
NAG Library Function Document

nag_ode_ivp_rkts_onestep (d02pfc)

1 Purpose

nag_ode_ivp_rkts_onestep (d02pfc) is a one-step function for solving an initial value problem for a
first-order system of ordinary differential equations using Runge–Kutta methods.

2 Specification

#include <nag.h>
#include <nagd02.h>

void nag_ode_ivp_rkts_onestep (

void (*f)(double t, Integer n, const double y[], double yp[],
Nag_Comm *comm),

Integer n, double *tnow, double ynow[], double ypnow[], Nag_Comm *comm,
Integer iwsav[], double rwsav[], NagError *fail)

3 Description

nag_ode_ivp_rkts_onestep (d02pfc) and its associated functions (nag_ode_ivp_rkts_setup (d02pqc),
nag_ode_ivp_rkts_reset_tend (d02prc), nag_ode_ivp_rkts_interp (d02psc), nag_ode_ivp_rkts_diag
(d02ptc) and nag_ode_ivp_rkts_errass (d02puc)) solve an initial value problem for a first-order system
of ordinary differential equations. The functions, based on Runge–Kutta methods and derived from
RKSUITE (see Brankin et al. (1991)), integrate

y0 ¼ f t; yð Þ given y t0ð Þ ¼ y0

where y is the vector of n solution components and t is the independent variable.

nag_ode_ivp_rkts_onestep (d02pfc) is designed to be used in complicated tasks when solving systems
of ordinary differential equations. You must first call nag_ode_ivp_rkts_setup (d02pqc) to specify the
problem and how it is to be solved. Thereafter you (repeatedly) call nag_ode_ivp_rkts_onestep (d02pfc)
to take one integration step at a time from tstart in the direction of tend (as specified in
nag_ode_ivp_rkts_setup (d02pqc)). In this manner nag_ode_ivp_rkts_onestep (d02pfc) returns an
approximation to the solution ynow and its derivative ypnow at successive points tnow. If
nag_ode_ivp_rkts_onestep (d02pfc) encounters some difficulty in taking a step, the integration is not
advanced and the function returns with the same values of tnow, ynow and ypnow as returned on the
previous successful step. nag_ode_ivp_rkts_onestep (d02pfc) tries to advance the integration as far as
possible subject to passing the test on the local error and not going past tend.

In the call to nag_ode_ivp_rkts_setup (d02pqc) you can specify either the first step size for
nag_ode_ivp_rkts_onestep (d02pfc) to attempt or that it computes automatically an appropriate value.
Thereafter nag_ode_ivp_rkts_onestep (d02pfc) estimates an appropriate step size for its next step. This
value and other details of the integration can be obtained after any call to nag_ode_ivp_rkts_onestep
(d02pfc) by a call to nag_ode_ivp_rkts_diag (d02ptc). The local error is controlled at every step as
specified in nag_ode_ivp_rkts_setup (d02pqc). If you wish to assess the true error, you must set
errass ¼ Nag ErrorAssess on in the call to nag_ode_ivp_rkts_setup (d02pqc). This assessment can be
obtained after any call to nag_ode_ivp_rkts_onestep (d02pfc) by a call to nag_ode_ivp_rkts_errass
(d02puc).

If you want answers at specific points there are two ways to proceed:

(i) The more efficient way is to step past the point where a solution is desired, and then call
nag_ode_ivp_rkts_interp (d02psc) to get an answer there. Within the span of the current step, you
can get all the answers you want at very little cost by repeated calls to nag_ode_ivp_rkts_interp
(d02psc). This is very valuable when you want to find where something happens, e.g., where a

d02 – Ordinary Differential d02pfc

Mark 26 d02pfc.1

particular solution component vanishes. You cannot proceed in this way with
method ¼ Nag RK 7 8.

(ii) The other way to get an answer at a specific point is to set tend to this value and integrate to tend.
nag_ode_ivp_rkts_onestep (d02pfc) will not step past tend, so when a step would carry it past, it
will reduce the step size so as to produce an answer at tend exactly. After getting an answer there
(tnow ¼ tend), you can reset tend to the next point where you want an answer, and repeat. tend
could be reset by a call to nag_ode_ivp_rkts_setup (d02pqc), but you should not do this. You
should use nag_ode_ivp_rkts_reset_tend (d02prc) instead because it is both easier to use and much
more efficient. This way of getting answers at specific points can be used with any of the available
methods, but it is the only way with method ¼ Nag RK 7 8. It can be inefficient. Should this be
the case, the code will bring the matter to your attention.

4 References

Brankin R W, Gladwell I and Shampine L F (1991) RKSUITE: A suite of Runge–Kutta codes for the
initial value problems for ODEs SoftReport 91-S1 Southern Methodist University

5 Arguments

1: f – function, supplied by the user External Function

f must evaluate the functions fi (that is the first derivatives y0i) for given values of the arguments
t, yi.

The specification of f is:

void f (double t, Integer n, const double y[], double yp[],
Nag_Comm *comm)

1: t – double Input

On entry: t, the current value of the independent variable.

2: n – Integer Input

On entry: n, the number of ordinary differential equations in the system to be solved.

3: y½n� – const double Input

On entry: the current values of the dependent variables, yi, for i ¼ 1; 2; . . . ;n.

4: yp½n� – double Output

On exit: the values of fi, for i ¼ 1; 2; . . . ; n.

5: comm – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to f.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling nag_ode_ivp_rkts_onestep
(d02pfc) you may allocate memory and initialize these pointers with various
quantities for use by f when called from nag_ode_ivp_rkts_onestep (d02pfc) (see
Section 2.3.1.1 in How to Use the NAG Library and its Documentation).

d02pfc NAG Library Manual

d02pfc.2 Mark 26

2: n – Integer Input

On entry: n, the number of ordinary differential equations in the system to be solved.

Constraint: n � 1.

3: tnow – double * Output

On exit: t, the value of the independent variable at which a solution has been computed.

4: ynow½n� – double Output

On exit: an approximation to the solution at tnow. The local error of the step to tnow was no
greater than permitted by the specified tolerances (see nag_ode_ivp_rkts_setup (d02pqc)).

5: ypnow½n� – double Output

On exit: an approximation to the first derivative of the solution at tnow.

6: comm – Nag_Comm *

The NAG communication argument (see Section 2.3.1.1 in How to Use the NAG Library and its
Documentation).

7: iwsav½130� – Integer Communication Array
8: rwsav½32� nþ 350� – double Communication Array

On entry: these must be the same arrays supplied in a previous call to nag_ode_ivp_rkts_setup
(d02pqc). They must remain unchanged between calls.

On exit: information about the integration for use on subsequent calls to nag_ode_ivp_rkts_one
step (d02pfc) or other associated functions.

9: fail – NagError * Input/Output

The NAG error argument (see Section 2.7 in How to Use the NAG Library and its
Documentation).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 2.3.1.2 in How to Use the NAG Library and its Documentation for further
information.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_INT_CHANGED

On entry, n ¼ valueh i, but the value passed to the setup function was n ¼ valueh i.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 2.7.6 in How to Use the NAG Library and its Documentation for further information.

d02 – Ordinary Differential d02pfc

Mark 26 d02pfc.3

NE_MISSING_CALL

On entry, a previous call to the setup function has not been made or the communication arrays
have become corrupted.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 2.7.5 in How to Use the NAG Library and its Documentation for further information.

NE_PREV_CALL

On entry, the communication arrays have become corrupted, or a catastrophic error has already
been detected elsewhere. You cannot continue integrating the problem.

NE_PREV_CALL_INI

A call to this function cannot be made after it has returned an error.
The setup function must be called to start another problem.

NE_RK_GLOBAL_ERROR_S

The global error assessment algorithm failed at start of integration.
The integration is being terminated.

NE_RK_GLOBAL_ERROR_T

The global error assessment may not be reliable for times beyond valueh i.
The integration is being terminated.

NE_RK_POINTS

More than 100 output points have been obtained by integrating to tend (as specified in the setup
function). They have been so clustered that it would probably be (much) more efficient to use the
interpolation function (if method ¼ Nag RK 7 8, switch to method ¼ Nag RK 4 5 at setup).
However, you can continue integrating the problem.

NE_RK_STEP_TOO_SMALL

In order to satisfy your error requirements the solver has to use a step size of valueh i at the
current time, valueh i. This step size is too small for the machine precision, and is smaller than
valueh i.

NE_RK_TGOT_EQ_TEND

tend, as specified in the setup function, has already been reached. To start a new problem, you
will need to call the setup function. To continue integration beyond tend then
nag_ode_ivp_rkts_reset_tend (d02prc) must first be called to reset tend to a new end value.

NE_STIFF_PROBLEM

Approximately valueh i function evaluations have been used to compute the solution since the
integration started or since this message was last printed. Your problem has been diagnosed as
stiff. If the situation persists, it will cost roughly valueh i times as much to reach tend (setup) as it
has cost to reach the current time. You should probably call functions intended for stiff problems.
However, you can continue integrating the problem.

NW_RK_TOO_MANY

Approximately valueh i function evaluations have been used to compute the solution since the
integration started or since this message was last printed. However, you can continue integrating
the problem.

d02pfc NAG Library Manual

d02pfc.4 Mark 26

7 Accuracy

The accuracy of integration is determined by the arguments tol and thresh in a prior call to
nag_ode_ivp_rkts_setup (d02pqc) (see the function document for nag_ode_ivp_rkts_setup (d02pqc) for
further details and advice). Note that only the local error at each step is controlled by these arguments.
The error estimates obtained are not strict bounds but are usually reliable over one step. Over a number
of steps the overall error may accumulate in various ways, depending on the properties of the
differential system.

8 Parallelism and Performance

nag_ode_ivp_rkts_onestep (d02pfc) makes calls to BLAS and/or LAPACK routines, which may be
threaded within the vendor library used by this implementation. Consult the documentation for the
vendor library for further information.

Please consult the x06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this function. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

If nag_ode_ivp_rkts_onestep (d02pfc) returns with fail:code ¼ NE_RK_STEP_TOO_SMALL and the
accuracy specified by tol and thresh is really required then you should consider whether there is a more
fundamental difficulty. For example, the solution may contain a singularity. In such a region the
solution components will usually be large in magnitude. Successive output values of ynow should be
monitored with the aim of trapping the solution before the singularity. In any case numerical integration
cannot be continued through a singularity, and analytical treatment may be necessary.

Performance statistics are available after any return from nag_ode_ivp_rkts_onestep (d02pfc) (except
when fail:code ¼ NE_BAD_PARAM, NE_INT_CHANGED, NE_MISSING_CALL, NE_PREV_CALL,
NE_PREV_CALL_INI or NE_RK_TGOT_EQ_TEND) by a call to nag_ode_ivp_rkts_diag (d02ptc). If
errass ¼ Nag ErrorAssess on in the call to nag_ode_ivp_rkts_setup (d02pqc), global error assessment
is available after any return from nag_ode_ivp_rkts_onestep (d02pfc) (except when fail:code ¼
NE_BAD_PARAM, NE_INT_CHANGED, NE_MISSING_CALL, NE_PREV_CALL,
NE_PREV_CALL_INI or NE_RK_TGOT_EQ_TEND) by a call to nag_ode_ivp_rkts_errass (d02puc).

After a failure with fail:code ¼ NE_RK_GLOBAL_ERROR_S, NE_RK_GLOBAL_ERROR_T or
NE_RK_STEP_TOO_SMALL each of the diagnostic functions nag_ode_ivp_rkts_diag (d02ptc) and
nag_ode_ivp_rkts_errass (d02puc) may be called only once.

If nag_ode_ivp_rkts_onestep (d02pfc) returns with fail:code ¼ NE_STIFF_PROBLEM then it is
advisable to change to another code more suited to the solution of stiff problems. nag_ode_ivp_rkts_one
step (d02pfc) will not return with fail:code ¼ NE_STIFF_PROBLEM if the problem is actually stiff but
it is estimated that integration can be completed using less function evaluations than already computed.

10 Example

This example solves the equation

y00 ¼ �y; y 0ð Þ ¼ 0; y0 0ð Þ ¼ 1

reposed as

y01 ¼ y2

y02 ¼ �y1

over the range 0; 2�½ � with initial conditions y1 ¼ 0:0 and y2 ¼ 1:0. We use relative error control with
threshold values of 1:0e�8 for each solution component and print the solution at each integration step
across the range. We use a medium order Runge–Kutta method (method ¼ Nag RK 4 5) with
tolerances tol ¼ 1:0e�4 and tol ¼ 1:0e�5 in turn so that we may compare the solutions.

d02 – Ordinary Differential d02pfc

Mark 26 d02pfc.5

10.1 Program Text

/* nag_ode_ivp_rkts_onestep (d02pfc) Example Program.
*
* NAGPRODCODE Version.
*
* Copyright 2016 Numerical Algorithms Group.
*
* Mark 26, 2016.
*/

#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagd02.h>

#ifdef __cplusplus
extern "C"
{
#endif

static void NAG_CALL f(double t, Integer n, const double *y,
double *yp, Nag_Comm *comm);

#ifdef __cplusplus
}
#endif

#define N 2

int main(void)
{

/* Scalars */
double tol0 = 1.0e-3;
Integer exit_status = 0;
Integer liwsav, lrwsav, n;
double hnext, hstart, tend, tgot, tol, tstart, waste;
Integer fevals, i, j, k, stepcost, stepsok;
/* Arrays */
static double ruser[1] = { -1.0 };
double *rwsav = 0, *thresh = 0, *ygot = 0, *yinit = 0, *ypgot = 0;
Integer *iwsav = 0;
char nag_enum_arg[40];
/* NAG types */
NagError fail;
Nag_RK_method method;
Nag_ErrorAssess errass;
Nag_Comm comm;

INIT_FAIL(fail);

printf("nag_ode_ivp_rkts_onestep (d02pfc) Example Program Results\n\n");

/* For communication with user-supplied functions: */
comm.user = ruser;

n = N;
liwsav = 130;
lrwsav = 350 + 32 * n;
if (!(thresh = NAG_ALLOC(n, double)) ||

!(ygot = NAG_ALLOC(n, double)) ||
!(yinit = NAG_ALLOC(n, double)) ||
!(ypgot = NAG_ALLOC(n, double)) ||
!(iwsav = NAG_ALLOC(liwsav, Integer)) ||
!(rwsav = NAG_ALLOC(lrwsav, double))

)
{

printf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Skip heading in data file */
#ifdef _WIN32

d02pfc NAG Library Manual

d02pfc.6 Mark 26

scanf_s("%*[^\n] ");
#else

scanf("%*[^\n] ");
#endif

/* Set initial conditions for ODE and parameters for the integrator. */

#ifdef _WIN32
scanf_s(" %39s%*[^\n] ", nag_enum_arg, (unsigned)_countof(nag_enum_arg));

#else
scanf(" %39s%*[^\n] ", nag_enum_arg);

#endif
/* nag_enum_name_to_value (x04nac) Converts NAG enum member name to value. */
method = (Nag_RK_method) nag_enum_name_to_value(nag_enum_arg);

#ifdef _WIN32
scanf_s(" %39s%*[^\n] ", nag_enum_arg, (unsigned)_countof(nag_enum_arg));

#else
scanf(" %39s%*[^\n] ", nag_enum_arg);

#endif
errass = (Nag_ErrorAssess) nag_enum_name_to_value(nag_enum_arg);

#ifdef _WIN32
scanf_s("%lf%lf%*[^\n] ", &tstart, &tend);

#else
scanf("%lf%lf%*[^\n] ", &tstart, &tend);

#endif
for (j = 0; j < n; j++)

#ifdef _WIN32
scanf_s("%lf", &yinit[j]);

#else
scanf("%lf", &yinit[j]);

#endif
#ifdef _WIN32

scanf_s("%*[^\n] ");
#else

scanf("%*[^\n] ");
#endif

#ifdef _WIN32
scanf_s("%lf%*[^\n] ", &hstart);

#else
scanf("%lf%*[^\n] ", &hstart);

#endif
for (j = 0; j < n; j++)

#ifdef _WIN32
scanf_s("%lf", &thresh[j]);

#else
scanf("%lf", &thresh[j]);

#endif
#ifdef _WIN32

scanf_s("%*[^\n] ");
#else

scanf("%*[^\n] ");
#endif

tol = tol0;
for (i = 1; i <= 2; i++) {

tol = tol * 0.1;
/* Initialize Runge-Kutta method for integrating ODE using
* nag_ode_ivp_rkts_setup (d02pqc).
*/

nag_ode_ivp_rkts_setup(n, tstart, tend, yinit, tol, thresh, method,
errass, hstart, iwsav, rwsav, &fail);

if (fail.code != NE_NOERROR) {
printf("Error from nag_ode_ivp_rkts_setup (d02pqc).\n%s\n",

fail.message);
exit_status = 1;
goto END;

}

d02 – Ordinary Differential d02pfc

Mark 26 d02pfc.7

printf(" Calculation with tol = %8.1e\n", tol);
printf(" t y1 y2\n");
printf("%6.3f", tstart);
for (k = 0; k < n; k++)

printf(" %7.3f", yinit[k]);
printf("\n");

tgot = tstart;
while (tgot < tend) {

/* Solve ODE by Runge-Kutta method by a sequence of single steps using
* nag_ode_ivp_rkts_onestep (d02pfc).
*/

nag_ode_ivp_rkts_onestep(f, n, &tgot, ygot, ypgot, &comm,
iwsav, rwsav, &fail);

if (fail.code != NE_NOERROR) {
printf("Error from nag_ode_ivp_rkts_onestep (d02pfc).\n%s\n",

fail.message);
exit_status = 2;
goto END;

}

printf("%6.3f", tgot);
for (k = 0; k < n; k++)

printf(" %7.3f", ygot[k]);
printf("\n");

}
/* Get diagnostics on whole integration using
* nag_ode_ivp_rkts_diag (d02ptc).
*/

nag_ode_ivp_rkts_diag(&fevals, &stepcost, &waste, &stepsok, &hnext,
iwsav, rwsav, &fail);

if (fail.code != NE_NOERROR) {
printf("Error from nag_ode_ivp_rkts_diag (d02ptc).\n%s\n",

fail.message);
exit_status = 3;
goto END;

}
printf("Cost of the integration in evaluations of f is %6" NAG_IFMT

"\n\n", fevals);
}

END:
NAG_FREE(thresh);
NAG_FREE(yinit);
NAG_FREE(ygot);
NAG_FREE(ypgot);
NAG_FREE(rwsav);
NAG_FREE(iwsav);
return exit_status;

}

static void NAG_CALL f(double t, Integer n, const double *y, double *yp,
Nag_Comm *comm)

{
if (comm->user[0] == -1.0) {

printf("(User-supplied callback f, first invocation.)\n");
comm->user[0] = 0.0;

}
yp[0] = y[1];
yp[1] = -y[0];

}

10.2 Program Data

nag_ode_ivp_rkts_onestep (d02pfc) Example Program Data
Nag_RK_4_5 : method
Nag_ErrorAssess_off : errass
0.0 6.28318530717958647692 : tstart, tend
0.0 1.0 : yinit(1:n)
0.0 : hstart
1.0E-8 1.0E-8 : thresh(1:n)

d02pfc NAG Library Manual

d02pfc.8 Mark 26

10.3 Program Results

nag_ode_ivp_rkts_onestep (d02pfc) Example Program Results

Calculation with tol = 1.0e-04
t y1 y2

0.000 0.000 1.000
(User-supplied callback f, first invocation.)
0.785 0.707 0.707
1.519 0.999 0.051
2.282 0.757 -0.653
2.911 0.229 -0.974
3.706 -0.535 -0.845
4.364 -0.940 -0.341
5.320 -0.821 0.571
5.802 -0.463 0.886
6.283 0.000 1.000

Cost of the integration in evaluations of f is 78

Calculation with tol = 1.0e-05
t y1 y2

0.000 0.000 1.000
0.393 0.383 0.924
0.785 0.707 0.707
1.416 0.988 0.154
1.870 0.956 -0.294
2.204 0.806 -0.592
2.761 0.371 -0.929
3.230 -0.088 -0.996
3.587 -0.430 -0.903
4.022 -0.771 -0.637
4.641 -0.997 -0.072
5.152 -0.905 0.426
5.521 -0.690 0.724
5.902 -0.372 0.928
6.283 0.000 1.000

Cost of the integration in evaluations of f is 118

d02 – Ordinary Differential d02pfc

Mark 26 d02pfc.9

-1

-0.5

 0

 0.5

 1

 0 1 2 3 4 5 6 7
0.00000

0.00000

0.00000

0.00000

0.00001

0.00010

So
lu

ti
on

 (
y,

y’
)

ab
s(

E
rr

or
)

t

Example Program
First-order ODEs using Step-by-step Runge-Kutta

Medium-order Method using Two Tolerances

y-solution
y’-solution

y-error (tol = 0.00001)
y-error (tol = 0.0001)

sin(x)
cos(x)

d02pfc NAG Library Manual

d02pfc.10 (last) Mark 26

	d02pfc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Brankin et al. (1991)

	5 Arguments
	f
	t
	n
	y
	yp
	comm
	user
	iuser
	p

	n
	tnow
	ynow
	ypnow
	comm
	iwsav
	rwsav
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INT_CHANGED
	NE_INTERNAL_ERROR
	NE_MISSING_CALL
	NE_NO_LICENCE
	NE_PREV_CALL
	NE_PREV_CALL_INI
	NE_RK_GLOBAL_ERROR_S
	NE_RK_GLOBAL_ERROR_T
	NE_RK_POINTS
	NE_RK_STEP_TOO_SMALL
	NE_RK_TGOT_EQ_TEND
	NE_STIFF_PROBLEM
	NW_RK_TOO_MANY

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG C Library Manual, Mark 26.1
	Copyright Statement
	Introduction
	How to Use the NAG Library and its Documentation
	NAG C Library News, Mark 26.1
	Implementation-specific Details for Users
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Support from NAG
	Index

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Contents
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Contents
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Contents
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Contents
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Contents
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Contents
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Contents
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Contents
	d02 Chapter Introduction
	d02M-N Sub-chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Contents
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Contents
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Contents
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Contents
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Contents
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Contents
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Contents
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Contents
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Contents
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Contents
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Contents
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Contents
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Contents
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Contents
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Contents
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Contents
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Contents
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Contents
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Contents
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Contents
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Contents
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Contents
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Contents
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Contents
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Contents
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Contents
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Contents
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Contents
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Contents
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Contents
	g13 Chapter Introduction

	g22 - Linear Model Specification
	g22 Chapter Contents
	g22 Chapter Introduction

	h - Operations Research
	h Chapter Contents
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Contents
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Contents
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Contents
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Contents
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Contents
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Contents
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Contents
	x07 Chapter Introduction

