NAG Library Function Document

nag_gamma (s14aac)

1 Purpose

nag_gamma (s14aac) returns the value of the gamma function $\Gamma(x)$.

2 Specification

```
#include <nag.h>
#include <nags.h>
double nag_gamma (double x, NagError *fail)
```

3 Description

nag_gamma (s14aac) evaluates an approximation to the gamma function $\Gamma(x)$. The function is based on the Chebyshev expansion:

$$\Gamma(1+u) = \sum_{r=0}^{l} a_r T_r(t), \quad \text{where } 0 \le u < 1, t = 2u - 1,$$

and uses the property $\Gamma(1+x) = x\Gamma(x)$. If x = N + 1 + u where N is integral and $0 \le u < 1$ then it follows that:

for
$$N > 0$$
, $\Gamma(x) = (x - 1)(x - 2) \cdots (x - N)\Gamma(1 + u)$,
for $N = 0$, $\Gamma(x) = \Gamma(1 + u)$,
for $N < 0$, $\Gamma(x) = \frac{\Gamma(1 + u)}{x(x + 1)(x + 2) \cdots (x - N - 1)}$.

There are four possible failures for this function:

- (i) if x is too large, there is a danger of overflow since $\Gamma(x)$ could become too large to be represented in the machine;
- (ii) if x is too large and negative, there is a danger of underflow;
- (iii) if x is equal to a negative integer, $\Gamma(x)$ would overflow since it has poles at such points;
- (iv) if x is too near zero, there is again the danger of overflow on some machines. For small x, $\Gamma(x) \simeq 1/x$, and on some machines there exists a range of nonzero but small values of x for which 1/x is larger than the greatest representable value.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover Publications

5 Arguments

1: $\mathbf{x} - \text{double}$

On entry: the argument x of the function.

Constraint: x must not be zero or a negative integer.

Input

2: fail – NagError *

Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

NE_REAL_ARG_GT

On entry, $\mathbf{x} = \langle value \rangle$.

Constraint: $\mathbf{x} \leq \langle value \rangle$.

The argument is too large, the function returns the approximate value of $\Gamma(x)$ at the nearest valid argument.

NE_REAL_ARG_LT

On entry, $\mathbf{x} = \langle value \rangle$. The function returns zero. Constraint: $\mathbf{x} \ge \langle value \rangle$. The argument is too large and negative, the function returns zero.

NE_REAL_ARG_NEG_INT

On entry, $\mathbf{x} = \langle value \rangle$.

Constraint: x must not be a negative integer.

The argument is a negative integer, at which values $\Gamma(x)$ is infinite. The function returns a large positive value.

NE_REAL_ARG_TOO_SMALL

On entry, $\mathbf{x} = \langle value \rangle$. Constraint: $|\mathbf{x}| \ge \langle value \rangle$. The argument is too close to zero, the function returns the approximate value of $\Gamma(x)$ at the nearest valid argument.

7 Accuracy

Let δ and ϵ be the relative errors in the argument and the result respectively. If δ is somewhat larger than the *machine precision* (i.e., is due to data errors etc.), then ϵ and δ are approximately related by:

 $\epsilon \simeq |x\Psi(x)|\delta$

(provided ϵ is also greater than the representation error). Here $\Psi(x)$ is the digamma function $\frac{\Gamma'(x)}{\Gamma(x)}$.

Figure 1 shows the behaviour of the error amplification factor $|x\Psi(x)|$.

If δ is of the same order as *machine precision*, then rounding errors could make ϵ slightly larger than the above relation predicts.

There is clearly a severe, but unavoidable, loss of accuracy for arguments close to the poles of $\Gamma(x)$ at negative integers. However relative accuracy is preserved near the pole at x = 0 right up to the point of failure arising from the danger of overflow.

Also accuracy will necessarily be lost as x becomes large since in this region

 $\epsilon \simeq \delta x \ln x.$

However since $\Gamma(x)$ increases rapidly with x, the function must fail due to the danger of overflow before this loss of accuracy is too great. (For example, for x = 20, the amplification factor $\simeq 60$.)

Figure 1

8 Parallelism and Performance

Not applicable.

9 Further Comments

None.

10 Example

This example reads values of the argument x from a file, evaluates the function at each value of x and prints the results.

10.1 Program Text

```
/* nag_gamma (s14aac) Example Program.
*
* Copyright 1990 Numerical Algorithms Group.
*
* Mark 2 revised, 1992.
 */
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nags.h>
int main(void)
{
  Integer exit_status = 0;
  double
           х, у;
  NagError fail;
  INIT_FAIL(fail);
  /* Skip heading in data file */
scanf("%*[^\n]");
  printf("nag_gamma (s14aac) Example Program Results\n");
  printf("
                           y∖n");
               х
```

```
while (scanf("%lf", &x) != EOF)
    {
     /* nag_gamma (s14aac).
      * Gamma function Gamma(x)
      */
     y = nag_gamma(x, &fail);
      if (fail.code != NE_NOERROR)
       {
         printf("Error from nag_gamma (s14aac).\n%s\n",
                  fail.message);
          exit_status = 1;
         goto END;
        }
     printf("%12.3e%12.3e\n", x, y);
    }
END:
 return exit_status;
}
```

10.2 Program Data

nag_gamma (s14aac) Example Program Data 1.0 1.25 1.5 1.75 2.0 5.0 10.0 -1.5

10.3 Program Results

