
NAG Library Routine Document

E04DGF/E04DGA

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

Note: this routine uses optional parameters to define choices in the problem specification and in the
details of the algorithm. If you wish to use default settings for all of the optional parameters, you need
only read Sections 1 to 9 of this document. If, however, you wish to reset some or all of the settings please
refer to Section 10 for a detailed description of the algorithm and to Section 11 for a detailed description
of the specification of the optional parameters.

1 Purpose

E04DGF/E04DGA minimizes an unconstrained nonlinear function of several variables using a pre-
conditioned, limited memory quasi-Newton conjugate gradient method. First derivatives (or an
‘acceptable’ finite difference approximation to them) are required. It is intended for use on large scale
problems.

E04DGA is a version of E04DGF that has additional parameters in order to make it safe for use in
multithreaded applications (see Section 5). The initialization routine E04WBF must have been called
before calling E04DGA.

2 Specification

2.1 Specification for E04DGF

SUBROUTINE E04DGF (N, OBJFUN, ITER, OBJF, OBJGRD, X, IWORK, WORK, IUSER,
RUSER, IFAIL)

&

INTEGER N, ITER, IWORK(N+1), IUSER(*), IFAIL

REAL (KIND=nag_wp) OBJF, OBJGRD(N), X(N), WORK(13*N), RUSER(*)

EXTERNAL OBJFUN

2.2 Specification for E04DGA

SUBROUTINE E04DGA (N, OBJFUN, ITER, OBJF, OBJGRD, X, IWORK, WORK, IUSER,
RUSER, LWSAV, IWSAV, RWSAV, IFAIL)

&

INTEGER N, ITER, IWORK(N+1), IUSER(*), IWSAV(610), IFAIL

REAL (KIND=nag_wp) OBJF, OBJGRD(N), X(N), WORK(13*N), RUSER(*), RWSAV(475)

LOGICAL LWSAV(120)

EXTERNAL OBJFUN

Before calling E04DGA, or either of the option setting routines E04DJA or E04DKA, routine E04WBF
must be called. The specification for E04WBF is:

SUBROUTINE E04WBF (RNAME, CWSAV, LCWSAV, LWSAV, LLWSAV, IWSAV, LIWSAV,
RWSAV, LRWSAV, IFAIL)

&

INTEGER LCWSAV, LLWSAV, IWSAV(LIWSAV), LIWSAV, LRWSAV, IFAIL

REAL (KIND=nag_wp) RWSAV(LRWSAV)

LOGICAL LWSAV(LLWSAV)

CHARACTER(*) RNAME

CHARACTER(80) CWSAV(LCWSAV)

E04WBF should be called with RNAME ¼ E04DGA . LCWSAV, LLWSAV, LIWSAV and LRWSAV, the
declared lengths of CWSAV, LWSAV, IWSAV and RWSAV respectively, must satisfy:

LCWSAV � 1

LLWSAV � 120

E04 – Minimizing or Maximizing a Function E04DGF

Mark 24 E04DGF.1

LIWSAV � 610

LRWSAV � 475

The contents of the arrays CWSAV, LWSAV, IWSAV and RWSAV must not be altered between calling
routines E04DGA, E04DJA, E04DKA and E04WBF.

3 Description

E04DGF/E04DGA is designed to solve unconstrained minimization problems of the form

minimize
x2Rn

F xð Þ subject to �1 � x � 1,

where x is an n-element vector.

You must supply an initial estimate of the solution.

For maximum reliability, it is preferable to provide all first partial derivatives. If all of the derivatives
cannot be provided, you are recommended to obtain approximate values (using finite differences) by
calling E04XAF/E04XAA from within OBJFUN. This is illustrated in Section 9 in E04DJF/E04DJA.

The method used by E04DGF/E04DGA is described in Section 10.

4 References

Gill P E and Murray W (1979) Conjugate-gradient methods for large-scale nonlinear optimization
Technical Report SOL 79-15 Department of Operations Research, Stanford University

Gill P E, Murray W and Wright M H (1981) Practical Optimization Academic Press

5 Parameters

1: N – INTEGER Input

On entry: n, the number of variables.

Constraint: N > 0.

2: OBJFUN – SUBROUTINE, supplied by the user. External Procedure

OBJFUN must calculate the objective function F xð Þ and possibly its gradient as well for a specified
n-element vector x.

The specification of OBJFUN is:

SUBROUTINE OBJFUN (MODE, N, X, OBJF, OBJGRD, NSTATE, IUSER, RUSER)

INTEGER MODE, N, NSTATE, IUSER(*)

REAL (KIND=nag_wp) X(N), OBJF, OBJGRD(N), RUSER(*)

1: MODE – INTEGER Input/Output

On entry: indicates which values must be assigned during each call of OBJFUN. Only the
following values need be assigned:

MODE ¼ 0

OBJF.

MODE ¼ 2

OBJF and OBJGRD.

On exit: may be set to a negative value if you wish to terminate the solution to the current
problem, and in this case E04DGF/E04DGA will terminate with IFAIL set to MODE.

E04DGF NAG Library Manual

E04DGF.2 Mark 24

2: N – INTEGER Input

On entry: n, the number of variables.

3: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: x, the vector of variables at which the objective function and its gradient are to
be evaluated.

4: OBJF – REAL (KIND=nag_wp) Output

On exit: the value of the objective function at x.

5: OBJGRDðNÞ – REAL (KIND=nag_wp) array Output

On exit: if MODE ¼ 2, OBJGRDðiÞ must contain the value of @F
@xi

evaluated at x, for

i ¼ 1; 2; . . . ; n.

6: NSTATE – INTEGER Input

On entry: will be 1 on the first call of OBJFUN by E04DGF/E04DGA, and 0 for all
subsequent calls. Thus, you may wish to test, NSTATE within OBJFUN in order to
perform certain calculations once only. For example, you may read data or initialize
COMMON blocksglobal variables when NSTATE ¼ 1.

7: IUSERð�Þ – INTEGER array User Workspace
8: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

OBJFUN is called with the parameters IUSER and RUSER as supplied to E04DGF/
E04DGA. You are free to use the arrays IUSER and RUSER to supply information to
OBJFUN as an alternative to using COMMON global variables.

OBJFUN must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which E04DGF/E04DGA is called. Parameters denoted as Input must not be
changed by this procedure.

Note: OBJFUN should be tested separately before being used in conjunction with E04DGF/
E04DGA. See also the description of the optional parameter Verify.

3: ITER – INTEGER Output

On exit: the total number of iterations performed.

4: OBJF – REAL (KIND=nag_wp) Output

On exit: the value of the objective function at the final iterate.

5: OBJGRDðNÞ – REAL (KIND=nag_wp) array Output

On exit: the gradient of the objective function at the final iterate (or its finite difference
approximation).

6: XðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: an initial estimate of the solution.

On exit: the final estimate of the solution.

E04 – Minimizing or Maximizing a Function E04DGF

Mark 24 E04DGF.3

7: IWORKðNþ 1Þ – INTEGER array Workspace
8: WORKð13� NÞ – REAL (KIND=nag_wp) array Workspace

9: IUSERð�Þ – INTEGER array User Workspace
10: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by E04DGF/E04DGA, but are passed directly to OBJFUN and
may be used to pass information to this routine as an alternative to using COMMON global
variables.

11: IFAIL – INTEGER Input/Output

Note: for E04DGA, IFAIL does not occur in this position in the parameter list. See the additional
parameters described below.

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this parameter you should
refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output parameters
may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the value �1 or 1
is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

E04DGF/E04DGA returns with IFAIL ¼ 0 if the following three conditions are satisfied:

(i) Fk�1 � Fk < �F 1þ Fkj jð Þ
(ii) xk�1 � xkk k < ffiffiffiffiffi

�F
p

1þ xkk kð Þ

(iii) gkk k �
ffiffiffiffiffi
�F3
p

1þ Fkj jð Þ or gkk k < �A

where �F is the value of the optional parameter Optimality Tolerance (default value ¼ �0:8) and �A
is the absolute error associated with computing the objective function.

For a full discussion on termination criteria see Chapter 8 of Gill et al. (1981).

Note: the following are additional parameters for specific use with E04DGA. Users of E04DGF
therefore need not read the remainder of this description.

11: LWSAVð120Þ – LOGICAL array Communication Array
12: IWSAVð610Þ – INTEGER array Communication Array
13: RWSAVð475Þ – REAL (KIND=nag_wp) array Communication Array

The arrays LWSAV, IWSAV and RWSAV must not be altered between calls to any of the routines
E04DGA, E04DJA, E04DKA or E04WBF.

14: IFAIL – INTEGER Input/Output

Note: see the parameter description for IFAIL above.

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Note: E04DGF/E04DGA may return useful information for one or more of the following detected errors
or warnings.

E04DGF NAG Library Manual

E04DGF.4 Mark 24

Errors or warnings detected by the routine:

IFAIL < 0

A negative value of IFAIL indicates an exit from E04DGF/E04DGA because you set MODE < 0 in
OBJFUN. The value of IFAIL will be the same as your setting of MODE.

IFAIL ¼ 1

Not used by this routine.

IFAIL ¼ 2

Not used by this routine.

IFAIL ¼ 3

The limiting number of iterations (as determined by the optional parameter Iteration Limit
(default value ¼ max 50; 5nð Þ) has been reached.

If the algorithm appears to be making satisfactory progress, then optional parameter Iteration Limit
may be too small. If so, increase its value and rerun E04DGF/E04DGA. If the algorithm seems to
be making little or no progress, then you should check for incorrect gradients as described under
IFAIL ¼ 7.

IFAIL ¼ 4

The computed upper bound on the step length taken during the linesearch was too small. A rerun
with an increased value of the optional parameter Maximum Step Length (� say) may be

successful unless � � 1020 (the default value), in which case the current point cannot be improved
upon.

IFAIL ¼ 5

Not used by this routine.

IFAIL ¼ 6

The conditions for an acceptable solution (see parameter IFAIL in Section 5) have not all been met,
but a lower point could not be found.

If OBJFUN computes the objective function and its gradient correctly, then this may occur because
an overly stringent accuracy has been requested, i.e., the value of the optional parameter Optimality

Tolerance (default value ¼ �0:8) is too small or if �k ’ 0. In this case you should apply the three
tests described under IFAIL ¼ 0 to determine whether or not the final solution is acceptable. For a
discussion of attainable accuracy see Gill et al. (1981).

If many iterations have occurred in which essentially no progress has been made or E04DGF/
E04DGA has failed to move from the initial point, OBJFUN may be incorrect. You should refer to
the comments below under IFAIL ¼ 7 and check the gradients using the optional parameter Verify
(default value ¼ 0). Unfortunately, there may be small errors in the objective gradients that cannot
be detected by the verification process. Finite difference approximations to first derivatives are
catastrophically affected by even small inaccuracies.

IFAIL ¼ 7

The user-supplied derivatives of the objective function appear to be incorrect.

Large errors were found in the derivatives of the objective function. This value of IFAIL will occur
if the verification process indicated that at least one gradient element had no correct figures. You
should refer to the printed output to determine which elements are suspected to be in error.

As a first step, you should check that the code for the objective values is correct – for example, by
computing the function at a point where the correct value is known. However, care should be taken
that the chosen point fully tests the evaluation of the function. It is remarkable how often the values

E04 – Minimizing or Maximizing a Function E04DGF

Mark 24 E04DGF.5

x ¼ 0 or x ¼ 1 are used to test function evaluation procedures, and how often the special properties
of these numbers make the test meaningless.

Special care should be used in this test if computation of the objective function involves subsidiary
data communicated in COMMON storage. Although the first evaluation of the function may be
correct, subsequent calculations may be in error because some of the subsidiary data has
accidentally been overwritten.

Errors in programming the function may be quite subtle in that the function value is almost correct.
For example, the function may not be accurate to full precision because of the inaccurate calculation
of a subsidiary quantity, or the limited accuracy of data upon which the function depends. A
common error on machines where numerical calculations are usually performed in double precision
is to include even one single precision constant in the calculation of the function; since some
compilers do not convert such constants to double precision, half the correct figures may be lost by
such a seemingly trivial error.

IFAIL ¼ 8

The gradient g ¼ @F
@x

� �
at the starting point x0 is ‘too small’. More precisely, the value of

g x0ð ÞTg x0ð Þ is less than �r 1þ F x0ð Þj j, where �r is the value of the optional parameter Function

Precision (default value ¼ �0:9).

The problem should be rerun from a different starting point.

IFAIL ¼ 9

An input parameter is invalid.

7 Accuracy

On successful exit (IFAIL ¼ 0) the accuracy of the solution will be as defined by the optional parameter

Optimality Tolerance (default value ¼ �0:8).

8 Further Comments

To evaluate an ‘acceptable’ set of finite difference intervals using E04XAF/E04XAA requires 2 function
evaluations per variable for a well-scaled problem and up to 6 function evaluations per variable for a badly
scaled problem.

8.1 Description of Printed Output

This section describes the intermediate printout and final printout produced by E04DGF/E04DGA. You
can control the level of printed output (see the description of the optional parameter Print Level). Note
that the intermediate printout and final printout are produced only if Print Level � 10 (the default for
E04DGF, by default no output is produced by E04DGA).

The following line of summary output (< 80 characters) is produced at every iteration. In all cases, the
values of the quantities are those in effect on completion of the given iteration.

Itn is the iteration count.

Step is the step �k taken along the computed search direction. On reasonably well-
behaved problems, the unit step (i.e., �k ¼ 1) will be taken as the solution is
approached.

Nfun is the cumulated number of evaluations of the objective function needed for the
linesearch. Evaluations needed for the verification of the gradients by finite
differences are not included. Nfun is printed as a guide to the amount of work
required for the linesearch. E04DGF/E04DGA will perform at most 11 function
evaluations per iteration.

Objective is the value of the objective function at xk.

E04DGF NAG Library Manual

E04DGF.6 Mark 24

Norm G is the Euclidean norm of the gradient of the objective function at xk.

Norm X is the Euclidean norm of xk.

Norm (X(k-1)-X(k)) is the Euclidean norm of xk�1 � xk.
The following describes the printout for each variable.

Variable gives the name (Varbl) and index j, for j ¼ 1; 2; . . . ; n of the variable.

Value is the value of the variable at the final iteration.

Gradient Value is the value of the gradient of the objective function with respect to the jth
variable at the final iteration.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate to this
precision.

9 Example

This example finds a minimum of the function

F ¼ ex1 4x2
1 þ 2x2

2 þ 4x1x2 þ 2x2 þ 1
� �

.

The initial point is

x0 ¼ �1:0; 1:0ð ÞT,

and F x0ð Þ ¼ 1:8394 (to five figures).

The optimal solution is

x� ¼ 0:5;�1:0ð ÞT,

and F x�ð Þ ¼ 0.

The document for E04DJF/E04DJA includes an example program to solve the same problem using some
of the optional parameters described in Section 11.

9.1 Program Text

the following program illustrates the use of E04DGF. An equivalent program illustrating the use of
E04DGA is available with the supplied Library and is also available from the NAG web site.

! E04DGF Example Program Text
! Mark 24 Release. NAG Copyright 2012.

Module e04dgfe_mod

! E04DGF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

Contains
Subroutine objfun(mode,n,x,objf,objgrd,nstate,iuser,ruser)

! Routine to evaluate F(x) and its 1st derivatives.

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: objf
Integer, Intent (Inout) :: mode
Integer, Intent (In) :: n, nstate

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: objgrd(n)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(n)
Integer, Intent (Inout) :: iuser(*)

E04 – Minimizing or Maximizing a Function E04DGF

Mark 24 E04DGF.7

! .. Local Scalars ..
Real (Kind=nag_wp) :: expx1, x1, x2

! .. Intrinsic Procedures ..
Intrinsic :: exp

! .. Executable Statements ..
x1 = x(1)
x2 = x(2)
expx1 = exp(x1)
objf = expx1*(4.0_nag_wp*x1**2+2.0_nag_wp*x2**2+4.0_nag_wp*x1*x2+ &

2.0_nag_wp*x2+1.0_nag_wp)

If (mode==2) Then
objgrd(1:n) = (/4.0_nag_wp*expx1*(2.0_nag_wp*x1+x2)+objf, &

2.0_nag_wp*expx1*(2.0_nag_wp*x2+2.0_nag_wp*x1+1.0_nag_wp)/)
End If

Return

End Subroutine objfun
End Module e04dgfe_mod
Program e04dgfe

! E04DGF Example Main Program

! .. Use Statements ..
Use nag_library, Only: e04dgf, nag_wp
Use e04dgfe_mod, Only: nin, nout, objfun

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: objf
Integer :: ifail, iter, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: objgrd(:), work(:), x(:)
Real (Kind=nag_wp) :: ruser(1)
Integer :: iuser(1)
Integer, Allocatable :: iwork(:)

! .. Executable Statements ..
Write (nout,*) ’E04DGF Example Program Results’
Flush (nout)

! Skip heading in data file
Read (nin,*)

Read (nin,*) n
Allocate (iwork(n+1),objgrd(n),x(n),work(13*n))

Read (nin,*) x(1:n)

! Solve the problem

ifail = -1
Call e04dgf(n,objfun,iter,objf,objgrd,x,iwork,work,iuser,ruser,ifail)

End Program e04dgfe

9.2 Program Data

E04DGF Example Program Data
2 :Value of N

-1.0 1.0 :End of X

9.3 Program Results

E04DGF Example Program Results

*** E04DGF

Parameters

E04DGF NAG Library Manual

E04DGF.8 Mark 24

Variables.............. 2

Maximum step length.... 1.00E+20 EPS (machine precision) 1.11E-16
Optimality tolerance... 3.26E-12 Linesearch tolerance... 9.00E-01

Est. opt. function val. None Function precision..... 4.37E-15
Verify level........... 0

Iteration limit........ 50 Print level............ 10

Verification of the objective gradients.
--

The objective gradients seem to be ok.

Directional derivative of the objective -1.47151776E-01
Difference approximation -1.47151796E-01

Itn Step Nfun Objective Norm G Norm X Norm (X(k-1)-X(k))
0 1 1.839397E+00 8.2E-01 1.4E+00
1 3.7E-01 3 1.724275E+00 2.8E-01 1.3E+00 3.0E-01
2 1.6E+01 8 6.083488E-02 9.2E-01 9.3E-01 2.2E+00
3 1.6E-03 14 5.367978E-02 1.0E+00 9.6E-01 3.7E-02
4 4.8E-01 16 1.783392E-04 5.8E-02 1.1E+00 1.6E-01
5 1.0E+00 17 1.671122E-05 2.0E-02 1.1E+00 6.7E-03
6 1.0E+00 18 1.101991E-07 1.7E-03 1.1E+00 2.4E-03
7 1.0E+00 19 2.332133E-09 1.8E-04 1.1E+00 1.5E-04
8 1.0E+00 20 9.130924E-11 3.3E-05 1.1E+00 3.0E-05
9 1.0E+00 21 1.085455E-12 4.7E-06 1.1E+00 7.0E-06

10 1.0E+00 22 5.308300E-14 1.2E-06 1.1E+00 6.4E-07

Exit from E04DGF after 10 iterations.

Variable Value Gradient value
Varbl 1 0.500000 9.1E-07
Varbl 2 -1.00000 8.3E-07

Exit E04DGF - Optimal solution found.

Final objective value = 0.5308300E-13

Note: the remainder of this document is intended for more advanced users. Section 10 contains a detailed
description of the algorithm which may be needed in order to understand Section 11. Section 11 describes
the optional parameters which may be set by calls to E04DJF/E04DJA and/or E04DKF/E04DKA.

10 Algorithmic Details

This section contains a description of the method used by E04DGF/E04DGA.

E04DGF/E04DGA uses a pre-conditioned conjugate gradient method and is based upon algorithm PLMA
as described in Section 4.8.3 of Gill and Murray (1979) and Gill et al. (1981).

The algorithm proceeds as follows:

Let x0 be a given starting point and let k denote the current iteration, starting with k ¼ 0. The iteration
requires gk, the gradient vector evaluated at xk, the kth estimate of the minimum. At each iteration a
vector pk (known as the direction of search) is computed and the new estimate xkþ1 is given by xk þ �kpk
where �k (the step length) minimizes the function F xk þ �kpkð Þ with respect to the scalar �k. A choice of
initial step �0 is taken as

�0 ¼ min 1; 2� Fk � Festj j=gT
kgk

� �
where Fest is a user-supplied estimate of the function value at the solution. If Fest is not specified, the

E04 – Minimizing or Maximizing a Function E04DGF

Mark 24 E04DGF.9

software always chooses the unit step length for �0. Subsequent step length estimates are computed using
cubic interpolation with safeguards.

A quasi-Newton method can be used to compute the search direction pk by updating the inverse of the
approximate Hessian Hkð Þ and computing

pkþ1 ¼ �Hkþ1gkþ1. ð1Þ
The updating formula for the approximate inverse is given by

Hkþ1 ¼ Hk � 1

yT
ksk

Hkyks
T
k þ skyT

kHk

� �
þ 1

yT
ksk

1þ y
T
kHkyk
yT
ksk

	

sks

T
k , ð2Þ

where yk ¼ gk�1 � gk and sk ¼ xkþ1 � xk ¼ �kpk.
The method used to obtain the search direction is based upon computing pkþ1 as �Hkþ1gkþ1 where Hkþ1

is a matrix obtained by updating the identity matrix with a limited number of quasi-Newton corrections.
The storage of an n by n matrix is avoided by storing only the vectors that define the rank two corrections
– hence the term ‘limited-memory’ quasi-Newton method. The precise method depends upon the number
of updating vectors stored. For example, the direction obtained with the ‘one-step’ limited memory update
is given by (1) using (2) with Hk equal to the identity matrix, viz.

pkþ1 ¼ �gkþ1 þ 1

yT
ksk

sT
kgkþ1yk þ yT

kgkþ1sk
� �

� s
T
kgkþ1

yT
ksk

1þ y
T
kyk
yT
ksk

	

sk.

Using a limited-memory quasi-Newton formula, such as the one above, guarantees pkþ1 to be a descent

direction if all the inner products yT
ksk are positive for all vectors yk and sk used in the updating formula.

11 Optional Parameters

Several optional parameters in E04DGF/E04DGA define choices in the problem specification or the
algorithm logic. In order to reduce the number of formal parameters of E04DGF/E04DGA these optional
parameters have associated default values that are appropriate for most problems. Therefore, you need
only specify those optional parameters whose values are to be different from their default values.

The remainder of this section can be skipped if you wish to use the default values for all optional
parameters.

The following is a list of the optional parameters available. A full description of each optional parameter
is provided in Section 11.1.

Defaults

Estimated Optimal Function Value

Function Precision

Iteration Limit

Iters

Itns

Linesearch Tolerance

List

Maximum Step Length

Nolist

Optimality Tolerance

Print Level

Start Objective Check at Variable

Stop Objective Check at Variable

Verify

Verify Gradients

Verify Level

Verify Objective Gradients

E04DGF NAG Library Manual

E04DGF.10 Mark 24

Optional parameters may be specified by calling one, or both, of the routines E04DJF/E04DJA and
E04DKF/E04DKA before a call to E04DGF/E04DGA.

E04DJF/E04DJA reads options from an external options file, with Begin and End as the first and last lines
respectively and each intermediate line defining a single optional parameter. For example,

Begin
Print Level = 1

End

The call

CALL E04DJF (IOPTNS, INFORM)

can then be used to read the file on unit IOPTNS. INFORM will be zero on successful exit. E04DJF/
E04DJA should be consulted for a full description of this method of supplying optional parameters.

E04DKF/E04DKA can be called to supply options directly, one call being necessary for each optional
parameter. For example,

CALL E04DKF (’Print Level = 1’)

E04DKF/E04DKA should be consulted for a full description of this method of supplying optional
parameters.

All optional parameters not specified by you are set to their default values. Optional parameters specified
by you are unaltered by E04DGF/E04DGA (unless they define invalid values) and so remain in effect for
subsequent calls unless altered by you.

11.1 Description of the Optional Parameters

For each option, we give a summary line, a description of the optional parameter and details of constraints.

The summary line contains:

the keywords, where the minimum abbreviation of each keyword is underlined (if no characters of
an optional qualifier are underlined, the qualifier may be omitted);

a parameter value, where the letters a, i and r denote options that take character, integer and real
values respectively;

the default value, where the symbol � is a generic notation for machine precision (see X02AJF),
and �r denotes the relative precision of the objective function Function Precision.

Keywords and character values are case and white space insensitive.

Defaults

This special keyword may be used to reset all optional parameters to their default values.

Estimated Optimal Function Value r

This value of r specifies the user-supplied guess of the optimum objective function value Fest. This value
is used to calculate an initial step length �0 (see Section 10). If the value of r is not specified (the default),
then this has the effect of setting �0 to unity. It should be noted that for badly scaled functions a unit step
along the steepest descent direction will often compute the objective function at very large values of x.

Function Precision r Default ¼ �0:9

The parameter defines �r, which is intended to be a measure of the accuracy with which the problem
function F xð Þ can be computed. If r < � or r � 1, the default value is used.

The value of �r should reflect the relative precision of 1þ F xð Þj j; i.e., �r acts as a relative precision when
Fj j is large, and as an absolute precision when Fj j is small. For example, if F xð Þ is typically of order

1000 and the first six significant digits are known to be correct, an appropriate value for �r would be 10�6.

In contrast, if F xð Þ is typically of order 10�4 and the first six significant digits are known to be correct, an

appropriate value for �r would be 10�10. The choice of �r can be quite complicated for badly scaled
problems; see Chapter 8 of Gill et al. (1981) for a discussion of scaling techniques. The default value is
appropriate for most simple functions that are computed with full accuracy. However when the accuracy

E04 – Minimizing or Maximizing a Function E04DGF

Mark 24 E04DGF.11

of the computed function values is known to be significantly worse than full precision, the value of �r
should be large enough so that no attempt will be made to distinguish between function values that differ
by less than the error inherent in the calculation.

Iteration Limit i Default ¼ max 50; 5nð Þ
Iters
Itns

The value of i specifies the maximum number of iterations allowed before termination. If i < 0, the
default value is used.

Problems whose Hessian matrices at the solution contain sets of clustered eigenvalues are likely to be
minimized in significantly fewer than n iterations. Problems without this property may require anything
between n and 5n iterations, with approximately 2n iterations being a common figure for moderately
difficult problems.

Linesearch Tolerance r Default ¼ 0:9

The value r controls the accuracy with which the step � taken during each iteration approximates a
minimum of the function along the search direction (the smaller the value of r, the more accurate the
linesearch). The default value r ¼ 0:9 requests an inaccurate search, and is appropriate for most problems.
A more accurate search may be appropriate when it is desirable to reduce the number of iterations – for
example, if the objective function is cheap to evaluate. If r < 0 or r � 1, the default value is used.

List Default for E04DGF ¼ List
Nolist Default for E04DGA ¼ Nolist

Normally each optional parameter specification is printed as it is supplied. Optional parameter Nolist may
be used to suppress the printing and optional parameter List may be used to restore printing.

Maximum Step Length r Default ¼ 1020

If r > 0, the maximum allowable step length for the linesearch is taken as min
1

X02AMFðÞ
;

r

pkk k

	

. If r � 0,

the default value is used.

Optimality Tolerance r Default ¼ �0:8
R

The parameter r specifies the accuracy to which you wish the final iterate to approximate a solution of the
problem. Broadly speaking, r indicates the number of correct figures desired in the objective function at

the solution. For example, if r is 10�6 and termination occurs with IFAIL ¼ 0 (see Section 5), then the
final point satisfies the termination criteria, where �F represents Optimality Tolerance. If r < �r or r � 1,
the default value is used.

Print Level i Default for E04DGF ¼ 10
Default for E04DGA ¼ 0

The value i controls the amount of printout produced by E04DGF/E04DGA, as indicated below. A
detailed description of the printout is given in Section 8.1 (summary output at each iteration and the final
solution).

i Output

0 No output.

1 The final solution only.

5 One line of summary output (< 80 characters; see Section 8.1) for each iteration (no printout of the
final solution).

10 The final solution and one line of summary output for each iteration.

E04DGF NAG Library Manual

E04DGF.12 Mark 24

Start Objective Check at Variable i1 Default ¼ 1
Stop Objective Check at Variable i2 Default ¼ n
These keywords take effect only if Verify Level > 0. They may be used to control the verification of
gradient elements computed by OBJFUN. For example, if the first 30 elements of the objective gradient
appeared to be correct in an earlier run, so that only element 31 remains questionable, it is reasonable to
specify Start Objective Check at Variable ¼ 31. If the first 30 variables appear linearly in the objective,
so that the corresponding gradient elements are constant, the above choice would also be appropriate.

If i1 � 0 or i1 > max 1;min n; i2ð Þð Þ, the default value is used. If i2 � 0 or i2 > n, the default value is
used.

Verify Level i Default ¼ 0
Verify
Verify Gradients
Verify Objective Gradients

These keywords refer to finite difference checks on the gradient elements computed by OBJFUN.
Gradients are verified at the user-supplied initial estimate of the solution. The possible choices for i are as
follows:

i Meaning

�1 No checks are performed.

0 Only a ‘cheap’ test will be performed, requiring one call to OBJFUN.

1 In addition to the ‘cheap’ test, individual gradient elements will also be checked using a reliable (but
more expensive) test.

For example, the objective gradient will be verified if Verify, Verify ¼ YES, Verify Gradients, Verify
Objective Gradients or Verify Level ¼ 1 is specified.

E04 – Minimizing or Maximizing a Function E04DGF

Mark 24 E04DGF.13 (last)

	E04DGF
	1 Purpose
	2 Specification
	2.1
	2.2

	3 Description
	4 References
	5 Parameters
	N
	OBJFUN
	MODE in subprogram OBJFUN
	N in subprogram OBJFUN
	X in subprogram OBJFUN
	OBJF in subprogram OBJFUN
	OBJGRD in subprogram OBJFUN
	NSTATE in subprogram OBJFUN
	IUSER in subprogram OBJFUN
	RUSER in subprogram OBJFUN

	ITER
	OBJF
	OBJGRD
	X
	IWORK
	WORK
	IUSER
	RUSER
	IFAIL
	LWSAV
	IWSAV
	RWSAV
	IFAIL in E04DGA

	6 Error Indicators and Warnings
	IFAIL<0
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=6
	IFAIL=7
	IFAIL=8
	IFAIL=9

	7 Accuracy
	8 Further Comments
	8.1 Description of Printed Output

	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	10 Algorithmic Details
	11 Optional Parameters
	11.1 Description of the Optional Parameters
	[Defaults]
	[Es]timated Optimal Function Value
	[F]unction Precision
	[It]eration Limit
	[Iters]
	[Itns]
	[Lin]esearch Tolerance
	[List]
	[Nolist]
	[M]aximum Step Length
	[O]ptimality Tolerance
	[P]rint Level
	[Sta]rt Objective Check at Variable
	[Sto]p Objective Check at Variable
	[V]erify [L]evel
	[V]erify
	[V]erify [G]radients
	[V]erify [O]bjective Gradients

	NAG Fortran Library Manual, Mark 24
	Copyright Statement
	Foreword
	Introduction
	Essential Introduction
	NAG Fortran Library specific documentation
	 NAG Fortran Library News

	NAG SMP Library specific documentation
	Introduction to the NAG Library for SMP & Multicore
	 NAG Library for SMP & Multicore News
	Tuned and Enhanced Routines in the

	Thread Safety
	Routines Withdrawn or Scheduled for Withdrawal
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements
	Indexes

	Implementation-specific Details for Users
	Chapters of the Library
	A00 - Library Identification
	A00 Chapter Introduction

	A02 - Complex Arithmetic
	A02 Chapter Introduction

	C02 - Zeros of Polynomials
	C02 Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	C05 Chapter Introduction

	C06 - Summation of Series
	C06 Chapter Introduction

	C09 - Wavelet Transforms
	C09 Chapter Introduction

	D01 - Quadrature
	D01 Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 Chapter Introduction

	D03 - Partial Differential Equations
	D03 Chapter Introduction

	D04 - Numerical Differentiation
	D04 Chapter Introduction

	D05 - Integral Equations
	D05 Chapter Introduction

	D06 - Mesh Generation
	D06 Chapter Introduction

	E01 - Interpolation
	E01 Chapter Introduction

	E02 - Curve and Surface Fitting
	E02 Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	E04 Chapter Introduction

	E05 - Global Optimization of a Function
	E05 Chapter Introduction

	F - Linear Algebra
	F Chapter Introduction

	F01 - Matrix Operations, Including Inversion
	F01 Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	F02 Chapter Introduction

	F03 - Determinants
	F03 Chapter Introduction

	F04 - Simultaneous Linear Equations
	F04 Chapter Introduction

	F05 - Orthogonalization
	F05 Chapter Introduction

	F06 - Linear Algebra Support Routines
	F06 Chapter Introduction

	F07 - Linear Equations (LAPACK)
	F07 Chapter Introduction

	F08 - Least Squares and Eigenvalue Problems (LAPACK)
	F08 Chapter Introduction

	F11 - Large Scale Linear Systems
	F11 Chapter Introduction

	F12 - Large Scale Eigenproblems
	F12 Chapter Introduction

	F16 - Further Linear Algebra Support Routines
	F16 Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	G01 Chapter Introduction

	G02 - Correlation and Regression Analysis
	G02 Chapter Introduction

	G03 - Multivariate Methods
	G03 Chapter Introduction

	G04 - Analysis of Variance
	G04 Chapter Introduction

	G05 - Random Number Generators
	G05 Chapter Introduction

	G07 - Univariate Estimation
	G07 Chapter Introduction

	G08 - Nonparametric Statistics
	G08 Chapter Introduction

	G10 - Smoothing in Statistics
	G10 Chapter Introduction

	G11 - Contingency Table Analysis
	G11 Chapter Introduction

	G12 - Survival Analysis
	G12 Chapter Introduction

	G13 - Time Series Analysis
	G13 Chapter Introduction

	H - Operations Research
	H Chapter Introduction

	M01 - Sorting and Searching
	M01 Chapter Introduction

	S - Approximations of Special Functions
	S Chapter Introduction

	X01 - Mathematical Constants
	X01 Chapter Introduction

	X02 - Machine Constants
	X02 Chapter Introduction

	X03 - Inner Products
	X03 Chapter Introduction

	X04 - Input/Output Utilities
	X04 Chapter Introduction

	X05 - Date and Time Utilities
	X05 Chapter Introduction

	X07 - IEEE Arithmetic
	X07 Chapter Introduction

