
NAG Library Routine Document

E02ADF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

1 Purpose

E02ADF computes weighted least squares polynomial approximations to an arbitrary set of data points.

2 Specification

SUBROUTINE E02ADF (M, KPLUS1, LDA, X, Y, W, WORK1, WORK2, A, S, IFAIL)

INTEGER M, KPLUS1, LDA, IFAIL

REAL (KIND=nag_wp) X(M), Y(M), W(M), WORK1(3*M), WORK2(2*KPLUS1),
A(LDA,KPLUS1), S(KPLUS1)

&

3 Description

E02ADF determines least squares polynomial approximations of degrees 0; 1; . . . ; k to the set of data
points xr; yrð Þ with weights wr, for r ¼ 1; 2; . . . ;m.

The approximation of degree i has the property that it minimizes �i the sum of squares of the weighted
residuals �r, where

�r ¼ wr yr � frð Þ
and fr is the value of the polynomial of degree i at the rth data point.

Each polynomial is represented in Chebyshev series form with normalized argument �x. This argument lies
in the range �1 to þ1 and is related to the original variable x by the linear transformation

�x ¼ 2x� xmax � xminð Þ
xmax � xminð Þ .

Here xmax and xmin are respectively the largest and smallest values of xr. The polynomial approximation
of degree i is represented as

1

2
aiþ1;1T0 �xð Þ þ aiþ1;2T1 �xð Þ þ aiþ1;3T2 �xð Þ þ � � � þ aiþ1;iþ1Ti �xð Þ,

where Tj �xð Þ, for j ¼ 0; 1; . . . ; i, are the Chebyshev polynomials of the first kind of degree j with argument
�xð Þ.

For i ¼ 0; 1; . . . ; k, the routine produces the values of aiþ1;jþ1, for j ¼ 0; 1; . . . ; i, together with the value

of the root-mean-square residual si ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�i= m� i� 1ð Þ

p
. In the case m ¼ iþ 1 the routine sets the value

of si to zero.

The method employed is due to Forsythe (1957) and is based on the generation of a set of polynomials
orthogonal with respect to summation over the normalized dataset. The extensions due to
Clenshaw (1960) to represent these polynomials as well as the approximating polynomials in their
Chebyshev series forms are incorporated. The modifications suggested by Reinsch and Gentleman (see
Gentleman (1969)) to the method originally employed by Clenshaw for evaluating the orthogonal
polynomials from their Chebyshev series representations are used to give greater numerical stability.

For further details of the algorithm and its use see Cox (1974) and Cox and Hayes (1973).

Subsequent evaluation of the Chebyshev series representations of the polynomial approximations should be
carried out using E02AEF.
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5 Parameters

1: M – INTEGER Input

On entry: the number m of data points.

Constraint: M � mdist � 2, where mdist is the number of distinct x values in the data.

2: KPLUS1 – INTEGER Input

On entry: kþ 1, where k is the maximum degree required.

Constraint: 0 < KPLUS1 � mdist, where mdist is the number of distinct x values in the data.

3: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which E02ADF is
called.

Constraint: LDA � KPLUS1.

4: XðMÞ – REAL (KIND=nag_wp) array Input

On entry: the values xr of the independent variable, for r ¼ 1; 2; . . . ;m.

Constraint: the values must be supplied in nondecreasing order with XðMÞ > Xð1Þ.

5: YðMÞ – REAL (KIND=nag_wp) array Input

On entry: the values yr of the dependent variable, for r ¼ 1; 2; . . . ;m.

6: WðMÞ – REAL (KIND=nag_wp) array Input

On entry: the set of weights, wr, for r ¼ 1; 2; . . . ;m. For advice on the choice of weights, see
Section 2.1.2 in the E02 Chapter Introduction.

Constraint: WðrÞ > 0:0, for r ¼ 1; 2; . . . ;m.

7: WORK1ð3�MÞ – REAL (KIND=nag_wp) array Workspace
8: WORK2ð2� KPLUS1Þ – REAL (KIND=nag_wp) array Workspace

9: AðLDA,KPLUS1Þ – REAL (KIND=nag_wp) array Output

On exit: the coefficients of Tj �xð Þ in the approximating polynomial of degree i. Aðiþ 1; jþ 1Þ
contains the coefficient aiþ1;jþ1, for i ¼ 0; 1; . . . ; k and j ¼ 0; 1; . . . ; i.
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10: SðKPLUS1Þ – REAL (KIND=nag_wp) array Output

On exit: Sðiþ 1Þ contains the root-mean-square residual si, for i ¼ 0; 1; . . . ; k, as described in
Section 3. For the interpretation of the values of the si and their use in selecting an appropriate
degree, see Section 3.1 in the E02 Chapter Introduction.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this parameter you should
refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The weights are not all strictly positive.

IFAIL ¼ 2

The values of XðrÞ, for r ¼ 1; 2; . . . ;M, are not in nondecreasing order.

IFAIL ¼ 3

All XðrÞ have the same value: thus the normalization of X is not possible.

IFAIL ¼ 4

On entry, KPLUS1 < 1 (so the maximum degree required is negative)
or KPLUS1 > mdist, where mdist is the number of distinct x values in the data (so there

cannot be a unique solution for degree k ¼ KPLUS1� 1).

IFAIL ¼ 5

LDA < KPLUS1.

7 Accuracy

No error analysis for the method has been published. Practical experience with the method, however, is
generally extremely satisfactory.

8 Further Comments

The time taken is approximately proportional to m kþ 1ð Þ kþ 11ð Þ.
The approximating polynomials may exhibit undesirable oscillations (particularly near the ends of the
range) if the maximum degree k exceeds a critical value which depends on the number of data points m
and their relative positions. As a rough guide, for equally-spaced data, this critical value is about 2�

ffiffiffiffiffi
m
p

.
For further details see page 60 of Hayes (1970).
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9 Example

Determine weighted least squares polynomial approximations of degrees 0, 1, 2 and 3 to a set of 11
prescribed data points. For the approximation of degree 3, tabulate the data and the corresponding values
of the approximating polynomial, together with the residual errors, and also the values of the
approximating polynomial at points half-way between each pair of adjacent data points.

The example program supplied is written in a general form that will enable polynomial approximations of
degrees 0; 1; . . . ; k to be obtained to m data points, with arbitrary positive weights, and the approximation
of degree k to be tabulated. E02AEF is used to evaluate the approximating polynomial. The program is
self-starting in that any number of datasets can be supplied.

9.1 Program Text

Program e02adfe

! E02ADF Example Program Text

! Mark 24 Release. NAG Copyright 2012.

! .. Use Statements ..
Use nag_library, Only: e02adf, e02aef, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: fit, x1, xarg, xcapr, xm
Integer :: i, ifail, iwght, j, k, kplus1, lda, &

m, r
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), ak(:), s(:), w(:), work1(:), &
work2(:), x(:), y(:)

! .. Executable Statements ..
Write (nout,*) ’E02ADF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) m
Read (nin,*) k, iwght
kplus1 = k + 1
lda = kplus1
Allocate (a(lda,kplus1),s(kplus1),w(m),work1(3*m),work2(2*kplus1),x(m), &

y(m))

Do r = 1, m

If (iwght/=1) Then
Read (nin,*) x(r), y(r), w(r)

Else
Read (nin,*) x(r), y(r)
w(r) = 1.0E0_nag_wp

End If

End Do

ifail = 0
Call e02adf(m,kplus1,lda,x,y,w,work1,work2,a,s,ifail)

Do i = 0, k
Write (nout,*)
Write (nout,99998) ’Degree’, i, ’ R.M.S. residual =’, s(i+1)
Write (nout,*)
Write (nout,*) ’ J Chebyshev coeff A(J)’
Write (nout,99997)(j,a(i+1,j),j=1,i+1)

End Do

Allocate (ak(kplus1))
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ak(1:kplus1) = a(kplus1,1:kplus1)
x1 = x(1)
xm = x(m)

Write (nout,*)
Write (nout,99996) ’Polynomial approximation and residuals for degree’, &

k
Write (nout,*)
Write (nout,*) &

’ R Abscissa Weight Ordinate Polynomial Residual’

Do r = 1, m
xcapr = ((x(r)-x1)-(xm-x(r)))/(xm-x1)

ifail = 0
Call e02aef(kplus1,ak,xcapr,fit,ifail)

Write (nout,99999) r, x(r), w(r), y(r), fit, fit - y(r)

If (r<m) Then
xarg = 0.5E0_nag_wp*(x(r)+x(r+1))
xcapr = ((xarg-x1)-(xm-xarg))/(xm-x1)

ifail = 0
Call e02aef(kplus1,ak,xcapr,fit,ifail)

Write (nout,99995) xarg, fit
End If

End Do

99999 Format (1X,I3,4F11.4,E11.2)
99998 Format (1X,A,I4,A,E12.2)
99997 Format (1X,I3,F15.4)
99996 Format (1X,A,I4)
99995 Format (4X,F11.4,22X,F11.4)

End Program e02adfe

9.2 Program Data

E02ADF Example Program Data
11
3 2

1.00 10.40 1.00
2.10 7.90 1.00
3.10 4.70 1.00
3.90 2.50 1.00
4.90 1.20 1.00
5.80 2.20 0.80
6.50 5.10 0.80
7.10 9.20 0.70
7.80 16.10 0.50
8.40 24.50 0.30
9.00 35.30 0.20

9.3 Program Results

E02ADF Example Program Results

Degree 0 R.M.S. residual = 0.41E+01

J Chebyshev coeff A(J)
1 12.1740

Degree 1 R.M.S. residual = 0.43E+01

J Chebyshev coeff A(J)
1 12.2954
2 0.2740
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Degree 2 R.M.S. residual = 0.17E+01

J Chebyshev coeff A(J)
1 20.7345
2 6.2016
3 8.1876

Degree 3 R.M.S. residual = 0.68E-01

J Chebyshev coeff A(J)
1 24.1429
2 9.4065
3 10.8400
4 3.0589

Polynomial approximation and residuals for degree 3

R Abscissa Weight Ordinate Polynomial Residual
1 1.0000 1.0000 10.4000 10.4461 0.46E-01

1.5500 9.3106
2 2.1000 1.0000 7.9000 7.7977 -0.10E+00

2.6000 6.2555
3 3.1000 1.0000 4.7000 4.7025 0.25E-02

3.5000 3.5488
4 3.9000 1.0000 2.5000 2.5533 0.53E-01

4.4000 1.6435
5 4.9000 1.0000 1.2000 1.2390 0.39E-01

5.3500 1.4257
6 5.8000 0.8000 2.2000 2.2425 0.42E-01

6.1500 3.3803
7 6.5000 0.8000 5.1000 5.0116 -0.88E-01

6.8000 6.8400
8 7.1000 0.7000 9.2000 9.0982 -0.10E+00

7.4500 12.3171
9 7.8000 0.5000 16.1000 16.2123 0.11E+00

8.1000 20.1266
10 8.4000 0.3000 24.5000 24.6048 0.10E+00

8.7000 29.6779
11 9.0000 0.2000 35.3000 35.3769 0.77E-01

 0

 10

 20

 30

 40

 0  2  4  6  8  10

-0.1

-0.05

 0

 0.05

 0.1

y

|P
(x

i) 
−f

(x
i)|

x

Example Program
 Least-squares Cubic Polynomial Approximation to a set of 11 Data Points
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