f08 Chapter Contents
f08 Chapter Introduction
NAG C Library Manual

# NAG Library Function Documentnag_dgeqpf (f08bec)

## 1  Purpose

nag_dgeqpf (f08bec) computes the $QR$ factorization, with column pivoting, of a real $m$ by $n$ matrix.

## 2  Specification

 #include #include
 void nag_dgeqpf (Nag_OrderType order, Integer m, Integer n, double a[], Integer pda, Integer jpvt[], double tau[], NagError *fail)

## 3  Description

nag_dgeqpf (f08bec) forms the $QR$ factorization, with column pivoting, of an arbitrary rectangular real $m$ by $n$ matrix.
If $m\ge n$, the factorization is given by:
 $AP= Q R 0 ,$
where $R$ is an $n$ by $n$ upper triangular matrix, $Q$ is an $m$ by $m$ orthogonal matrix and $P$ is an $n$ by $n$ permutation matrix. It is sometimes more convenient to write the factorization as
 $AP= Q1 Q2 R 0 ,$
which reduces to
 $AP= Q1 R ,$
where ${Q}_{1}$ consists of the first $n$ columns of $Q$, and ${Q}_{2}$ the remaining $m-n$ columns.
If $m, $R$ is trapezoidal, and the factorization can be written
 $AP= Q R1 R2 ,$
where ${R}_{1}$ is upper triangular and ${R}_{2}$ is rectangular.
The matrix $Q$ is not formed explicitly but is represented as a product of $\mathrm{min}\phantom{\rule{0.125em}{0ex}}\left(m,n\right)$ elementary reflectors (see the f08 Chapter Introduction for details). Functions are provided to work with $Q$ in this representation (see Section 8).
Note also that for any $k, the information returned in the first $k$ columns of the array a represents a $QR$ factorization of the first $k$ columns of the permuted matrix $AP$.
The function allows specified columns of $A$ to be moved to the leading columns of $AP$ at the start of the factorization and fixed there. The remaining columns are free to be interchanged so that at the $i$th stage the pivot column is chosen to be the column which maximizes the $2$-norm of elements $i$ to $m$ over columns $i$ to $n$.

## 4  References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

## 5  Arguments

1:     orderNag_OrderTypeInput
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by ${\mathbf{order}}=\mathrm{Nag_RowMajor}$. See Section 3.2.1.3 in the Essential Introduction for a more detailed explanation of the use of this argument.
Constraint: ${\mathbf{order}}=\mathrm{Nag_RowMajor}$ or Nag_ColMajor.
2:     mIntegerInput
On entry: $m$, the number of rows of the matrix $A$.
Constraint: ${\mathbf{m}}\ge 0$.
3:     nIntegerInput
On entry: $n$, the number of columns of the matrix $A$.
Constraint: ${\mathbf{n}}\ge 0$.
4:     a[$\mathit{dim}$]doubleInput/Output
Note: the dimension, dim, of the array a must be at least
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pda}}×{\mathbf{n}}\right)$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{m}}×{\mathbf{pda}}\right)$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
The $\left(i,j\right)$th element of the matrix $A$ is stored in
• ${\mathbf{a}}\left[\left(j-1\right)×{\mathbf{pda}}+i-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• ${\mathbf{a}}\left[\left(i-1\right)×{\mathbf{pda}}+j-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
On entry: the $m$ by $n$ matrix $A$.
On exit: if $m\ge n$, the elements below the diagonal are overwritten by details of the orthogonal matrix $Q$ and the upper triangle is overwritten by the corresponding elements of the $n$ by $n$ upper triangular matrix $R$.
If $m, the strictly lower triangular part is overwritten by details of the orthogonal matrix $Q$ and the remaining elements are overwritten by the corresponding elements of the $m$ by $n$ upper trapezoidal matrix $R$.
5:     pdaIntegerInput
On entry: the stride separating row or column elements (depending on the value of order) in the array a.
Constraints:
• if ${\mathbf{order}}=\mathrm{Nag_ColMajor}$, ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{m}}\right)$;
• if ${\mathbf{order}}=\mathrm{Nag_RowMajor}$, ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
6:     jpvt[$\mathit{dim}$]IntegerInput/Output
Note: the dimension, dim, of the array jpvt must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
On entry: if ${\mathbf{jpvt}}\left[i-1\right]\ne 0$, then the $i$ th column of $A$ is moved to the beginning of $AP$ before the decomposition is computed and is fixed in place during the computation. Otherwise, the $i$ th column of $A$ is a free column (i.e., one which may be interchanged during the computation with any other free column).
On exit: details of the permutation matrix $P$. More precisely, if ${\mathbf{jpvt}}\left[i-1\right]=k$, then the $k$th column of $A$ is moved to become the $i$ th column of $AP$; in other words, the columns of $AP$ are the columns of $A$ in the order ${\mathbf{jpvt}}\left[0\right],{\mathbf{jpvt}}\left[1\right],\dots ,{\mathbf{jpvt}}\left[n-1\right]$.
7:     tau[$\mathrm{min}\phantom{\rule{0.125em}{0ex}}\left({\mathbf{m}},{\mathbf{n}}\right)$]doubleOutput
On exit: further details of the orthogonal matrix $Q$.
8:     failNagError *Input/Output
The NAG error argument (see Section 3.6 in the Essential Introduction).

## 6  Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
On entry, argument $〈\mathit{\text{value}}〉$ had an illegal value.
NE_INT
On entry, ${\mathbf{m}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{m}}\ge 0$.
On entry, ${\mathbf{n}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{n}}\ge 0$.
On entry, ${\mathbf{pda}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{pda}}>0$.
NE_INT_2
On entry, ${\mathbf{pda}}=〈\mathit{\text{value}}〉$ and ${\mathbf{m}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{m}}\right)$.
On entry, ${\mathbf{pda}}=〈\mathit{\text{value}}〉$ and ${\mathbf{n}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

## 7  Accuracy

The computed factorization is the exact factorization of a nearby matrix $\left(A+E\right)$, where
 $E2 = Oε A2 ,$
and $\epsilon$ is the machine precision.

## 8  Further Comments

The total number of floating point operations is approximately $\frac{2}{3}{n}^{2}\left(3m-n\right)$ if $m\ge n$ or $\frac{2}{3}{m}^{2}\left(3n-m\right)$ if $m.
To form the orthogonal matrix $Q$ nag_dgeqpf (f08bec) may be followed by a call to nag_dorgqr (f08afc):
```nag_dorgqr(order,m,m,MIN(m,n),&a,pda,tau,&fail)
```
but note that the second dimension of the array a must be at least m, which may be larger than was required by nag_dgeqpf (f08bec).
When $m\ge n$, it is often only the first $n$ columns of $Q$ that are required, and they may be formed by the call:
```nag_dorgqr(order,m,n,n,&a,pda,tau,&fail)
```
To apply $Q$ to an arbitrary real rectangular matrix $C$, nag_dgeqpf (f08bec) may be followed by a call to nag_dormqr (f08agc). For example,
```nag_dormqr(order,Nag_LeftSide,Nag_Trans,m,p,MIN(m,n),&a,pda,tau,
+ &c,pdc,&fail)
```
forms $C={Q}^{\mathrm{T}}C$, where $C$ is $m$ by $p$.
To compute a $QR$ factorization without column pivoting, use nag_dgeqrf (f08aec).
The complex analogue of this function is nag_zgeqpf (f08bsc).

## 9  Example

This example finds the basic solutions for the linear least squares problems
 $minimize⁡ Axi - bi 2 , i=1,2$
where ${b}_{1}$ and ${b}_{2}$ are the columns of the matrix $B$,
 $A = -0.09 0.14 -0.46 0.68 1.29 -1.56 0.20 0.29 1.09 0.51 -1.48 -0.43 0.89 -0.71 -0.96 -1.09 0.84 0.77 2.11 -1.27 0.08 0.55 -1.13 0.14 1.74 -1.59 -0.72 1.06 1.24 0.34 and B= -0.01 -0.04 0.04 -0.03 0.05 0.01 -0.03 -0.02 0.02 0.05 -0.06 0.07 .$
Here $A$ is approximately rank-deficient, and hence it is preferable to use nag_dgeqpf (f08bec) rather than nag_dgeqrf (f08aec).

### 9.1  Program Text

Program Text (f08bece.c)

### 9.2  Program Data

Program Data (f08bece.d)

### 9.3  Program Results

Program Results (f08bece.r)