NAG Library Routine Document
 F01JCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

F01JCF computes an estimate of the absolute condition number of a matrix function f at a real n by n matrix A in the 1 -norm, using analytical derivatives of f you have supplied.

2 Specification

```
SUBROUTINE FOIJCF (N, A, LDA, F, IUSER, RUSER, IFLAG, CONDA, NORMA,
    NORMFA, IFAIL)
INTEGER N, LDA, IUSER(*), IFLAG, IFAIL
REAL (KIND=nag_wp) A(LDA,*), RUSER(*), CONDA, NORMA, NORMFA
EXTERNAL
    F
```


3 Description

The absolute condition number of f at $A, \operatorname{cond}_{\text {abs }}(f, A)$ is given by the norm of the Fréchet derivative of $f, L(A)$, which is defined by

$$
\|L(X)\|:=\max _{E \neq 0} \frac{\|L(X, E)\|}{\|E\|}
$$

where $L(X, E)$ is the Fréchet derivative in the direction $E . L(X, E)$ is linear in E and can therefore be written as

$$
\operatorname{vec}(L(X, E))=K(X) \operatorname{vec}(E)
$$

where the vec operator stacks the columns of a matrix into one vector, so that $K(X)$ is $n^{2} \times n^{2}$. F01JCF computes an estimate γ such that $\gamma \leq\|K(X)\|_{1}$, where $\|K(X)\|_{1} \in\left[n^{-1}\|L(X)\|_{1}, n\|L(X)\|_{1}\right]$. The relative condition number can then be computed via

$$
\operatorname{cond}_{\mathrm{rel}}(f, A)=\frac{\operatorname{cond}_{\mathrm{abs}}(f, A)\|A\|_{1}}{\|f(A)\|_{1}}
$$

The algorithm used to find γ is detailed in Section 3.4 of Higham (2008).
The function f, and the derivatives of f, are returned by subroutine F which, given an integer m, evaluates $f^{(m)}\left(z_{i}\right)$ at a number of (generally complex) points z_{i}, for $i=1,2, \ldots, n_{z}$. For any z on the real line, $f(z)$ must also be real. F01JCF is therefore appropriate for routines that can be evaluated on the complex plane and whose derivatives, of arbitrary order, can also be evaluated on the complex plane.

4 References

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

5 Arguments

[^0]2: $\mathrm{A}(\mathrm{LDA}, *)-$ REAL (KIND=nag_wp) array
Note: the second dimension of the array A must be at least N .
On entry: the n by n matrix A.
On exit: the n by n matrix, $f(A)$.
3: LDA - INTEGER
Input
On entry: the first dimension of the array A as declared in the (sub)program from which F01JCF is called.

Constraint: $\mathrm{LDA} \geq \mathrm{N}$.
4: \quad F - SUBROUTINE, supplied by the user.
External Procedure
Given an integer m, the subroutine F evaluates $f^{(m)}\left(z_{i}\right)$ at a number of points z_{i}.

```
The specification of F is:
SUBROUTINE F (M, IFLAG, NZ, Z, FZ, IUSER, RUSER)
INTEGER M, IFLAG, NZ, IUSER(*)
REAL (KIND=nag_wp) RUSER(*)
COMPLEX (KIND=nag_wp) Z(NZ), FZ(NZ)
1: M - INTEGER Input
    On entry: the order, m, of the derivative required.
    If M}=0,f(\mp@subsup{z}{i}{})\mathrm{ should be returned. For M >0, f
2: IFLAG - INTEGER
Input/Output
    On entry:IFLAG will be zero.
    On exit: IFLAG should either be unchanged from its entry value of zero, or may be set
    nonzero to indicate that there is a problem in evaluating the function }f(z)\mathrm{ ; for instance
    f(z) may not be defined. If IFLAG is returned as nonzero then F01JCF will terminate
    the computation, with IFAIL =3.
    NZ - INTEGER Input
    On entry: }\mp@subsup{n}{z}{}\mathrm{ , the number of function or derivative values required.
    Z(NZ) - COMPLEX (KIND=nag_wp) array
    Input
    On entry: the }\mp@subsup{n}{z}{}\mathrm{ points }\mp@subsup{z}{1}{},\mp@subsup{z}{2}{},\ldots,\mp@subsup{z}{\mp@subsup{n}{z}{}}{}\mathrm{ at which the function }f\mathrm{ is to be evaluated.
5: FZ(NZ) - COMPLEX (KIND=nag_wp) array
Output
    On exit: the }\mp@subsup{n}{z}{}\mathrm{ function or derivative values. FZ(i) should return the value f}\mp@subsup{f}{}{(m)}(\mp@subsup{z}{i}{})\mathrm{ , for
    i=1,2,\ldots, nz}\mathrm{ . If }\mp@subsup{z}{i}{}\mathrm{ lies on the real line, then so must }\mp@subsup{f}{}{(m)}(\mp@subsup{z}{i}{})
6: IUSER(*) - INTEGER array
User Workspace
7: RUSER(*) - REAL (KIND=nag_wp) array User Workspace
    F is called with the arguments IUSER and RUSER as supplied to F01JCF. You should
    use the arrays IUSER and RUSER to supply information to F.
```

F must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub) program from which F01JCF is called. Arguments denoted as Input must not be changed by this procedure.

5: $\operatorname{IUSER}(*)$ - INTEGER array User Workspace
6: $\operatorname{RUSER}(*)$ - REAL (KIND=nag_wp) array User Workspace
IUSER and RUSER are not used by F01JCF, but are passed directly to F and should be used to pass information to this routine.

7: IFLAG - INTEGER
Output
On exit: IFLAG $=0$, unless IFLAG has been set nonzero inside F, in which case IFLAG will be the value set and IFAIL will be set to IFAIL $=3$.

8: \quad CONDA - REAL (KIND=nag_wp)
Output
On exit: an estimate of the absolute condition number of f at A.
9: \quad NORMA - REAL (KIND $=$ nag_wp $)$
Output
On exit: the 1-norm of A.

10: NORMFA - REAL (KIND=nag_wp)
Output
On exit: the 1-norm of $f(A)$.
11: IFAIL - INTEGER
Input/Output
On entry: IFAIL must be set to $0,-1$ or 1 . If you are unfamiliar with this argument you should refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this argument, the recommended value is 0 . When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL $=0$ unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL $=0$ or -1 , explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors or warnings detected by the routine:
IFAIL $=1$
An internal error occurred when estimating the norm of the Fréchet derivative of f at A. Please contact NAG.

IFAIL $=2$
An internal error occurred when evaluating the matrix function $f(A)$. You can investigate further by calling F01EMF with the matrix A and the function f.

IFAIL $=3$
IFLAG has been set nonzero by the user-supplied subroutine.
IFAIL $=-1$
On entry, $\mathrm{N}<0$.
Input argument number $\langle v a l u e\rangle$ is invalid.

IFAIL $=-3$
On entry, argument LDA is invalid.
Constraint: LDA $\geq \mathrm{N}$.
IFAIL $=-99$
An unexpected error has been triggered by this routine. Please contact NAG.
See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
IFAIL $=-399$
Your licence key may have expired or may not have been installed correctly.
See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
IFAIL $=-999$
Dynamic memory allocation failed.
See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

F01JCF uses the norm estimation routine F04YDF to estimate a quantity γ, where $\gamma \leq\|K(X)\|_{1}$ and $\|K(X)\|_{1} \in\left[n^{-1}\|L(X)\|_{1}, n\|L(X)\|_{1}\right]$. For further details on the accuracy of norm estimation, see the documentation for F04YDF.

8 Parallelism and Performance

F01JCF is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library. In these implementations, this routine may make calls to the user-supplied functions from within an OpenMP parallel region. Thus OpenMP directives within the user functions can only be used if you are compiling the user-supplied function and linking the executable in accordance with the instructions in the Users' Note for your implementation. The user workspace arrays IUSER and RUSER are classified as OpenMP shared memory and use of IUSER and RUSER has to take account of this in order to preserve thread safety whenever information is written back to either of these arrays. If at all possible, it is recommended that these arrays are only used to supply read-only data to the user functions when a multithreaded implementation is being used.

F01JCF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

The matrix function is computed using the underlying matrix function routine F01EMF. Approximately $6 n^{2}$ of real allocatable memory is required by the routine, in addition to the memory used by the underlying matrix function routine.

If only $f(A)$ is required, without an estimate of the condition number, then it is far more efficient to use the underlying matrix function routine directly.
The complex analogue of this routine is F01KCF.

10 Example

This example estimates the absolute and relative condition numbers of the matrix function $e^{2 A}$ where

$$
A=\left(\begin{array}{rrrr}
0 & -1 & -1 & 1 \\
-2 & 0 & 1 & -1 \\
2 & -1 & 2 & -2 \\
-1 & -2 & 0 & -1
\end{array}\right)
$$

10.1 Program Text

```
! FO1JCF Example Program Text
! Mark 26 Release. NAG Copyright 2016.
    Module fOljcfe_mod
    .. Use Statements ..
    Use nag_library, Only: nag_wp
    .. Implicit None Statement ..
    Implicit None
... Accessibility Statements ..
    Private
    Public :: fexp2
    Contains
    Subroutine fexp2(m,iflag,nz,z,fz,iuser,ruser)
! .. Scalar Arguments ..
            Integer, Intent (Inout) :: iflag
            Integer, Intent (In) :: m, nz
            .. Array Arguments ..
            Complex (Kind=nag_wp), Intent (Out) :: fz(nz)
            Complex (Kind=nag_wp), Intent (In) :: z(nz)
            Real (Kind=nag_wp), Intent (Inout) : : ruser(*)
            Integer, Intent (Inout) :: iuser(*)
. . Intrinsic Procedures ..
            Intrinsic :: cmplx, exp
! .. Executable Statements ..
            Continue
            fz(1:nz) = (cmplx(2.0EO_nag_wp,0.0_nag_wp,kind=nag_wp)**m)*
                    exp((2.0EO_nag_wp,0.0EDO_nag_wp)*z(1:nz))
! Set iflag nonzero to terminate execution for any reason.
            iflag = 0
            Return
        End Subroutine fexp2
        End Module fOljcfe_mod
        Program fOljcfe
            FO1JCF Example Main Program
    .. Use Statements ..
    Use nag_library, Only: f01jcf, nag_wp, x02ajf, x04caf
    Use fOljcfe_mod, Only: fexp2
    .. Implicit None Statement ..
    Implicit None
! .. Parameters ..
    Integer, Parameter :: nin = 5, nout = 6
Local Scalars
    Real (Kind=nag_wp) :: conda, cond_rel, eps, norma, normfa
    Integer :: i, ifail, iflag, lda, n
! .. Local Arrays ..
    Real (Kind=nag_wp), Allocatable :: a(:,:)
    Real (Kind=nag_wp) :: ruser(1)
    Integer :: iuser(1)
! .. Executable Statements ..
    Write (nout,*) 'FOlJCF Example Program Results'
    Write (nout,*)
    Flush (nout)
    Skip heading in data file
```

```
    Read (nin,*)
    Read (nin,*) n
    lda = n
    Allocate (a(lda,n))
! Read A from data file
    Read (nin,*)(a(i,1:n),i=1,n)
! Display A
    ifail = 0
    Call x04caf('G','N',n,n,a,lda,'A',ifail)
! Find absolute condition number estimate
    ifail = 0
    Call fOljcf(n,a,lda,fexp2,iuser,ruser,iflag,conda,norma,normfa,ifail)
    If (ifail==0) Then
! Print solution
    Write (nout,*)
    Write (nout,*) 'F(A) = exp(2A)'
    Write (nout,99999) 'Estimated absolute condition number is: ', conda
    Find relative condition number estimate
    eps = x02ajf()
    If (normfa>eps) Then
        cond_rel = conda*norma/normfa
        Write (nout,99999) 'Estimated relative condition number is: ',
            cond_rel
    Else
        Write (nout,99998) 'The estimated norm of f(A) is effectively zero', &
            'and so the relative condition number is undefined.'
    End If
End If
99999 Format (IX,A,F7.2)
99998 Format (/,1X,A,/,1X,A)
    End Program f01jcfe
```


10.2 Program Data

```
FO1JCF Example Program Data
    4:Value of N
\begin{tabular}{rrrrr}
0.0 & -1.0 & -1.0 & 1.0 & \\
-2.0 & 0.0 & 1.0 & -1.0 & \\
2.0 & -1.0 & 2.0 & -2.0 & \\
-1.0 & -2.0 & 0.0 & -1.0 & : End of matrix \(A\)
\end{tabular}
```


10.3 Program Results

FO1JCF Example Program Results
A

	1	2	3	4
1	0.0000	-1.0000	-1.0000	1.0000
2	-2.0000	0.0000	1.0000	-1.0000
3	2.0000	-1.0000	2.0000	-2.0000
4	-1.0000	-2.0000	0.0000	-1.0000
F(A) = exp(2A)				
Estimated absolute condition number	is:	183.90		
Estimated relative condition number	is:	13.90		

[^0]: 1: N - INTEGER
 On entry: n, the order of the matrix A.
 Constraint: $\mathrm{N} \geq 0$.

