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1  Scope of the Chapter

This chapter provides functions for the solution of systems of simultaneous linear equations, and
associated computations. It provides functions for

matrix factorizations;
solution of linear equations;
estimating matrix condition numbers;
computing error bounds for the solution of linear equations;
matrix inversion.
Functions are provided for both real and complex data.

For a general introduction to the solution of systems of linear equations, you should turn first to the f04
Chapter Introduction. The decision trees, in Section 4 in the f04 Chapter Introduction, direct you to the
most appropriate functions in Chapters f04 or f07 for solving your particular problem. In particular,
Chapters f04 and f07 contain Black Box (or driver) functions which enable some standard types of
problem to be solved by a call to a single function. Where possible, functions in Chapter f04 call
Chapter f07 functions to perform the necessary computational tasks.

There are two types of driver functions in this chapter: simple drivers which just return the solution to
the linear equations; and expert drivers which also return condition and error estimates and, in many
cases, also allow equilibration. The simple drivers for real matrices have names of the form nag_d..sv
(f07.ac) and for complex matrices have names of the form nag z..sv (f07.nc). The expert drivers for
real matrices have names of the form nag_d..svx (f07.bc) and for complex matrices have names of the
form nag_z..svx (f07.pc).

The functions in this chapter (Chapter f07) handle only dense and band matrices (not matrices with
more specialised structures, or general sparse matrices).

The functions in this chapter have all been derived from the LAPACK project (see Anderson et al.
(1999)). They have been designed to be efficient on a wide range of high-performance computers,
without compromising efficiency on conventional serial machines.

2 Background to the Problems

This section is only a brief introduction to the numerical solution of systems of linear equations.
Consult a standard textbook, for example Golub and Van Loan (1996) for a more thorough discussion.

2.1 Notation
We use the standard notation for a system of simultaneous linear equations:
Az =10 (1)

where A is the coefficient matrix, b is the right-hand side, and x is the solution. A is assumed to be a
square matrix of order n.

If there are several right-hand sides, we write
AX =B (2)

where the columns of B are the individual right-hand sides, and the columns of X are the
corresponding solutions.

We also use the following notation, both here and in the function documents:

z a computed solution to Ax = b, (which usually differs from the exact
solution = because of round-off error)
r=b— Az the residual corresponding to the computed solution &
|| x|, = max|z]| the co-norm of the vector x
K
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the 1-norm of the vector =

n
lzlly = >l
j=1

Al = mdeZ’aij‘ the co-norm of the matrix A
g
n the 1-norm of the matrix A
1Al = m]?lXZ}aiH
=1
|| the vector with elements |z;]
|A] the matrix with elements |a7;j|

Inequalities of the form |A| < |B| are interpreted component-wise, that is }aij| < |b,,| for all 1, j.

2.2 Matrix Factorizations

If A is upper or lower triangular, Ax = b can be solved by a straightforward process of backward or
forward substitution.

Otherwise, the solution is obtained after first factorizing A, as follows.
General matrices (LU factorization with partial pivoting)
A=PLU

where P is a permutation matrix, L is lower-triangular with diagonal elements equal to 1, and U is
upper-triangular; the permutation matrix P (which represents row interchanges) is needed to ensure
numerical stability.

Symmetric positive definite matrices (Cholesky factorization)
A=U"U o A=LL"
where U is upper triangular and L is lower triangular.

Symmetric positive semidefinite matrices (pivoted Cholesky factorization)
A=PU'UP" or A=PLL"P"

where P is a permutation matrix, U is upper triangular and L is lower triangular. The permutation
matrix P (which represents row-and-column interchanges) is needed to ensure numerical stability and to
reveal the numerical rank of A.

Symmetric indefinite matrices (Bunch—Kaufman factorization)
A=PUDU'P" or A=PLDL'P'

where P is a permutation matrix, U is upper triangular, L is lower triangular, and D is a block diagonal
matrix with diagonal blocks of order 1 or 2; U and L have diagonal elements equal to 1, and have 2 by
2 unit matrices on the diagonal corresponding to the 2 by 2 blocks of D. The permutation matrix P
(which represents symmetric row-and-column interchanges) and the 2 by 2 blocks in D are needed to
ensure numerical stability. If A is in fact positive definite, no interchanges are needed and the
factorization reduces to A = UDU?T or A = LDL" with diagonal D, which is simply a variant form of
the Cholesky factorization.

2.3 Solution of Systems of Equations

Given one of the above matrix factorizations, it is straightforward to compute a solution to Az = b by
solving two subproblems, as shown below, first for y and then for z. Each subproblem consists
essentially of solving a triangular system of equations by forward or backward substitution; the
permutation matrix P and the block diagonal matrix D introduce only a little extra complication:

General matrices (LU factorization)

Ly= P"
Ux=y
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Symmetric positive definite matrices (Cholesky factorization)

Uy =5 or Ly=1b
Uxr =y LTz =y
Symmetric indefinite matrices (Bunch—Kaufman factorization)
PUDy =1 PLDy=1b

U'Ple =y or  yTpTy — y

2.4 Sensitivity and Error Analysis
2.4.1 Normwise error bounds

Frequently, in practical problems the data A and b are not known exactly, and it is then important to
understand how uncertainties or perturbations in the data can affect the solution.

If x is the exact solution to Az =b, and = + 6z is the exact solution to a perturbed problem
(A+6A)(z+ béx) = (b+ 6b), then

[6A]  [160]

6| < >
— < K(A)| 5= + - | + - - - (second-order terms)
1Al 11l

)~
where x(A) is the condition number of A defined by
k(4) = [l All A7) (3)

In other words, relative errors in A or b may be amplified in z by a factor x(A). Section 2.4.2 discusses
how to compute or estimate x(A).

Similar considerations apply when we study the effects of rounding errors introduced by computation
in finite precision. The effects of rounding errors can be shown to be equivalent to perturbations in the

0A b
1oA] and o] are usually at most p(n)e, where € is the machine precision and

[1A] 161l
p(n) is an increasing function of n which is seldom larger than 10n (although in theory it can be as

large as 2" 1).

original data, such that

In other words, the computed solution % is the exact solution of a linear system (A + 6A)E = b+ 6b
which is close to the original system in a normwise sense.

2.4.2 Estimating condition numbers

The previous section has emphasized the usefulness of the quantity x(A) in understanding the
sensitivity of the solution of Az =b. To compute the value of x(A) from equation (3) is more
expensive than solving Az = b in the first place. Hence it is standard practice to estimate k(A), in
cither the 1-norm or the co-norm, by a method which only requires O(n?) additional operations,
assuming that a suitable factorization of A is available.

The method used in this chapter is Higham's modification of Hager's method (see Higham (1988)). It
yields an estimate which is never larger than the true value, but which seldom falls short by more than a
factor of 3 (although artificial examples can be constructed where it is much smaller). This is acceptable
since it is the order of magnitude of x(A) which is important rather than its precise value.

Because k(A) is infinite if A is singular, the functions in this chapter actually return the reciprocal of
k(A).
2.4.3 Scaling and Equilibration

The condition of a matrix and hence the accuracy of the computed solution, may be improved by
scaling; thus if D, and D, are diagonal matrices with positive diagonal elements, then

B=DAD,

is the scaled matrix. A general matrix is said to be equilibrated if it is scaled so that the lengths of its
rows and columns have approximately equal magnitude. Similarly a general matrix is said to be row-
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equilibrated (column-equilibrated) if it is scaled so that the lengths of its rows (columns) have
approximately equal magnitude. Note that row scaling can affect the choice of pivot when partial
pivoting is used in the factorization of A.

A symmetric or Hermitian positive definite matrix is said to be equilibrated if the diagonal elements are
all approximately equal to unity.

For further information on scaling and equilibration see Section 3.5.2 of Golub and Van Loan (1996),
Section 7.2, 7.3 and 9.8 of Higham (1988) and Section 5 of Chapter 4 of Wilkinson (1965).

Functions are provided to return the scaling factors that equilibrate a matrix for general, general band,
symmetric and Hermitian positive definite and symmetric and Hermitian positive definite band matrices.

2.4.4 Componentwise error bounds

A disadvantage of normwise error bounds is that they do not reflect any special structure in the data A
and b — that is, a pattern of elements which are known to be zero — and the bounds are dominated by
the largest elements in the data.

Componentwise error bounds overcome these limitations. Instead of the normwise relative error, we can
bound the relative error in each component of A and b:

max ’6aij|,M <w

where the component-wise backward error bound w is given by

_ |74
w = max

o (JALE] + [b]);
Functions are provided in this chapter which compute w, and also compute a forward error bound
which is sometimes much sharper than the normwise bound given earlier:
. -1
lz — &l _ A7l
lzlle = el

Care is taken when computing this bound to allow for rounding errors in computing r. The norm
||A=|.Ir||| . is estimated cheaply (without computing A~') by a modification of the method used to
estimate x(A).

2.4.5 Iterative refinement of the solution

If £ is an approximate computed solution to Ax =b, and r is the corresponding residual, then a
procedure for iterative refinement of & can be defined as follows, starting with xy = 2:

for ¢ =0,1,..., until convergence

compute 1; =b— Ax;
solve Ad; =r;
compute x4 = x; +d;

In Chapter f04, functions are provided which perform this procedure using additional precision to
compute 7, and are thus able to reduce the forward error to the level of machine precision.

The functions in this chapter do not use additional precision to compute r, and cannot guarantee a
small forward error, but can guarantee a small backward error (except in rare cases when A is very ill-
conditioned, or when A and xz are sparse in such a way that |A|.|x| has a zero or very small
component). The iterations continue until the backward error has been reduced as much as possible;
usually only one iteration is needed.
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2.5 Matrix Inversion

It is seldom necessary to compute an explicit inverse of a matrix. In particular, do not attempt to solve
Ax = b by first computing A~! and then forming the matrix-vector product z = A~'b; the procedure
described in Section 2.3 is more efficient and more accurate.

However, functions are provided for the rare occasions when an inverse is needed, using one of the
factorizations described in Section 2.2.

2.6 Packed Storage Formats

Functions which handle symmetric matrices are usually designed so that they use either the upper or
lower triangle of the matrix; it is not necessary to store the whole matrix. If the upper or lower triangle
is stored conventionally in the upper or lower triangle of a two-dimensional array, the remaining
elements of the array can be used to store other useful data.

However, that is not always convenient, and if it is important to economize on storage, the upper or
lower triangle can be stored in a one-dimensional array of length n(n + 1)/2 or a two-dimensional
array with n(n + 1)/2 elements; in other words, the storage is almost halved.

The one-dimensional array storage format is referred to as packed storage; it is described in
Section 3.3.2. The two-dimensional array storage format is referred to as Rectangular Full Packed
(RFP) format; it is described in Section 3.3.3. They may also be used for triangular matrices.

Functions designed for these packed storage formats perform the same number of arithmetic operations
as functions which use conventional storage. Those using a packed one-dimensional array are usually
less efficient, especially on high-performance computers, so there is then a trade-off between storage
and efficiency. The RFP functions are as efficient as for conventional storage, although only a small
subset of functions use this format.

2.7 Band and Tridiagonal Matrices

A band matrix is one whose nonzero elements are confined to a relatively small number of subdiagonals
or superdiagonals on either side of the main diagonal. A tridiagonal matrix is a special case of a band
matrix with just one subdiagonal and one superdiagonal. Algorithms can take advantage of bandedness
to reduce the amount of work and storage required. The storage scheme used for band matrices is
described in Section 3.3.4.

The LU factorization for general matrices, and the Cholesky factorization for symmetric and Hermitian
positive definite matrices both preserve bandedness. Hence functions are provided which take advantage
of the band structure when solving systems of linear equations.

The Cholesky factorization preserves bandedness in a very precise sense: the factor U or L has the
same number of superdiagonals or subdiagonals as the original matrix. In the LU factorization, the row-
interchanges modify the band structure: if A has k; subdiagonals and k&, superdiagonals, then L is not a
band matrix but still has at most k; nonzero elements below the diagonal in each column; and U has at
most k; + k, superdiagonals.

The Bunch—Kaufman factorization does not preserve bandedness, because of the need for symmetric
row-and-column permutations; hence no functions are provided for symmetric indefinite band matrices.

The inverse of a band matrix does not in general have a band structure, so no functions are provided for
computing inverses of band matrices.

2.8 Block Partitioned Algorithms

Many of the functions in this chapter use what is termed a block partitioned algorithm. This means that
at each major step of the algorithm a block of rows or columns is updated, and most of the computation
is performed by matrix-matrix operations on these blocks. The matrix-matrix operations are performed
by calls to the Level 3 BLAS (see Chapter f16), which are the key to achieving high performance on
many modern computers. See Golub and Van Loan (1996) or Anderson et al. (1999) for more about
block partitioned algorithms.
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The performance of a block partitioned algorithm varies to some extent with the block size — that is, the
number of rows or columns per block. This is a machine-dependent argument, which is set to a suitable
value when the library is implemented on each range of machines. You do not normally need to be
aware of what value is being used. Different block sizes may be used for different functions. Values in
the range 16 to 64 are typical.

On some machines there may be no advantage from using a block partitioned algorithm, and then the
functions use an unblocked algorithm (effectively a block size of 1), relying solely on calls to the Level
2 BLAS (see Chapter fl6 again).

2.9 Mixed Precision LAPACK Routines

Some LAPACK routines use mixed precision arithmetic in an effort to solve problems more efficiently
on modern hardware. They work by converting a double precision problem into an equivalent single
precision problem, solving it and then using iterative refinement in double precision to find a full
precision solution to the original problem. The method may fail if the problem is too ill-conditioned to
allow the initial single precision solution, in which case the functions fall back to solve the original
problem entirely in double precision. The vast majority of problems are not so ill-conditioned, and in
those cases the technique can lead to significant gains in speed without loss of accuracy. This is
particularly true on machines where double precision arithmetic is significantly slower than single
precision.

3 Recommendations on Choice and Use of Available Functions

3.1 Available Functions

Tables 1 and 8 in Section 3.5 show the functions which are provided for performing different
computations on different types of matrices. Table 1 shows functions for real matrices; Table 8 shows
functions for complex matrices. Each entry in the table gives the NAG function name and the LAPACK
double precision name (see Section 3.2).

Functions are provided for the following types of matrix:
general
general band
symmetric or Hermitian positive definite
symmetric or Hermitian positive definite (packed storage)
symmetric or Hermitian positive definite (RFP storage)
symmetric or Hermitian positive definite band
symmetric or Hermitian positive definite tridiagonal
symmetric or Hermitian indefinite
symmetric or Hermitian indefinite (packed storage)
triangular
triangular (packed storage)
triangular (RFP storage)
triangular band

For each of the above types of matrix (except where indicated), functions are provided to perform the
following computations:

(a) (except for RFP matrices) solve a system of linear equations (driver functions);

(b) (except for RFP matrices) solve a system of linear equations with condition and error estimation
(expert drivers);

(c) (except for triangular matrices) factorize the matrix (see Section 2.2);
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(d) solve a system of linear equations, using the factorization (see Section 2.3);

(e) (except for RFP matrices) estimate the condition number of the matrix, using the factorization (see
Section 2.4.2); these functions also require the norm of the original matrix (except when the matrix
is triangular) which may be computed by a function in Chapter f16;

(f) (except for RFP matrices) refine the solution and compute forward and backward error bounds (see
Sections 2.4.4 and 2.4.5); these functions require the original matrix and right-hand side, as well as
the factorization returned from (a) and the solution returned from (b);

(g) (except for band and tridiagonal matrices) invert the matrix, using the factorization (see
Section 2.5).

Thus, to solve a particular problem, it is usually only necessary to call a single driver function, but
alternatively two or more functions may be called in succession. This is illustrated in the example
programs in the function documents.

3.2 NAG Names and LAPACK Names

As well as the NAG function name (beginning f07), Tables 1 and 8 show the LAPACK routine names
in double precision.

The functions may be called either by their NAG short names or by their NAG long names. The NAG
long names for a function is simply the LAPACK name (in lower case) prepended by nag , for
example, nag_dpotrf is the long name for f07fdc.

References to Chapter f07 functions in the manual normally include the LAPACK double precision
names, for example, nag_dgetrf (f07adc).

The LAPACK routine names follow a simple scheme. Most names have the structure xyyzzz, where the
components have the following meanings:

— the initial letter x indicates the data type (real or complex) and precision:

s  — real, single precision
d - real, double precision
¢ — complex, single precision
z — complex, double precision

— exceptionally, the mixed precision LAPACK routines described in Section 2.9 replace the initial first
letter by a pair of letters, as:

ds — double precision function using single precision internally
zc — double complex function using single precision complex internally

— the letters yy indicate the type of the matrix A (and in some cases its storage scheme):

ge — general

gb — general band

po — symmetric or Hermitian positive definite

pf — symmetric or Hermitian positive definite (rectangular full packed (RFP) storage)
pp - symmetric or Hermitian positive definite (packed storage)

pb — symmetric or Hermitian positive definite band

sy — symmetric indefinite

sf — symmetric indefinite (rectangular full packed (RFP) storage)
sp — symmetric indefinite (packed storage)

he

(complex) Hermitian indefinite

hf - (complex) Hermitian indefinite (rectangular full packed (RFP) storage)
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hp - (complex) Hermitian indefinite (packed storage)

gt — general tridiagonal

pt — symmetric or Hermitian positive definite tridiagonal
tr  — triangular

tf  — triangular (rectangular full packed (RFP) storage)

tp — triangular (packed storage)
tb — triangular band
— the last two or three letters zz or zzz indicate the computation performed. Examples are:
trf — triangular factorization
trs — solution of linear equations, using the factorization
con — estimate condition number
rfs — refine solution and compute error bounds
tri  — compute inverse, using the factorization

Thus the function nag_dgetrf performs a triangular factorization of a real general matrix in double
precision; the corresponding function for a complex general matrix is nag_zgetrf.

3.3 Matrix Storage Schemes
In this chapter the following different storage schemes are used for matrices:
— conventional storage;
— packed storage for symmetric, Hermitian or triangular matrices;
— rectangular full packed (RFP) storage for symmetric, Hermitian or triangular matrices;
— band storage for band matrices.

These storage schemes are compatible with those used in Chapter f16 (especially in the BLAS) and
Chapter f08, but different schemes for packed or band storage are used in a few older functions in
Chapters 01, f02, f03 and f04.

In the examples below, * indicates an array element which need not be set and is not referenced by the
functions. The examples illustrate only the relevant part of the arrays; array arguments may of course
have additional rows or columns, according to the usual rules for passing array arguments.

3.3.1 Conventional storage

Matrices may be stored column-wise or row-wise as described in Section 2.3.1.4 in How to Use the
NAG Library and its Documentation: a matrix A is stored in a one-dimensional array a, with matrix
element a; ; stored column-wise in array element a[(j — 1) x pda + 4 — 1] or row-wise in array element
a[(i — 1) x pda + j — 1] where pda is the principle dimension of the array (i.e., the stride separating
row or column elements of the matrix respectively). Most functions in this chapter contain the order
argument which can be set to Nag ColMajor for column-wise storage or Nag RowMajor for row-
wise storage of matrices. Where groups of functions are intended to be used together, the value of the
order argument passed must be consistent throughout.

If a matrix is triangular (upper or lower, as specified by the argument uplo), only the elements of the
relevant triangle are stored; the remaining elements of the array need not be set. Such elements are
indicated by * or ., in the examples below.

For example, when n = 3:
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order uplo Triangular matrix A | Storage in array a
Nag ColMajor | Nag Upper ail app  api a11uuG120221,013023033
a2 a3
ass3
Nag RowMajor | Nag Upper ay app  as a11Q12a13L0220231033
a2 a3
ass
Nag_ColMaj or Nag_Lower al a11021a31u022032011033
az1 a2
a1 a3 as3
Nag_RowMajor Nag_Lower al a11uu0210221,1431032033
az1 Q2
a1 a3 as3

Functions which handle symmetric or Hermitian matrices allow for either the upper or lower triangle
of the matrix (as specified by uplo) to be stored in the corresponding elements of the array; the
remaining elements of the array need not be set.

For example, when n = 3:

order uplo Hermitian matrix A | Storage in array a

Nag ColMajor | Nag Upper ay ap  as a110uL012022,013023033

a2 G2 a3
a13  az3 ass

Nag RowMajor | Nag_ Upper a;; ap  ans a11a120130a022023 11033

Q12 Q2  Qp3
a3 a3 G33

Nag_ColMajor Nag_Lower a1 @y as a11a21a31u02203201033

azr Gz a3
az1  asy asj

Nag_RowMajor Nag_Lower al Qx  as; a11uu02102211031032033

az1 Qa3
a3y Az  ass

3.3.2 Packed storage

Symmetric, Hermitian or triangular matrices may be stored more compactly, if the relevant triangle
(again as specified by uplo) is packed by columns in a one-dimensional array. In this chapter, as in
Chapters f08 and f16, arrays which hold matrices in packed storage, have names ending in P. For a
matrix of order n, the array must have at least n(n + 1)/2 elements. So:

if uplo = Nag_Upper, a;; is stored in ap[i — 1+ j(j —1)/2] for i < j;
if uplo = Nag_Lower, a;; is stored in ap[i — 1+ (2n — j)(j —1)/2] for j <.

For example:
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Triangle of matrix A Packed storage in array ap
uplo = Nag_Upper ayl Gz Gz Ga ar1 12022 413023033 114024034044
——— -
Q2 23 Q4
a33  Aa34
Q44
uplo = Nag_Lower ar 11021031041 022032042 A33043 A44
—_——— o
a1 a2
azp azz asz3
Q41 Q42 Q43 Q44

Note that for real symmetric matrices, packing the upper triangle by columns is equivalent to packing
the lower triangle by rows; packing the lower triangle by columns is equivalent to packing the upper
triangle by rows. (For complex Hermitian matrices, the only difference is that the off-diagonal elements
are conjugated.)

3.3.3 Rectangular Full Packed (RFP) Storage

The rectangular full packed (RFP) storage format offers the same savings in storage as the packed
storage format (described in Section 3.3.2), but is likely to be much more efficient in general since the
block structure of the matrix is maintained. This structure can be exploited using block partition
algorithms (see Section 2.8) in a similar way to matrices that use conventional storage.

AF

Figure 1 gives a graphical representation of the key idea of RFP for the particular case of a lower
triangular matrix of even dimensions. In all cases the original triangular matrix of stored elements is
separated into a trapezoidal part and a triangular part. The number of columns in these two parts is
equal when the dimension of the matrix is even, n = 2k, while the trapezoidal part has k£ + 1 columns
when n =2k + 1. The smaller part is then transposed and fitted onto the trapezoidal part forming a
rectangle. The rectangle has dimensions 2k + 1 and ¢, where ¢ = k when n is even and ¢ = k£ + 1 when
n is odd.

For functions using RFP there is the option of storing the rectangle as described above
(transr = Nag_RFP_Normal) or its transpose (transr = Nag RFP _Trans, for real a) or its conjugate
transpose (transr = Nag RFP_ConjTrans, for complex a). It is useful to note that the storage ordering
for Nag RowMajor is the same as that for Nag_ColMajor with the value of transr = Nag_RFP_Normal
switched to transr = Nag RFP_Trans or vice versa.

As an example, we first consider RFP for the case n = 2k with k = 3.
If transr = Nag_RFP _Normal, then ar holds a as follows:

For uplo = Nag_Upper the upper trapezoid AR(1 : 6,1 : 3) consists of the last three columns of a
upper. The lower triangle AR(5 : 7,1 : 3) consists of the transpose of the first three columns of a

upper.

For uplo = Nag_Lower the lower trapezoid AR(2 : 7,1 : 3) consists of the first three columns of
a lower. The upper triangle AR(1 : 3,1 : 3) consists of the transpose of the last three columns of
a lower.
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If transr = Nag_RFP_Trans, then ar in both uple cases is just the transpose of ar as defined when
transr = Nag_RFP_Normal.

uplo Triangle of matrix A Rectangular Full Packed matrix AR
transr = Nag_RFP_Normal transr = Nag _RFP_Trans
Nag_Upper| /00 01 02 03 04 05 03 04 05 03 13 23 33 00 01 02
11 12 13 14 15 13 14 15 04 14 24 34 44 11 12
22 23 24 25 23 24 25 05 15 25 35 45 55 22
33 34 35 33 34 35
44 45 00 44 45
55 01 11 55
02 12 22
Nag_Lower| /00 33 43 53 33 00 10 20 30 40 50
10 11 00 44 54 43 44 11 21 31 41 51
20 21 22 10 11 55 53 54 55 22 32 42 52
30 31 32 33 20 21 22
40 41 42 43 44 30 31 32
50 51 52 53 54 55 40 41 42
50 51 52

Now we consider RFP for the case n =2k+1 and k= 2.

If transr = Nag_RFP_Normal. ar holds a as follows:
if uplo = Nag Upper the upper trapezoid AR(1 : 5,1 : 3) consists of the last three columns of a
upper. The lower triangle AR(4 : 5,1 : 2) consists of the transpose of the first two columns of a
upper;
if uplo = Nag_Lower the lower trapezoid AR(1 : 5,1 : 3) consists of the first three columns of a

lower. The upper triangle AR(1 : 2,2 : 3) consists of the transpose of the last two columns of a
lower.

If transr = Nag RFP_Trans. ar in both uplo cases is just the transpose of ar as defined when
transr = Nag RFP_Normal.

uplo Triangle of matrix A Rectangular Full Packed matrix AR
transr = Nag RFP Normal| transr = Nag RFP_Trans
Nag Upper| /00 01 02 03 04 02 03 04 02 12 22 00 O1
11 12 13 14 12 13 14 03 13 23 33 11
22 23 24 22 23 24 04 14 24 34 44
33 34 00 33 34
44 01 11 44
Nag_Lower| /00 00 33 43 00 10 20 30 40 50
10 11 10 11 44 33 11 21 31 41 51
20 21 22 20 21 22 43 44 22 32 42 52
30 31 32 33 30 31 32
40 41 42 43 44 40 41 42

Explicitly, in the real matrix case, ar is a one-dimensional array of length n(n + 1)/2 and, when
Nag_ColMajor, contains the elements of a as follows:

for uplo = Nag_Upper and transr = Nag RFP_Normal,
a;; is stored in ar[(2k+1)(i —1)+j+ k], for 1 <j<kand 1 <i <y, and
a;; is stored in ar[2k+1)(j—k—1)+i—1], for k<j<nand 1 <i <y

for uplo = Nag_Upper and transr = Nag _RFP_Trans,
a;; is stored in arfg(j+k)+i—1], for ] <j<kand 1 <i <y, and
a;; is stored in ar[g(i —1)+j—k—1], for k<j<mand 1 <i<y;
for uplo = Nag_Lower and transr = Nag_RFP_Normal,
a;; is stored in ar[2k+1)(j—1)+i+k—g], for 1 <j<gand j<i<mn, and
a;; is stored in ar[2k+1)(i —k—1)+j—q—1], forg<j<nand j<i<mn;
for uplo = Nag_Lower and transr = Nag_RFP _Trans,
a;; is stored in ar[g(i +k—¢q)+j—1], for I <j<gand I <i<n, and
a;; is stored in arjg(j—1—¢q)+i—k—1],forg<j<mnand 1 <i<n.
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When Nag RowMajor the above storage formulae can be used by looking up the opposite case for
transr, i.e., when transr = Nag RFP_Trans look up the storage order above for the cases when
transr = Nag RFP_Normal and vice versa.

In the case of complex matrices, the assumption is that the full matrix, if it existed, would be
Hermitian. Thus, when transr = Nag RFP_Normal, the triangular portion of a that is, in the real case,
transposed into the notional (2k+1) by ¢ RFP matrix is also conjugated. When
transr = Nag RFP_ConjTrans the notional ¢ by (2k+ 1) RFP matrix is the conjugate transpose of
the corresponding transr = Nag RFP _Normal RFP matrix. Explicitly, for complex a, the array ar
contains the elements (or conjugated elements) of a as follows:

for uplo = Nag_Upper and transr = Nag_RFP_Normal,
a;; is stored in ar[2k+1)(i—1)+j+ k], for 1 <j<kand 1 <7<y, and
a;; is stored in ar[2k+1)(j —k—1)+i—1], for k<j<nand 1 <i <y

for uplo = Nag_Upper and transr = Nag_RFP_ConjTrans,
a;; is stored in ar[g(j +k)+i—1], for | <j<kand 1 <i<y, and
a;; is stored in ar[g(i —1)+j—k—1], for k<j<mand 1 <i<y;

for uplo = Nag_Lower and transr = Nag_RFP_Normal,
a;; is stored in ar[2k+1)(j—1)+i+k—gq|, for 1 <j<gand j <i<mn, and
a;; is stored in ar[2k+1)(i —k—1)+j—qg—1], forg<j<mnand j<i<n;

for uplo = Nag_Lower and transr = Nag_RFP_ConjTrans,
a;; is stored in ar[g(i +k—¢q)+j—1], for | <j<gand 1 <i<n, and
a;; is stored in arjg(j—1—¢q)+i—k—1], forg<j<mnand 1 <i<n.

When Nag RowMajor the above storage formulae can be used by looking up the opposite case for
transr, i.e., when transr = Nag RFP_ConjTrans look up the storage order above for the cases when
transr = Nag RFP_Normal and vice versa.

3.3.4 Band storage

A band matrix with k; subdiagonals and k, superdiagonals may be stored compactly in a notional two-
dimensional array with %k + k, +1 rows and n columns if stored column-wise or n rows and
k; + k, 4+ 1 columns if stored row-wise. In column-major order, elements of a column of the matrix are
stored contiguously in the array, and elements of the diagonals of the matrix are stored with constant
stride (i.e., in a row of the two-dimensional array). In row-major order, elements of a row of the matrix
are stored contiguously in the array, and elements of a diagonal of the matrix are stored with constant
stride (i.e., in a column of the two-dimensional array). These storage schemes should only be used in
practice if k;, k, < n, although the functions in Chapters f07 and f08 work correctly for all values of k;
and k,. In Chapters f07 and f08 arrays which hold matrices in band storage have names ending in B.

To be precise, elements of matrix elements a;; are stored as follows:
if order = Nag_ColMajor, a;; is stored in ab[(j — 1) x pdab + k, + i — j];
if order = Nag_RowMajor, a;; is stored in ab[(i — 1) x pdab + k; + j — i,

where pdab >k +k,+1 is the stride between diagonal elements and where
max(1,i — k) < j <min(n,i+ k,).

For example, when n =35, k; =2 and k, = 1:

Band matrix A Band storage in array ab

order = Nag_ColMajor | order = Nag_RowMajor

aip  ap * a1z a3  A34  G45 * * ap  apz
az;  Gp2 Q23 aiyp Gy a3z Q44 Q55 * az; Gz Qa3
az;p a3 a3 Q34 az] a3 Q43 Q54 X azy  azx a3z a34
Q42 Q43 Q44 Q45 asy Q42 @53 * * Q42 Q43 Q44 Q45

as3  As54  Ass as3  QAs4 QAs5 X
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The elements marked * in the upper left and lower right corners of the array ab need not be set, and are
not referenced by the functions. In this example, if order = Nag_ColMajor and ldab takes the minimum
value of 4, then ab[0] need not be set, ab[1] = a1, ab[2] = ay,...,ab[17] = ass. On the other hand, if
order = Nag RowMajor (ldab=4), then ab[0] and ab[]l] need not be set,
ab[2] = ap, ab[3] = a2, .- ,ab[lS} = ass.

Note: when a general band matrix is supplied for LU factorization, space must be allowed to store an
additional k; superdiagonals, generated by fill-in as a result of row interchanges. This means that the
matrix is stored according to the above scheme, but with k; + k, superdiagonals; it also means that the
principal dimension has the constraint ldab > 2k; + &, + 1.

Triangular band matrices are stored in the same format, with either k; = 0 if upper triangular, or k, = 0
if lower triangular.

For symmetric or Hermitian band matrices with & subdiagonals or superdiagonals, only the upper or
lower triangle (as specified by uplo) need be stored:

if uplo = Nag_Upper then
if order = Nag_ColMajor, a;; is stored in ab[(j — 1) x pdab + k+ ¢ — j];
if order = Nag_RowMajor, q;; is stored in ab[(i — 1) x pdab + j — i].
for max(1,j— k) <i <y
if uplo = Nag Lower then
if order = Nag_ColMajor, a;; is stored in ab[(j — 1) x pdab + i — jl;
if order = Nag_RowMajor, q;; is stored in ab[(: — 1) x pdab + k + j — i].
for j <i < min(n,j+ k),
where pdab > k + 1 is the stride separating diagonal matrix elements in the array ab.

For example, when n =5 and k = 2:

uplo Hermitian band matrix A Band storage in array ab
order = Nag_ColMajor |order = Nag_RowMajor

Nag_Upper| /a1 apn a3 * * a3 G4 435 air ap a3
G2 G (3 Qx4 * a2 A3 a34 Q45 azy Q23 (24
ai3 (3 a3 434 435 air Gy a3z Q44 G55 a3 a3 ass

A4 Q34 Q44 Q45 Q44 Q45 *

aszs Q45  ass ass  * *
Nag_Lower| /a1 ap a3 QG a33 Q44 Q55 * * ap
a1 Gy 3z G4 Gyl A3y Q43 G54 * * azl G2
aszy  aszx a3z 43  as3 aszy Q42 Qsy  kx * as; azy asz
(42 Q43 Q44 Q54 Q42 Q43 Q44
as3 as4  ass asy  as4  ass

Note that different storage schemes for band matrices are used by some functions in Chapters 01, f02,
f03 and f04. In the above example, if order = Nag ColMajor and pdab =3, then for
uplo = Nag Upper, ab[2] = a;;,ab[4] = ajp,...,ab[14] =ass; while for wuplo= NagLower,
ab[0] = ajj,ab[l] = ayy,...,ab[12] = ass. If order = Nag_ RowMajor (pdab =3), then for
uplo = Nag Upper, ab[0] = a;;,ab[l] = ajp,...,ab[12] = ass; while for uplo=NagLower,
ab[2] = all,ab[4] = a1, - 72])[14} = ass.

3.3.5 Unit triangular matrices

Some functions in this chapter have an option to handle unit triangular matrices (that is, triangular
matrices with diagonal elements = 1). This option is specified by an argument diag. If
diag = Nag_UnitDiag (Unit triangular), the diagonal elements of the matrix need not be stored, and
the corresponding array elements are not referenced by the functions. The storage scheme for the rest of
the matrix (whether conventional, packed or band) remains unchanged.
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3.3.6 Real diagonal elements of complex matrices

Complex Hermitian matrices have diagonal elements that are by definition purely real. In addition,
complex triangular matrices which arise in Cholesky factorization are defined by the algorithm to have
real diagonal elements.

If such matrices are supplied as input to functions in Chapters f07 and f08, the imaginary parts of the
diagonal elements are not referenced, but are assumed to be zero. If such matrices are returned as
output by the functions, the computed imaginary parts are explicitly set to zero.

3.4 Parameter Conventions
3.4.1 Option arguments

In addition to the order argument of type Nag OrderType, most functions in this Chapter have one or
more option arguments of various types; only options of the correct type may be supplied.

For example,

nag_dpotrf (Nag_RowMajor,Nag_Upper,...)

3.4.2 Problem dimensions

It is permissible for the problem dimensions (for example, m in nag dgetrf (f07adc), n or nrhs in
nag_dgetrs (f07aec)) to be passed as zero, in which case the computation (or part of it) is skipped.
Negative dimensions are regarded as an error.

3.5 Tables of Driver and Computational Functions
3.5.1 Real matrices
Each entry gives:

the NAG function short name

the LAPACK routine name from which the NAG function long name is derived by prepending
nag .

Type of matrix and storage scheme

Operation general general band general tridiagonal
driver nag_dgesv (f07aac) nag_dgbsv (f07bac) nag_dgtsv (f07cac)
expert driver nag_dgesvx (f07abc) nag_dgbsvx (f07bbc) nag_dgtsvx (f07cbc)
mixed precision driver |nag_dsgesv (f07acc)
factorize nag_dgetrf (f07adc) nag_dgbtrf (f07bdc) nag_dgttrf (f07cdc)
solve nag_dgetrs (f07aec) nag_dgbtrs (f07bec) nag_dgttrs (f07cec)
scaling factors nag_dgeequ (f07afc) nag_dgbequ (f07bfc)
condition number nag_dgecon (f07agc) nag_dgbcon (f07bgc) nag_dgtcon (f07cgc)
error estimate nag_dgerfs (f07ahc) nag_dgbrfs (f07bhc) nag_dgtrfs (f07chc)
invert nag_dgetri (f07ajc)

Table 1

Functions for real general matrices
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Type of matrix and storage scheme
Operation symmetric positive symmetric positive symmetric positive symmetric positive
definite definite (packed storage) [definite band definite tridiagonal
driver nag_dposv (f07fac) nag_dppsv (f07gac) nag_dpbsv (f07hac) nag_dptsv (f07jac)

expert driver

nag_dposvx (f07fbc)

nag_dppsvx (f07gbc)

nag_dpbsvx (f07hbc)

nag_dptsvx (f07jbc)

factorize

nag_dpotrf (f07fdc)

nag_dpptrf (f07gdc)

nag_dpbtrf (f07hdc)

nag_dpttrf (f07jdc)

solve

nag_dpotrs (f07fec)

nag_dpptrs (f07gec)

nag_dpbtrs (f07hec)

nag_dpttrs (f07jec)

scaling factors

nag_dpoequ (f07ffc)

nag_dppequ (f07gfc)

nag_dpbequ (f07hfc)

condition number

nag_dpocon (f07fgc)

nag_dppcon (f07ggc)

nag_dpbcon (f07hgc)

nag_dptcon (f07jgc)

error estimate

nag_dporfs (f07thc)

nag_dpprfs (f07ghc)

nag_dpbrfs (f07hhc)

nag_dptrfs (f07jhc)

invert

nag_dpotri (f07fjc)

nag_dpptri (f07gjc)

Functions for real symmetric positive definite matrices

Table 2

Type of matrix and storage scheme

Operation symmetric indefinite |symmetric indefinite
(packed storage)
driver nag_dsysv (f07mac) nag_dspsv (f07pac)

expert driver

nag_dsysvx (f07mbc)

nag_dspsvx (f07pbc)

factorize

nag_dsytrf (f07mdc)

nag_dsptrf (f07pdc)

solve

nag_dsytrs (f07mec)

nag_dsptrs (f07pec)

condition number |nag dsycon (f07mgc)

nag_dspcon (f07pgc)

error estimate

nag_dsyrfs (f07mhc)

nag_dsprfs (f07phc)

invert

nag_dsytri (f07mjc)

nag_dsptri (f07pjc)

Table 3

Functions for real symmetric indefinite matrices

Type of matrix and storage scheme

Operation triangular triangular (packed triangular band
storage)
solve nag_dtrtrs (f07tec) nag_dtptrs (f07uec) nag_dtbtrs (f07vec)

condition number

nag_dtrcon (f07tgc)

nag_dtpcon (f07ugc)

nag_dtbcon (f07vgc)

error estimate

nag_dtrrfs (f07thc)

nag_dtprfs (f07uhc)

nag_dtbrfs (f07vhc)

invert nag_dtptri (f07ujc)

nag_dtrtri (f07tjc)

Table 4
Functions for real triangular matrices
3.5.2 Complex matrices
Each entry gives:
the NAG function short name

the LAPACK routine name from which the NAG function long name is derived by prepending
nag_.
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Type of matrix and storage scheme

Operation

general

general band

general tridiagonal

driver

nag_zgesv (f07anc)

nag_zgbsv (f07bnc)

nag_zgtsv (f07cnc)

expert driver

nag_zgesvx (f07apc)

nag_zgbsvx (f07bpc)

nag_zgtsvx (f07cpc)

mixed precision driver

nag_zcgesv (f07aqc)

factorize

nag_zgetrf (f07arc)

nag_zgbtrf (f07brc)

nag_zgttrf (f07crc)

solve

nag_zgetrs (f07asc)

nag_zgbtrs (f07bsc)

nag_zgttrs (f07csc)

scaling factors

nag_zgeequ (f07atc)

nag_zgbequ (f07btc)

condition number

nag_zgecon (f07auc)

nag_zgbcon (f07buc)

nag_zgtcon (f07cuc)

error estimate

nag_zgerfs (f07avc)

nag_zgbrfs (f07bvc)

nag_zgtrfs (f07cvc)

invert

nag_zgetri (f07awc)

Table 5

Functions for complex general matrices

Type of matrix and storage scheme

Operation Hermitian positive Hermitian positive Hermitian positive Hermitian positive
definite definite (packed storage) [definite band definite tridiagonal
driver nag_zposv (f07fnc) nag_zppsv (f07gnc) nag_zpbsv (f07hnc) nag_zptsv (f07jnc)

expert driver

nag_zposvx (f07fpc)

nag_zppsvx (f07gpc)

nag_zpbsvx (f07hpc)

nag_zptsvx (f07jpc)

factorize

nag_zpotrf (f07frc)

nag_zpptrf (f07grc)

nag_zpbtrf (f07hrc)

nag_zpttrf (f07jrc)

solve

nag_zpotrs (f07fsc)

nag_zpptrs (f07gsc)

nag_zpbtrs (f07hsc)

nag_zpttrs (f07jsc)

scaling factors

nag_zpoequ (f07ftc)

nag_zppequ (f07gtc)

condition number

nag_zpocon (f07fuc)

nag_zppcon (f07guc)

nag_zpbcon (f07huc)

nag_zptcon (f07juc)

error estimate

nag_zporfs (f07fvc)

nag_zpprfs (f07gvc)

nag_zpbrfs (f07hvc)

nag_zptrfs (f07jvc)

invert nag_zpotri (f07fwc) nag_zpptri (f07gwc)
Table 6
Functions for complex Hermitian positive definite matrices
Type of matrix and storage scheme
Operation Hermitian indefinite |symmetric indefinite |Hermitian indefinite |symmetric indefinite
(packed storage) band tridiagonal
driver nag_zhesv (f07mnc) nag_zsysv (f07nnc) nag_zhpsv (f07pnc) nag_zspsv (f07qnc)

expert driver

nag_zhesvx (f07mpc)

nag_zsysvx (f07npc)

nag_zhpsvx (f07ppc)

nag_zspsvx (f07qpc)

factorize

nag_zhetrf (f07mrc)

nag_zsytrf (f07nrc)

nag_zhptrf (f07prc)

nag_zsptrf (f07qrc)

solve

nag_zhetrs (f07msc)

nag_zsytrs (f07nsc)

nag_zhptrs (f07psc)

nag_zsptrs (f07qsc)

condition number

nag_zhecon (f07muc)

nag_zsycon (f07nuc)

nag_zhpcon (f07puc)

nag_zspcon (f07quc)

error estimate

nag_zherfs (f07mvc)

nag_zsyrfs (f07nvc)

nag_zhprfs (f07pvc)

nag_zsprfs (f07qvc)

invert nag_zhetri (f07mwc) nag_zsytri (f07nwc) nag_zhptri (f07pwc) nag_zsptri (f07qwc)
Table 7
Functions for complex Hermitian and symmetric indefinite matrices
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Type of matrix and storage scheme
Operation triangular triangular (packed triangular band
storage)
solve nag_ztrtrs (f07tsc) nag_ztptrs (f07usc) nag_ztbtrs (f07vsc)
condition number |nag_ztrcon (f07tuc) nag_ztpcon (f07uuc) nag_ztbcon (f07vuc)
error estimate nag_ztrrfs (f07tve) nag_ztprfs (f07uvc) nag_ztbrfs (f07vvc)
invert nag_ztrtri (f07twc) nag_ztptri (f07uwc)
Table 8

Functions for complex triangular matrices

4  Functionality Index

Apply iterative refinement to the solution and compute error estimates,
after factorizing the matrix of coefficients,

compleX Dand MALIIX .....ccciieiiiieiiieeiiie ettt et ee et e e eaeeeetaeesaae e nag_zgbrfs (f07bvc)
complex Hermitian indefinite mMatrixX .........cccooooiieniiiiiniieeniieeie e, nag_zherfs (f07mvc)
complex Hermitian indefinite matrix, packed storage ..........ccccceevveeernnennn. nag_zhprfs (f07pvc)
complex Hermitian positive definite band matrix .........ccccooceeiviiiiniinnienn, nag_zpbrfs (f07hvc)
complex Hermitian positive definite Matrix ........c.ccoceverciiierciieeniieeeieeeeiee s nag_zporfs (f07fvc)
complex Hermitian positive definite matrix, packed storage ...........c.ccc....... nag_zpprfs (f07gvc)
complex Hermitian positive definite tridiagonal matrixX ...........cccceevvveeniennne nag_zptrfs (f07jvc)
COMPIEX MALTIX  1ieieiiiiiieeiiiieeeeiiie e e ettt e e e etbteeeeeitbeeeeeesbeeeeesassaesesssnsaeeeansnns nag_zgerfs (f07avc)
complex symmetric indefinite MatrixX ..........ccooccevrviiiiiiiiiiiniieiiceeeeen nag_zsyrfs (f07nvc)
complex symmetric indefinite matrix, packed storage ..........ccccoevevevireeenen. nag_zsprfs (f07qvc)
compleX tridiagonal MALIIX .....cccecciieiiiiiieiiee et saeeeseree e nag_zgtrfs (f07cvc)
real band MALrIX ......cccooiiiiiiiieiie e e e nag_dgbrfs (f07bhc)
TEAL MALIIX .eiiiiiiiiiiie ettt et ee et ettt e et ee et eeesateeesateeesnbeeesnneeenaeenns nag_dgerfs (f07ahc)
real symmetric indefinite MAaIIX ........ccocovviieiiiiiiieeiiiiie e e e e e eiree e nag_dsyrfs (f07mhc)
real symmetric indefinite matrix, packed Storage ..........ccccccoceevviieerieernnnennne. nag_dsprfs (f07phc)
real symmetric positive definite band matrixX .........cccoeeeeveeriiieeiieeenieeeieeenee. nag_dpbrfs (f07hhc)
real symmetric positive definite matriX ........cccccceevviieeriieeniiieeniie e nag_dporfs (f07fhc)
real symmetric positive definite matrix, packed storage ...........cccccceevruernee. nag_dpprfs (f07ghc)
real symmetric positive definite tridiagonal matrixX ...........ccccceeeveiviieericnienenns nag_dptrfs (f07jhc)
real tridiagonal MAatIIX ......ccooceiiiiiiiiiiiiie e e nag_dgtrfs (f07chc)
Compute error estimates,
complex triangular band MAatrix ....coccoociriieniiiiiiiiieni e nag_ztbrfs (f07vvc)
complex triangular MAtIX .......ccocovveiriiiiniieniieiieniceeesee ettt nag ztrrfs (f07tvc)
complex triangular matrix, packed StOTage .......cococeveiviiiriiiiiiiiiiieceiee e, nag_ztprfs (f07uvc)
real triangular band MAatriX .........ccoccieiiiiiiieiiiiie e nag_dtbrfs (f07vhc)
real trian@UIAr MALITX ..ooecvciiiieieeiciieeceee e eeeeeeieeeeteeeetaeeeetaeestaeeesseeesseesnseaens nag_dtrrfs (f07thc)
real triangular matrix, packed StOTage ........ccooceriiiiiiniiiniiiinieniceeec e nag_dtprfs (f07uhc)
Compute row and column scalings,
complex band MALTIX ......coociiiiiiiiiiiiiie ettt e e et eetrree e e nag_zgbequ (f07btc)
complex Hermitian positive definite band matrix .........ccccoeevvvevciienciieeiieeeiens nag_zpbequ (f07htc)
complex Hermitian positive definite MatrixX ..........cccceeeiiieeiiieeiciieeniie e nag_zpoequ (f07ftc)
complex Hermitian positive definite matrix, packed storage ...........cccccceeerneene nag_zppequ (f07gtc)
1670 1010] (55 G 11 T: 13 0 . QPRSP nag zgeequ (f07atc)
real DANA MALTIX ..iiiiiiiiiiiie i e et ee e e b e e e e eerr e e e e eenbaeeeeennaeas nag_dgbequ (f07bfc)
101 B 1015 D QOO PPOUPPPIPI nag_dgeequ (f07afc)
real symmetric positive definite band mMatriX .........cccceeiverviiieniiieeniieeeiee e nag_dpbequ (f07hfc)
real symmetric positive definite MatriX .........cccocceveriiieeriiieeniie et nag_dpoequ (f07ffc)
real symmetric positive definite matrix, packed storage ............cccoceevvvviieenneens nag dppequ (f07gfc)

Condition number estimation,
after factorizing the matrix of coefficients,

compleX band MAtIIX ...cc.eeeiviiiiiiieiiie e nag_zgbcon (f07buc)
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complex Hermitian indefinite MatrixX .........cccocveveviiiieniiieniiieeieeeeeeeee e nag_zhecon (f07muc)
complex Hermitian indefinite matrix, packed storage ...........cccceevveennnnnne. nag_zhpcon (f07puc)
complex Hermitian positive definite band matrix ..........cccceeviveviiiencinnnnne. nag_zpbcon (f07huc)
complex Hermitian positive definite matrix ........cccccoevvveeniieiiiieenieeeeeeee, nag_zpocon (f07fuc)
complex Hermitian positive definite matrix, packed storage ...................... nag_zppcon (f07guc)
complex Hermitian positive definite tridiagonal matrix ...........ccccceeeveivveeennns nag_zptcon (f07juc)
1470 1010) [ 11 T: 15 0 . QUSRS nag_zgecon (f07auc)
complex symmetric indefinite MatriX .........ccceeeiiieriiireniiireiiie e nag_zsycon (f07nuc)
complex symmetric indefinite matrix, packed storage ..........c.cccceeveiieennens nag_zspcon (f07quc)
complex tridiagonal MAtriX ........ccccoeciierriiiieriiieiie e nag zgtcon (f07cuc)
real band MALTIX ....cccoeeeiiiiiiiieiiiee et e et e et nag_dgbcon (f07bgc)
TEAL MALTIX  1eviieiiiieiiiie ettt e et et et e et e e e eite e et e e eteeeenteeeenteeeenseeeessaeeensseennnes nag_dgecon (f07agc)
real symmetric indefinite MAatriX ........ccceevviieeiiiiieiiie et nag_dsycon (f07mgc)
real symmetric indefinite matrix, packed Storage ...........cccccoevieeriiiencierennen. nag_dspcon (f07pgc)
real symmetric positive definite band matrix ..........ccccceeieeriiiiiieeniiniineenen. nag_dpbcon (f07hgc)
real symmetric positive definite matriX .........cccocoevveericiiireeniiiieeeeiiee e nag_dpocon (f07fgc)
real symmetric positive definite matrix, packed storage ............ccccceeeuvrnee. nag_dppcon (f07ggc)
real symmetric positive definite tridiagonal matriX .........ccccocevveveviencneennen. nag_dptcon (f07jgc)
real tridiagonal MAIIX ......ccceeeiciieiiiieeie ettt e e e e e e s nag_dgtcon (f07cgc)
complex triangular band MAatriX .......cccoecceieiiiiiiiiiieiiie e nag ztbcon (f07vuc)
compleX triangular MALTIX ......ccceeevoiieeriiieeiiee et ereee ettt ee e e e e ebeeeereeeaeeas nag_ztrcon (f07tuc)
complex triangular matrix, packed StOrage ..........ccccovvveiiiiiiiieeeniiiee e nag_ztpcon (f07uuc)
real triangular band MAIIX ......cccceccvieeiiiieeniie e eriee e eeiee et eesebeeeebee e beeenes nag_dtbcon (f07vgc)
real trian@ular MALTTX ....cccieerieeeiiie ettt et e e etee e ebee e ebee e sabeeeeneeeenee nag_dtrcon (f07tgc)
real triangular matrix, packed StOTAZE ........cccccoveiiiiiiiiieiiie e nag dtpcon (f07ugc)
LDLT factorization,
complex Hermitian positive definite tridiagonal matrix ...........cccooeeeeenieenieeennne. nag_zpttrf (f07jrc)
real symmetric positive definite tridiagonal matriX .........cccoccceevieiiniieinieeineennne nag_dpttrf (f07jdc)
LLT or UTU factorization,
complex Hermitian positive definite band matrix ...........ccccoceevevrciiireeniciieeeennen. nag_zpbtrf (f07hrc)
complex Hermitian positive definite Matrix ..........ccccceeveiieviieeniiiieiciie e nag_zpotrf (f07frc)
complex Hermitian positive definite matrix, packed storage ...........cccceccvvvrieennns nag_zpptrf (f07grc)
complex Hermitian positive definite matrix, RFP storage ............ccccocceevieeenen. nag_zpftrf (f07wrc)
complex Hermitian positive semidefinite MatrixX .........ccccccevvivieriiiernieernieenneeen. nag_zpstrf (f07krc)
real symmetric positive definite band matrix ...........ccccoeeviviiinciiiiennciiiee e nag_dpbtrf (f07hdc)
real symmetric positive definite MatriX ........cccccceevviieriiieeiiieeriee e nag_dpotrf (f07fdc)
real symmetric positive definite matrix, packed storage ...........cccccceevvvveerneennne. nag_dpptrf (f07gdc)
real symmetric positive definite matrix, RFP storage ..........ccccocccvviiiiiniiienennne nag_dpftrf (f07wdc)
real symmetric positive semidefinite MatriX .........ccccoovvvveriiieniireniieeniieeeieeane nag_dpstrf (f07kdc)
LU factorization,
compleX Dand MALIIX .....cceeeieiiiiioiiie ettt e et eeea e e esreeeeaeeeens nag_zgbtrf (f07brc)
1470 1010) (5 11 T: 15 0 . QOSSPSR nag_zgetrf (f07arc)
complex tridiagonal MALIIX .....cceeocveiiiiieiiiie e e nag_zgttrf (f07crc)
real DANA MALTIX Loiiiiiciiiiieeiiiiie e ettt e et e e e b b e e e esenbeeessssssaeesessseeeas nag_dgbtrf (f07bdc)
101 B 10 F: 12 D QTP PPPTOPORRTUPRRN nag_dgetrf (f07adc)
real tridiagonal MALIIX ......coccviieiiiieeiiie ettt e eer e e b e e e ebeeeens nag_dgttrf (f07cdc)

Matrix inversion,
after factorizing the matrix of coefficients,

complex Hermitian indefinite MatriX ..........ccccooceviereeiiiiiieeeiiiiieeeeiiieeeeeneeenns nag_zhetri (f07mwc)
complex Hermitian indefinite matrix, packed storage ............ccccceevvicvnerannns nag_zhptri (f07pwc)
complex Hermitian positive definite matrixX .........cccevvevveeiciieeniieeriee e, nag_zpotri (f07fwc)
complex Hermitian positive definite matrix, packed storage ....................... nag_zpptri (f07gwc)
complex Hermitian positive definite matrix, RFP storage ...........cccccceenenn. nag_zpftri (f07wwc)
o0 10100 (5 Q0 11 1: 13 0 . QO USSR URPS nag_zgetri (f07awc)
complex symmetric indefinite MatrixX ........cccceevvieiiniiiiniieiniieee e nag_zsytri (f07nwc)
complex symmetric indefinite matrix, packed storage ...........ccccceevvveerueeenee. nag_zsptri (f07qwc)

Mark 26 107.19



Introduction — 07 NAG Library Manual

TEAL MALTIX  1.eviiiiiiieiiiee ettt e ettt e et e e et e e et eeste e e e taeeetaeeestseeessseeessseesnsseesnssesenseeas nag_dgetri (f07ajc)

real symmetric indefinite MAtriX ......cccceveviiiieiiieeniieeeiie e nag_dsytri (f07mjc)

real symmetric indefinite matrix, packed StOrage .........cccccccevevveriiiieniiieennenn. nag_dsptri (f07pjc)

real symmetric positive definite MatriX ........ccccoeevveeiiiieeiiiieeiie e nag_dpotri (f07fjc)

real symmetric positive definite matrix, packed storage ...........ccccevevereeene nag_dpptri (f07gjc)

real symmetric positive definite matrix, RFP storage .............ccccccoeviininnnnnn. nag_dpftri (f07wjc)
compleX triangUIAr MALITX ....cccveeeeiieeiieeeiieeeeieeeieeesreeeebeeeereeeeteeesreeessaeessaeenes nag_ztrtri (f07twc)
complex triangular matrix, packed StOrage ..........cccccoveiieeriieeniiieeniieeriee e nag_ztptri (f07uwc)
complex triangular matrix, RFP storage,

EXPETT ATIVET .eeiiiiiiiiiiiiiee e ettt ee e ettt e e ettt e e e eitbeeeeesatbbeeeessnsaeeessssseaeessssssseaseanas nag_ztftri (f07wxc)
real trian@UIAT MALTIX ....ooiiiiiiiiiiee et e et ee e et e e e et eeeesssraeeeeensnaeeeas nag_dtrtri (f07tjc)
real triangular matrix, packed STOTAZE .........cccieveiieiciiieiiiieiciieecrieecreeeeeree e nag_dtptri (f07ujc)
real triangular matrix, RFP storage,

EXPEIL ATTVET .utiiiiiiieiiieeeiieeetiee et ee ettt e eeiteeesttee e taeeetaeastaeesntaeesnsaeesnsaeesnsneseenns nag_dtftri (f07wkc)

PLDLTPT or PUDUTPT factorization,
complex Hermitian indefinite MatrixX ........ccccooovieriiiieiiiieeiie e nag_zhetrf (f07mrc)
complex Hermitian indefinite matrix, packed storage ...........cccocoevviiieniieiniennns nag_zhptrf (f07prc)
complex symmetric indefinite MAatriX ........cccccceeveiiiieeiiiiiiieeriiieeeeeiiieeeeeieeee e nag_zsytrf (f07nrc)
complex symmetric indefinite matrix, packed storage ..........cccccoeviieriiiienciieennenn. nag_zsptrf (f07qrc)
real symmetric iNdefinite MAtIIX .....cccoocieeriiiiiiiie et e nag dsytrf (f07mdc)
real symmetric indefinite matrix, packed Storage ...........cccoccceeviiiiriiiieniiieniiennne nag_dsptrf (f07pdc)

Solution of simultaneous linear equations,
after factorizing the matrix of coefficients,

compleX Dand MALITX ...ccccviiiiiiiieiiie ettt e e e e eeaeeeeebeeesebee e nag_zgbtrs (f07bsc)
complex Hermitian indefinite mMatrixX ........ccccoeveieeriiieniiieiieeeiee e nag_zhetrs (f07msc)
complex Hermitian indefinite matrix, packed storage ..........ccccccevveveerinnne nag_zhptrs (f07psc)
complex Hermitian positive definite band matrix ..........ccccoeeveeiviiiieniieeninenne nag_zpbtrs (f07hsc)
complex Hermitian positive definite matriX ..........cccocevveeeerciiireeeriiiieeeenen, nag_zpotrs (f07fsc)
complex Hermitian positive definite matrix, packed storage ...............c...... nag_zpptrs (f07gsc)
complex Hermitian positive definite matrix, RFP storage ............cccceeueennnee. nag_zpftrs (f07wsc)
complex Hermitian positive definite tridiagonal matrix .........cccccceeveieeennennne. nag_zpttrs (f07jsc)
(o701 1010] (5@ 11 T: 13 0 . QOSSR nag_zgetrs (f07asc)
complex symmetric indefinite MAatriX .........ccccceveciiieeiiiiiiieeeeiiee e nag_zsytrs (f07nsc)
complex symmetric indefinite matrix, packed storage ............ccccecevrevrirennnnns nag_zsptrs (f07qsc)
compleX tridiagonal MALIIX .....c..ccccveevciieiiiieeeiiee et e ettt e e eteeeereeeeeaeeenes nag_zgttrs (f07csc)
real Band MALIIX .....coocviiiiiiieiiie ettt et e e nag_dgbtrs (f07bec)
TEAL MALTIX  .eviiiiiiieiiie ettt e ee ettt e ettt e e stbeesnbeeenbeeesbeeennneens nag dgetrs (f07aec)
real symmetric indefinite MAatriX ........cccooveeriiiiiiiiiieiiiee e nag dsytrs (f07mec)
real symmetric indefinite matrix, packed StOrage ..........ccccceeevvveveiiercrieennennn nag_dsptrs (f07pec)
real symmetric positive definite band matriX ..........cccoeevviiiiieciiieeniiieenieens nag_dpbtrs (f07hec)
real symmetric positive definite MatriX ........ccceceevveiiiieiiiiieeieeeie e nag_dpotrs (f07fec)
real symmetric positive definite matrix, packed storage ...........ccccceevueeriunrnns nag dpptrs (f07gec)
real symmetric positive definite matrix, RFP storage .........ccccccccoviiieniinnnnen. nag_dpftrs (f07wec)
real symmetric positive definite tridiagonal matriX ............ccccccevvevrciieeeennnnn. nag_dpttrs (f07jec)
real tridiagonal MAIIX .....cccocoeiiiiiiiiieiiiie ettt e et e et eesreeeseraeenes nag_dgttrs (f07cec)
expert drivers (with condition and error estimation):
compleX band MALTIX ....ooocviiiiiiiiiiie et nag_zgbsvx (f07bpc)
complex Hermitian indefinite MatriX .........cccoeevvveeeiiiiiireeeriiieeeeeniiiee e nag_zhesvx (f07mpc)
complex Hermitian indefinite matrix, packed storage ............ccccoceevieeennee. nag_zhpsvx (f07ppc)
complex Hermitian positive definite band matrix ..........cccceevevveeeieenrenennen. nag_zpbsvx (f07hpc)
complex Hermitian positive definite matrix ........ccccoevveeveieeniiieniieeciee e, nag_zposvx (f07fpc)
complex Hermitian positive definite matrix, packed storage ...................... nag_zppsvx (f07gpc)
complex Hermitian positive definite tridiagonal matrix .........c.ccocevevveeenen. nag_zptsvx (f07jpc)
COMPIEX MALTIX 1ereiiiiiiiieeiiiiieeeeritieeeertteeeesetbaeeeesserseeessssssseaessnseeessssnseeeenssns nag_zgesvx (f07apc)
complex symmetric indefinite MAatrixX ........cccceevvvieiiiieniiieeie e nag_zsysvx (f07npc)
complex symmetric indefinite matrix, packed storage ..........c.cccceevvernernnne. nag_zspsvx (f07qpc)
compleX tridiagonal MALrIX .......ccccccvieeiiieiiiieriiie et erree et e eeeree s nag_zgtsvx (f07cpc)
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real Band MALIIX .....cccciiieiiiiiiie ettt e e sb e e sbeeesebeeenebae e nag_dgbsvx (f07bbc)
TEAL MALTIX  .eiiiiiiiieiiiieiiie e ettt e et e et ee ettt e e bt e e sttt e esebeeeataeessseeensseeenseeansseeeseeas nag_dgesvx (f07abc)
real symmetric indefinite MAtriX .........ccoccceeiiiiriiiiieeniie e eieeeeeeeeee e nag_dsysvx (f07mbc)
real symmetric indefinite matrix, packed storage ..........cccccocvveviieeiciiennnnen. nag dspsvx (f07pbc)
real symmetric positive definite band matriX ..........cccooceivviiiiniiiiniieenens nag_dpbsvx (f07hbc)
real symmetric positive definite MatriX ..........ccccceereiireeiiiiiieeiiciieeeeeiieeenns nag_dposvx (f07fbc)
real symmetric positive definite matrix, packed storage ............cccccceevneene nag_dppsvx (f07gbc)
real symmetric positive definite tridiagonal matriX ..........ccccoceeevvieiiieeninenns nag_dptsvx (f07jbc)
real tridiagonal MAtIIX ....cccoeociiiiiiieiiee et nag dgtsvx (f07cbc)
simple drivers,

complex band MAtriX ....ccceeeveiiiieieiiiie et nag_zgbsv (f07bnc)
complex Hermitian indefinite Matrix .........ccccoooviieiiiiiiniiiieiie e, nag_zhesv (f07mnc)
complex Hermitian indefinite matrix, packed storage ..........ccccccveveiveecnnnns nag_zhpsv (f07pnc)
complex Hermitian positive definite band matrix ..........ccccevviieviiienciieeciens nag_zpbsv (f07hnc)
complex Hermitian positive definite matriX ..........ccccecviveeereiiireeiiiiieeeeieienn. nag_zposv (f07fnc)
complex Hermitian positive definite matrix, packed storage ....................... nag_zppsv (f07gnc)
complex Hermitian positive definite tridiagonal matrix ...........cccceeeeveeenneennne. nag_zptsv (f07jnc)
1470 1010) (5 11 T: 15 0 . QOSSR UUSR nag_zgesv (f07anc)
complex matrix, using mixed PreciSION .......cccceecvveeeriieeeniiieeniieeniieeenreenenns nag_zcgesv (f07aqc)
complex symmetric indefinite MatriX ........ccccoeeviieriiieriiieniieeeee e nag_zsysv (f07nnc)
complex symmetric indefinite matrix, packed storage ...........ccccoeccveviieennenn. nag_zspsv (f07qnc)
complex triangular band mMatriX ........cccccevveiiiiiiireriiiiee e nag_ztbtrs (f07vsc)
compleX triangular MALITX ......cceeevcieeriiieeiiieerieeeieeeeieeeeteeeaeeesebeeeeereeeneeeens nag_ztrtrs (f07tsc)
complex triangular matrix, packed StOTage .........cccccccevvivieriiieniiieniiieeniieeeen. nag_ztptrs (f07usc)
complex tridiagonal MALrIX .......ccccceeeriiiiiiiiireriie e et eseree e nag zgtsv (f07cnc)
real band MAatriX ......ccoocoiiiiiiiiiiie e nag dgbsv (f07bac)
TEAL TNALTIX ..iieiiiiiiiiieeiiiiie e e ettt e e e ettt eeestbteeeeetraeeesesnsbaeeessssneeeessssaeeesesssseeeennnns nag_dgesv (f07aac)
real matrix, using miXed PreCiSION ....c.coccveerciieerieeerieeerieeerreeesreeesrreesneeas nag_dsgesv (f07acc)
real symmetric indefinite MAatriX ......cccccceeiiiieiiiiieiiie e nag_dsysv (f07mac)
real symmetric indefinite matrix, packed StOrage .........ccceevveeiiveenieeennneennne. nag_dspsv (f07pac)
real symmetric positive definite band matrix ..........ccccoeeevieiiiiiiiiieeeniiieee e, nag_dpbsv (f07hac)
real symmetric positive definite matriX .......cccccovviiiiiiiiniiiiniie e nag_dposv (f07fac)
real symmetric positive definite matrix, packed storage ..........cccccceevevveennnen. nag_dppsv (f07gac)
real symmetric positive definite tridiagonal matriX ..........cccceeevvevcveencneeennnnn. nag_dptsv (f07jac)
real triangular band MAtrIX .......ccccoovcieeriiieiiiie e eriee e e eree e e nag_dtbtrs (f07vec)
real trian@ular MALTIX ...ococeeeeoieeiiie ettt e et e e eae e nag_dtrtrs (f07tec)
real triangular matrix, packed StOTAZE ..........coccoiiiiiieiiiiieniieeree e nag_dtptrs (f07uec)
real tridiagonal MALTIX .......cceeeeeeiiiiieeeiiiiee et e et e e et e e e eeereeeeeenes nag_dgtsv (f07cac)

5  Auxiliary Functions Associated with Library Function Arguments

None.

6  Functions Withdrawn or Scheduled for Withdrawal

None.
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