NAG Library Routine Document
 F11DDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

F11DDF solves a system of linear equations involving the preconditioning matrix corresponding to SSOR applied to a real sparse nonsymmetric matrix, represented in coordinate storage format.

2 Specification

```
SUBROUTINE FIIDDF (TRANS, N, NNZ, A, IROW, ICOL, RDIAG, OMEGA, CHECK, Y, &
    X, IWORK, IFAIL)
INTEGER N, NNZ, IROW(NNZ), ICOL(NNZ), IWORK(2*N+1), IFAIL
REAL (KIND=nag_wp) A(NNZ), RDIAG(N), OMEGA, Y(N), X(N)
CHARACTER(1) TRANS, CHECK
```


3 Description

F11DDF solves a system of linear equations

$$
M x=y, \quad \text { or } \quad M^{\mathrm{T}} x=y
$$

according to the value of the argument TRANS, where the matrix

$$
M=\frac{1}{\omega(2-\omega)}(D+\omega L) D^{-1}(D+\omega U)
$$

corresponds to symmetric successive-over-relaxation (SSOR) (see Young (1971)) applied to a linear system $A x=b$, where A is a real sparse nonsymmetric matrix stored in coordinate storage (CS) format (see Section 2.1.1 in the F11 Chapter Introduction).
In the definition of M given above D is the diagonal part of A, L is the strictly lower triangular part of A, U is the strictly upper triangular part of A, and ω is a user-defined relaxation parameter.

It is envisaged that a common use of F11DDF will be to carry out the preconditioning step required in the application of F11BEF to sparse linear systems. For an illustration of this use of F11DDF see the example program given in Section 10. F11DDF is also used for this purpose by the Black Box routine F11DEF.

4 References

Young D (1971) Iterative Solution of Large Linear Systems Academic Press, New York

5 Arguments

1: TRANS - CHARACTER(1)
Input
On entry: specifies whether or not the matrix M is transposed.

$$
\begin{aligned}
& \text { TRANS }={ }^{\prime} \mathrm{N}^{\prime} \\
& \quad M x=y \text { is solved. }
\end{aligned}
$$

TRANS $=$ ' T '
$M^{\mathrm{T}} x=y$ is solved.
Constraint: TRANS $=$ ' N ' or ' T '.

2: N - INTEGER
Input
On entry: n, the order of the matrix A.
Constraint: $\mathrm{N} \geq 1$.
3: NNZ - INTEGER
Input
On entry: the number of nonzero elements in the matrix A.
Constraint: $1 \leq \mathrm{NNZ} \leq \mathrm{N}^{2}$.

4: $\mathrm{A}(\mathrm{NNZ})$ - REAL (KIND=nag_wp) array Input
On entry: the nonzero elements in the matrix A, ordered by increasing row index, and by increasing column index within each row. Multiple entries for the same row and column indices are not permitted. The routine F11ZAF may be used to order the elements in this way.

5: IROW(NNZ) - INTEGER array Input
6: ICOL(NNZ) - INTEGER array
Input
On entry: the row and column indices of the nonzero elements supplied in array A.
Constraints:
IROW and ICOL must satisfy the following constraints (which may be imposed by a call to F11ZAF):
$1 \leq \operatorname{IROW}(i) \leq \mathrm{N}$ and $1 \leq \operatorname{ICOL}(i) \leq \mathrm{N}$, for $i=1,2, \ldots, \mathrm{NNZ}$;
either $\operatorname{IROW}(i-1)<\operatorname{IROW}(i) \quad$ or both $\operatorname{IROW}(i-1)=\operatorname{IROW}(i)$ and $\operatorname{ICOL}(i-1)<\operatorname{ICOL}(i)$, for $i=2,3, \ldots, \mathrm{NNZ}$.

7: RDIAG(N) - REAL (KIND=nag_wp) array Input On entry: the elements of the diagonal matrix D^{-1}, where D is the diagonal part of A.

8: OMEGA - REAL (KIND=nag_wp) Input
On entry: the relaxation parameter ω.
Constraint: $0.0<$ OMEGA <2.0.
9: CHECK - CHARACTER(1)
Input
On entry: specifies whether or not the CS representation of the matrix M should be checked.
CHECK $=$ 'C'
Checks are carried on the values of N, NNZ, IROW, ICOL and OMEGA.
CHECK $=$ ' N '
None of these checks are carried out.
See also Section 9.2.
Constraint: $\mathrm{CHECK}=$ ' C^{\prime} or ' N '.
10: $\quad \mathrm{Y}(\mathrm{N})-$ REAL (KIND=nag_wp) array
Input
On entry: the right-hand side vector y.
11: $\quad \mathrm{X}(\mathrm{N})$ - REAL (KIND=nag_wp) array
Output
On exit: the solution vector x.

12: $\operatorname{IWORK}(2 \times \mathrm{N}+1)$ - INTEGER array Workspace
13: IFAIL - INTEGER
Input/Output
On entry: IFAIL must be set to $0,-1$ or 1 . If you are unfamiliar with this argument you should refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.
For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this argument, the recommended value is 0 . When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.
On exit: IFAIL $=0$ unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL $=0$ or -1 , explanatory error messages are output on the current error message unit (as defined by X04AAF).
Errors or warnings detected by the routine:
IFAIL $=1$
On entry, TRANS $\neq \mathrm{N}^{\prime} \mathrm{N}$ ' or ' T ',
or CHECK $\neq{ }^{\prime} \mathrm{C}^{\prime}$ or ' N '.
IFAIL $=2$
On entry, $\mathrm{N}<1$,
or $\quad \mathrm{NNZ}<1$,
or $\quad \mathrm{NNZ}>\mathrm{N}^{2}$,
or \quad OMEGA lies outside the interval $(0.0,2.0)$,
IFAIL $=3$
On entry, the arrays IROW and ICOL fail to satisfy the following constraints:
$1 \leq \operatorname{IROW}(i) \leq \mathrm{N}$ and $1 \leq \operatorname{ICOL}(i) \leq \mathrm{N}$, for $i=1,2, \ldots, \mathrm{NNZ}$;
$\operatorname{IROW}(i-1)<\operatorname{IROW}(i)$ or $\operatorname{IROW}(i-1)=\operatorname{IROW}(i)$ and $\operatorname{ICOL}(i-1)<\operatorname{ICOL}(i)$, for $i=2,3, \ldots$, NNZ.

Therefore a nonzero element has been supplied which does not lie in the matrix A, is out of order, or has duplicate row and column indices. Call F11ZAF to reorder and sum or remove duplicates.

IFAIL $=4$
On entry, the matrix A has a zero diagonal element. The SSOR preconditioner is not appropriate for this problem.

IFAIL $=-99$
An unexpected error has been triggered by this routine. Please contact NAG.
See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
IFAIL $=-399$
Your licence key may have expired or may not have been installed correctly.
See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL $=-999$
Dynamic memory allocation failed.
See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

If TRANS $=$ ' N ' the computed solution x is the exact solution of a perturbed system of equations $(M+\delta M) x=y$, where

$$
|\delta M| \leq c(n) \epsilon|D+\omega L|\left|D^{-1}\right||D+\omega U|
$$

$c(n)$ is a modest linear function of n, and ϵ is the machine precision. An equivalent result holds when TRANS $=$ ' T '.

8 Parallelism and Performance

F11DDF is not threaded in any implementation.

9 Further Comments

9.1 Timing

The time taken for a call to F11DDF is proportional to NNZ.

9.2 Use of CHECK

It is expected that a common use of F11DDF will be to carry out the preconditioning step required in the application of F11BEF to sparse linear systems. In this situation F11DDF is likely to be called many times with the same matrix M. In the interests of both reliability and efficiency, you are recommended to set CHECK $=$ ' C^{\prime} for the first of such calls, and for all subsequent calls set CHECK $=$ ' N '.

10 Example

This example solves a sparse linear system of equations:

$$
A x=b
$$

using RGMRES with SSOR preconditioning.
The RGMRES algorithm itself is implemented by the reverse communication routine F11BEF, which returns repeatedly to the calling program with various values of the argument IREVCM. This argument indicates the action to be taken by the calling program.

If $\operatorname{IREVCM}=1$, a matrix-vector product $v=A u$ is required. This is implemented by a call to F11XAF.

If IREVCM $=-1$, a transposed matrix-vector product $v=A^{\mathrm{T}} u$ is required in the estimation of the norm of A. This is implemented by a call to F11XAF.

If $\operatorname{IREVCM}=2$, a solution of the preconditioning equation $M v=u$ is required. This is achieved by a call to F11DDF.
If IREVCM $=4$, F11BEF has completed its tasks. Either the iteration has terminated, or an error condition has arisen.

For further details see the routine document for F11BEF.

10.1 Program Text

Program fllddfe

```
    F11DDF Example Program Text
    Mark 26 Release. NAG Copyright 2016.
    .. Use Statements ..
    Use nag_library, Only: fllbdf, fllbef, f11bff, f11ddf, f11xaf, nag_wp
    .. Implicit None Statement ..
    Implicit None
    .. Parameters ..
    Integer, Parameter :: nin = 5, nout = 6
    .. Local Scalars .. :: anorm, omega, sigmax, stplhs,
    stprhs, tol
    Integer :: i, ifail, irevcm, iterm, itn, la, &
    liwork, lwneed, lwork, m, maxitn, &
    monit, n, nnz
    Character (1)
    Character (8)
    .. Local Arrays ..
    Real (Kind=nag_wp), Allocatable :: a(:), b(:), rdiag(:), wgt(:), &
    Integer, Allocatable :: icol(:), irow(:), iwork(:)
    .. Intrinsic Procedures ..
    Intrinsic :: max
    .. Executable Statements ..
    Write (nout,*) 'F11DDF Example Program Results'
    Write (nout,*)
Skip heading in data file
    Read (nin,*)
    Read algorithmic parameters
    Read (nin,*) n, m
    Read (nin,*) nnz
    la = 3*nnz
    lwork = max(n*(m+3)+m*(m+5)+101,7*n+100,(2*n+m)*(m+2)+n+100,10*n+100)
    liwork = 2*n + 1
    Allocate (a(la),b(n),rdiag(n),wgt(n),work(lwork),x(n),icol(la),irow(la), &
        iwork(liwork))
    Read (nin,*) method
    Read (nin,*) precon, norm, iterm
    Read (nin,*) tol, maxitn
    Read (nin,*) anorm, sigmax
    Read (nin,*) omega
! Read the matrix A
    Do i = 1, nnz
        Read (nin,*) a(i), irow(i), icol(i)
    End Do
! Read right-hand side vector b and initial approximate solution x
    Read (nin,*) b(1:n)
    Read (nin,*) x(1:n)
    Call F11BDF to initialize solver
    weight = 'N'
    monit = 0
    ifail: behaviour on error exit
    =O for hard exit, =1 for quiet-soft, =-1 for noisy-soft
ifail = 0
Call fllbdf(method,precon,norm,weight,iterm,n,m,tol,maxitn,anorm,sigmax, &
    monit,lwneed,work,lwork,ifail)
```

```
! Calculate reciprocal diagonal matrix elements if necessary
    If (precon=='P'.Or. precon=='p') Then
    iwork(1:n) = 0
    Do i = 1, nnz
        If (irow(i)==icol(i)) Then
            iwork(irow(i)) = iwork(irow(i)) + 1
            If (a(i)/=0.EO_nag_wp) Then
                rdiag(irow(i)) = 1.EO_nag_wp/a(i)
            Else
                Write (nout,*) 'Matrix has a zero diagonal element'
                Go To 100
            End If
        End If
    End Do
    Do i = 1, n
        If (iwork(i)==0) Then
            Write (nout,*) 'Matrix has a missing diagonal element'
            Go To 100
        End If
        If (iwork(i)>=2) Then
            Write (nout,*) 'Matrix has a multiple diagonal element'
            Go To 100
        End If
    End Do
End If
! Call F11BEF to solve the linear system
irevcm = O
ckxaf = 'c'
ckddf = 'C'
loop: Do
    ifail = 0
    Call fllbef(irevcm,x,b,wgt,work,lwork,ifail)
    Select Case (irevcm)
    Case (1)
        Compute matrix-vector product
        trans = 'N'
        Call fllxaf(trans,n,nnz,a,irow,icol,ckxaf,x,b,ifail)
        ckxaf = 'N'
    Case (-1)
        Compute transposed matrix-vector product
        trans = 'T'
        Call fllxaf(trans,n,nnz,a,irow,icol,ckxaf,x,b,ifail)
        ckxaf = 'N'
    Case (2)
        SSOR preconditioning
        trans = 'N'
        Call fllddf(trans,n,nnz,a,irow,icol,rdiag,omega,ckddf,x,b,iwork,
            ifail)
        ckddf = 'N'
    Case (4)
        Termination
        ifail = 0
        Call fllbff(itn,stplhs,stprhs,anorm,sigmax,work,lwork,ifail)
```

 Write (nout,'(A,I10,A)') ' Converged in', itn, ' iterations'
 Write (nout,'(A,1P,E16.3)') ' Matrix norm =', anorm
 Write (nout,'(A,1P,E16.3)') ' Final residual norm =', stplhs
 Write (nout,*)
 Output x
 Write (nout,*) ' X'
 Write (nout,'(1X,1P,E16.4)') x(1:n)
 Exit loop
 Case Default
 Exit loop
 End Select
 End Do loop
    ```
100 Continue
```

End Program fl1ddfe

```

\subsection*{10.2 Program Data}


\subsection*{10.3 Program Results}
```

F11DDF Example Program Results
Converged in 12 iterations
Matrix norm = 1.200E+01
Final residual norm = 3.841E-09
X
1.0000E+00
2.0000E+00
3.0000E+00
4.0000E+00
5.0000E+00

```
```

