NAG Library Function Document nag_imodwt (c09dbc)

1 Purpose

nag_imodwt (c09dbc) computes the inverse one-dimensional maximal overlap discrete wavelet transform (MODWT) at a single level. The initialization function nag_wfilt (c09aac) must be called first to set up the MODWT options.

2 Specification

```
#include <nag.h>
#include <nagc09.h>
void nag_imodwt (Integer lenc, const double ca[], const double cd[],
    Integer n, double y[], const Integer icomm[], NagError *fail)
```


3 Description

nag_imodwt (c09dbc) performs the inverse operation of nag_modwt (c09dac). That is, given sets of n_{c} approximation coefficients and detail coefficients, computed by nag_modwt (c09dac) using a MODWT as set up by the initialization function nag_wfilt (c09aac), on a real data array of length n, nag_imodwt (c09dbc) will reconstruct the data array y_{i}, for $i=1,2, \ldots, n$, from which the coefficients were derived.

4 References

Percival D B and Walden A T (2000) Wavelet Methods for Time Series Analysis Cambridge University Press

5 Arguments

1: lenc - Integer
Input
On entry: the dimension of the arrays ca and cd.
Constraint: lenc $\geq n_{c}$, where n_{c} is the value returned in nwe by the call to the initialization function nag_wfilt (c09aac).

2: ca[lenc] - const double Input
On entry: the n_{c} approximation coefficients, C_{a}. These will normally be the result of some transformation on the coefficients computed by nag_modwt (c09dac).

3: $\mathbf{c d}[\mathbf{l e n c}]$ - const double Input
On entry: the n_{c} detail coefficients, C_{d}. These will normally be the result of some transformation on the coefficients computed by nag_modwt (c09dac).

4: $\quad \mathbf{n}$ - Integer
Input
On entry: n, the length of the original data array from which the wavelet coefficients were computed by nag_modwt (c09dac) and the length of the data array \mathbf{y} that is to be reconstructed by this function.
Constraint: This must be the same as the value \mathbf{n} passed to the initialization function nag_wfilt (c09aac).

5: $\quad \mathbf{y}[\mathbf{n}]-$ double
Output
On exit: the reconstructed data based on approximation and detail coefficients C_{a} and C_{d} and the transform options supplied to the initialization function nag_wfilt (c09aac).

6: icomm [100] - const Integer
Communication Array
On entry: contains details of the discrete wavelet transform and the problem dimension and, possibly, additional information on the previously computed forward transform.

7: fail - NagError * Input/Output The NAG error argument (see Section 2.7 in How to Use the NAG Library and its Documentation).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 2.3.1.2 in How to Use the NAG Library and its Documentation for further information.

NE_ARRAY_DIM_LEN

On entry, array dimension lenc not large enough: lenc $=\langle$ value \rangle but must be at least \langle value \rangle.

NE_BAD_PARAM

On entry, argument $\langle v a l u e\rangle$ had an illegal value.

NE_INITIALIZATION

On entry, \mathbf{n} is inconsistent with the value passed to the initialization function: $\mathbf{n}=\langle$ value \rangle, \mathbf{n} should be $\langle v a l u e\rangle$.
On entry, the initialization function nag_wfilt (c09aac) has not been called first or it has not been called with wtrans $=$ Nag_MODWTSingle, or the communication array icomm has become corrupted.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
An unexpected error has been triggered by this function. Please contact NAG.
See Section 2.7.6 in How to Use the NAG Library and its Documentation for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 2.7.5 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the wavelet transform depends only on the floating-point operations used in the convolution and downsampling and should thus be close to machine precision.

8 Parallelism and Performance

nag_imodwt (c09dbc) is not threaded in any implementation.

9 Further Comments

None.

10 Example

See Section 10 in nag_modwt (c09dac).

