NAG Library Function Document

nag_fresnel_c (s20adc)

1 Purpose

nag_fresnel_c (s20adc) returns a value for the Fresnel integral C(x).

2 Specification

```
#include <nag.h>
#include <nags.h>
double nag_fresnel_c (double x)
```

3 Description

nag_fresnel_c (s20adc) evaluates an approximation to the Fresnel integral

$$C(x) = \int_0^x \cos\left(\frac{\pi}{2}t^2\right) dt.$$

Note: C(x) = -C(-x), so the approximation need only consider $x \ge 0.0$. The function is based on three Chebyshev expansions: For $0 < x \le 3$,

$$C(x) = x \sum_{r=0}^{\infty} a_r T_r(t),$$
 with $t = 2\left(\frac{x}{3}\right)^4 - 1.$

For x > 3,

$$C(x) = \frac{1}{2} + \frac{f(x)}{x} \sin\left(\frac{\pi}{2}x^{2}\right) - \frac{g(x)}{x^{3}} \cos\left(\frac{\pi}{2}x^{2}\right),$$

where $f(x) = \sum_{r=0}^{\infty} b_r T_r(t)$, and $g(x) = \sum_{r=0}^{\infty} c_r T_r(t)$, with $t = 2\left(\frac{3}{x}\right)^4 - 1$.

For small x, $C(x) \simeq x$. This approximation is used when x is sufficiently small for the result to be correct to *machine precision*.

For large x, $f(x) \simeq \frac{1}{\pi}$ and $g(x) \simeq \frac{1}{\pi^2}$. Therefore for moderately large x, when $\frac{1}{\pi^2 x^3}$ is negligible compared with $\frac{1}{2}$, the second term in the approximation for x > 3 may be dropped. For very large x, when $\frac{1}{\pi x}$ becomes negligible, $C(x) \simeq \frac{1}{2}$. However there will be considerable difficulties in calculating $\sin(\frac{\pi}{2}x^2)$ accurately before this final limiting value can be used. Since $\sin(\frac{\pi}{2}x^2)$ is periodic, its value is essentially determined by the fractional part of x^2 . If $x^2 = N + \theta$, where N is an integer and $0 \le \theta < 1$, then $\sin(\frac{\pi}{2}x^2)$ depends on θ and on N modulo 4. By exploiting this fact, it is possible to retain some significance in the calculation of $\sin(\frac{\pi}{2}x^2)$ either all the way to the very large x limit, or at least until the integer part of $\frac{x}{2}$ is equal to the maximum integer allowed on the machine.

s20adc

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover Publications

5 Arguments

1: $\mathbf{x} - \text{double}$

On entry: the argument x of the function.

6 Error Indicators and Warnings

None.

7 Accuracy

Let δ and ϵ be the relative errors in the argument and result respectively.

If δ is somewhat larger than the *machine precision* (i.e if δ is due to data errors etc.), then ϵ and δ are approximately related by:

$$\epsilon \simeq \left| \frac{x \cos\left(\frac{\pi}{2}x^2\right)}{C(x)} \right| \delta$$

Figure 1 shows the behaviour of the error amplification factor $\left| \frac{x \cos\left(\frac{\pi}{2}x^2\right)}{C(x)} \right|$.

However, if δ is of the same order as the *machine precision*, then rounding errors could make ϵ slightly larger than the above relation predicts.

For small $x, \epsilon \simeq \delta$ and there is no amplification of relative error.

For moderately large values of x,

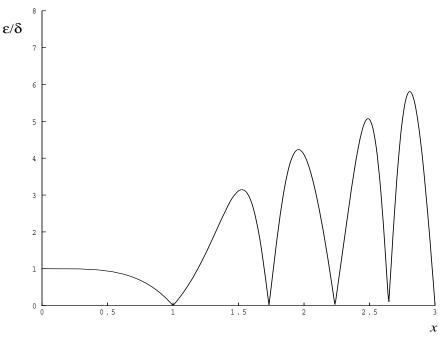
$$|\epsilon| \simeq \left| 2x \cos\left(\frac{\pi}{2}x^2\right) \right| |\delta|$$

and the result will be subject to increasingly large amplification of errors. However the above relation breaks down for large values of x (i.e., when $\frac{1}{x^2}$ is of the order of the *machine precision*); in this region the relative error in the result is essentially bounded by $\frac{2}{\pi x}$.

Hence the effects of error amplification are limited and at worst the relative error loss should not exceed half the possible number of significant figures.

s20adc.2

Input



8 Parallelism and Performance

Not applicable.

9 Further Comments

None.

10 Example

This example reads values of the argument x from a file, evaluates the function at each value of x and prints the results.

10.1 Program Text

```
/* nag_fresnel_c (s20adc) Example Program.
*
*
  Copyright 1990 Numerical Algorithms Group.
*
* Mark 1, 1990.
*/
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nags.h>
int main(void)
{
 Integer exit_status = 0;
 double x, y;
  /* Skip heading in data file */
 scanf("%*[^\n]");
 printf("nag_fresnel_c (s20adc) Example Program Results\n");
 printf("
                           y∖n");
              x
 while (scanf("%lf", &x) != EOF)
    {
```

```
/* nag_fresnel_c (s20adc).
    * Fresnel integral C(x)
    */
    y = nag_fresnel_c(x);
    printf("%12.3e%12.3e\n", x, y);
    }
    return exit_status;
}
```

10.2 Program Data

10.3 Program Results

nag_fresnel_c (s20adc) Example Program Results х У 0.000e+00 0.000e+00 5.000e-01 4.923e-01 1.000e+00 7.799e-01 2.000e+00 4.883e-01 4.000e+00 4.984e-01 5.000e+00 5.636e-01 6.000e+00 4.995e-01 8.000e+00 4.998e-01 1.000e+01 4.999e-01 -1.000e+00 -7.799e-01 1.000e+03 5.000e-01

