta x \ln x
$$

However since $\Gamma(x)$ increases rapidly with x, the function must fail due to the danger of overflow before this loss of accuracy is too great. (For example, for $x=20$, the amplification factor $\simeq 60$.)

Figure 1

8 Parallelism and Performance

Not applicable.

9 Further Comments

None.

10 Example

This example reads values of the argument x from a file, evaluates the function at each value of x and prints the results.

10.1 Program Text

```
/* nag_gamma (s14aac) Example Program.
    *
    * Copyright }1990\mathrm{ Numerical Algorithms Group.
    *
    * Mark 2 revised, 1992.
    */
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nags.h>
int main(void)
{
    Integer exit_status = 0;
    double x, y;
    NagError fail;
    INIT_FAIL(fail);
    /* Skip heading in data file */
    scanf("%*[^\n]");
    printf("nag_gamma (s14aac) Example Program Results\n");
    printf(" x y\n");
```

```
    while (scanf("%lf", &x) != EOF)
        {
            /* nag_gamma (s14aac).
            * Gamma function Gamma(x)
            */
            y = nag_gamma(x, &fail);
            if (fail.code != NE_NOERROR)
            {
                printf("Error from nag_gamma (s14aac).\n%s\n",
                    fail.message);
                    exit_status = 1;
                goto END;
            }
            printf("%12.3e%12.3e\n", x, y);
        }
END:
    return exit_status;
}
```


10.2 Program Data

```
nag_gamma (sl4aac) Example Program Data
    1.0
    1.25
    1.5
    1.75
    2.0
    5.0
    10.0
    -1.5
```


10.3 Program Results

```
nag_gamma (sl4aac) Example Program Results
    x y
    1.000e+00 1.000e+00
    1.250e+00 9.064e-01
    1.500e+00 8.862e-01
    1.750e+00 9.191e-01
    2.000e+00 1.000e+00
    5.000e+00 2.400e+01
    1.000e+01 3.629e+05
    -1.500e+00 2.363e+00
```


