NAG Library Routine Document
 F11MFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

F11MFF solves a real sparse system of linear equations with multiple right-hand sides given an $L U$ factorization of the sparse matrix computed by F11MEF.

2 Specification

```
SUBROUTINE FIIMFF (TRANS, N, IPRM, IL, LVAL, IU, UVAL, NRHS, B, LDB,
    IFAIL)
INTEGER N, IPRM(7*N), IL(*), IU(*), NRHS, LDB, IFAIL
REAL (KIND=nag_wp) LVAL(*), UVAL(*) , B (LDB,*)
CHARACTER(1) TRANS
```


3 Description

F11MFF solves a real system of linear equations with multiple right-hand sides $A X=B$ or $A^{\mathrm{T}} X=B$, according to the value of the argument TRANS, where the matrix factorization $P_{r} A P_{c}=L U$ corresponds to an $L U$ decomposition of a sparse matrix stored in compressed column (Harwell-Boeing) format, as computed by F11MEF.
In the above decomposition L is a lower triangular sparse matrix with unit diagonal elements and U is an upper triangular sparse matrix; P_{r} and P_{c} are permutation matrices.

4 References

None.

5 Arguments

1: TRANS - CHARACTER(1)
On entry: specifies whether $A X=B$ or $A^{\mathrm{T}} X=B$ is solved.
TRANS $=$ ' N '
$A X=B$ is solved.
TRANS $=$ 'T'
$A^{\mathrm{T}} X=B$ is solved.
Constraint: TRANS $=$ ' N ' or ' T '.
2: N - INTEGER Input
On entry: n, the order of the matrix A.
Constraint: $\mathrm{N} \geq 0$.

3: $\operatorname{IPRM}(7 \times \mathrm{N})$ - INTEGER array Input
On entry: the column permutation which defines P_{c}, the row permutation which defines P_{r}, plus associated data structures as computed by F11MEF.

4: $\quad \operatorname{IL}(*)$ - INTEGER array
Input
Note: the dimension of the array IL must be at least as large as the dimension of the array of the same name in F11MEF.

On entry: records the sparsity pattern of matrix L as computed by F11MEF.
5: $\quad \operatorname{LVAL}(*)-\operatorname{REAL}(\mathrm{KIND}=$ nag_wp) array
Input
Note: the dimension of the array LVAL must be at least as large as the dimension of the array of the same name in F11MEF.
On entry: records the nonzero values of matrix L and some nonzero values of matrix U as computed by F11MEF.

6: $\quad \mathrm{IU}(*)$ - INTEGER array
Input
Note: the dimension of the array IU must be at least as large as the dimension of the array of the same name in F11MEF.

On entry: records the sparsity pattern of matrix U as computed by F11MEF.
7: $\quad \operatorname{UVAL}(*)-$ REAL (KIND=nag_wp) array
Input
Note: the dimension of the array UVAL must be at least as large as the dimension of the array of the same name in F11MEF.

On entry: records some nonzero values of matrix U as computed by F11MEF.
8: NRHS - INTEGER
Input
On entry: nrhs, the number of right-hand sides in B.
Constraint: NRHS ≥ 0.
9: $\quad \mathrm{B}(\mathrm{LDB}, *)-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Input/Output
Note: the second dimension of the array B must be at least max (1, NRHS).
On entry: the N by NRHS right-hand side matrix B.
On exit: the N by NRHS solution matrix X.
10: LDB - INTEGER
Input
On entry: the first dimension of the array B as declared in the (sub)program from which F11MFF is called.

Constraint: $\mathrm{LDB} \geq \max (1, \mathrm{~N})$.
11: IFAIL - INTEGER
Input/Output
On entry: IFAIL must be set to $0,-1$ or 1 . If you are unfamiliar with this argument you should refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this argument, the recommended value is 0 . When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL $=0$ unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL $=0$ or -1 , explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors or warnings detected by the routine:
IFAIL $=1$
On entry, $\mathrm{LDB}=\langle$ value \rangle and $\mathrm{N}=\langle$ value \rangle.
Constraint: $\mathrm{LDB} \geq \max (1, \mathrm{~N})$.
On entry, $\mathrm{N}=\langle$ value \rangle.
Constraint: $\mathrm{N} \geq 0$.
On entry, NRHS $=\langle$ value \rangle.
Constraint: NRHS ≥ 0.
On entry, TRANS $=\langle$ value \rangle.
Constraint: TRANS $=$ ' N ' or ' T '.
IFAIL $=2$
Incorrect row permutations in array IPRM.

IFAIL $=3$

Incorrect column permutations in array IPRM.
IFAIL $=-99$
An unexpected error has been triggered by this routine. Please contact NAG.
See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
IFAIL $=-399$
Your licence key may have expired or may not have been installed correctly.
See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
IFAIL $=-999$
Dynamic memory allocation failed.
See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

For each right-hand side vector b, the computed solution x is the exact solution of a perturbed system of equations $(A+E) x=b$, where

$$
|E| \leq c(n) \epsilon|L||U|
$$

$c(n)$ is a modest linear function of n, and ϵ is the machine precision, when partial pivoting is used. If \hat{x} is the true solution, then the computed solution x satisfies a forward error bound of the form

$$
\frac{\|x-\hat{x}\|_{\infty}}{\|x\|_{\infty}} \leq c(n) \operatorname{cond}(A, x) \epsilon
$$

where $\operatorname{cond}(A, x)=\left\|\left|A^{-1}\right||A||x|\right\|_{\infty} /\|x\|_{\infty} \leq \operatorname{cond}(A)=\left\|\left|A^{-1}\right||A|\right\|_{\infty} \leq \kappa_{\infty}(A)$. Note that $\operatorname{cond}(A, x)$ can be much smaller than $\operatorname{cond}(A)$, and $\operatorname{cond}\left(A^{\mathrm{T}}\right)$ can be much larger (or smaller) than $\operatorname{cond}(A)$.

Forward and backward error bounds can be computed by calling F11MHF, and an estimate for $\kappa_{\infty}(A)$ can be obtained by calling F11MGF.

8 Parallelism and Performance

F11MFF is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.

F11MFF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

F11MFF may be followed by a call to F11MHF to refine the solution and return an error estimate.

10 Example

This example solves the system of equations $A X=B$, where

$$
A=\left(\begin{array}{rrrrr}
2.00 & 1.00 & 0 & 0 & 0 \\
0 & 0 & 1.00 & -1.00 & 0 \\
4.00 & 0 & 1.00 & 0 & 1.00 \\
0 & 0 & 0 & 1.00 & 2.00 \\
0 & -2.00 & 0 & 0 & 3.00
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{rr}
1.56 & 3.12 \\
-0.25 & -0.50 \\
3.60 & 7.20 \\
1.33 & 2.66 \\
0.52 & 1.04
\end{array}\right) .
$$

Here A is nonsymmetric and must first be factorized by F11MEF.

10.1 Program Text

Program f11mffe
! F11MFF Example Program Text
! Mark 26 Release. NAG Copyright 2016.
! .. Use Statements ..
Use nag_library, Only: fllmdf, fllmef, fllmff, nag_wp, x04caf
! .. Implicit None Statement ..
Implicit None
! .. Parameters ..
Real (Kind=nag_wp), Parameter : : one = 1.EO_nag_wp
Integer, Parameter : : nin $=5$, nout $=6$
! .. Local Scalars ..
Real (Kind=nag_wp) : : flop, thresh
Integer : : i, ifail, j, ldb, n, nnz, nnzl, nnzu, nrhs, nzlmx, nzlumx, nzumx Character (1) : : spec, trans
! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable : : a(:), b(:,:), lval(:), uval(:)
Integer, Allocatable : : icolzp(:), il(:), iprm(:), \& irowix(:), iu(:)
! .. Executable Statements ..
Write (nout,*) 'F11MFF Example Program Results' Flush (nout)
! Skip heading in data file Read (nin,*)
! Read order of matrix and number of right hand sides
Read (nin,*) n, nrhs
$1 \mathrm{db}=\mathrm{n}$
Allocate (b(ldb, nrhs), icolzp(n+1), iprm(7*n))
! Read the matrix A

```
Read (nin,*) icolzp(1:n+1)
```

$n n z=i c o l z p(n+1)-1$

```
Allocate (a(nnz),lval(8*nnz),uval(8*nnz),il(7*n+8*nnz+4),irowix(nnz),
    iu(2*n+8*nnz+1))
```

Do $i=1, n n z$
Read (nin,*) a(i), irowix(i)
End Do
Read the right hand sides
Do j $=1$, nrhs
Read (nin,*) b(1:n,j)
End Do
Calculate COLAMD permutation
spec $=' M '$
ifail: behaviour on error exit
$=0$ for hard exit, $=1$ for quiet-soft, $=-1$ for noisy-soft
ifail = 0
Call f11mdf(spec,n,icolzp,irowix,iprm,ifail)
Factorise
thresh = one
ifail = 0
nzlmx = 8*nnz
nzlumx $=8 * n n z$
nzumx $=8 * n n z$
Call fllmef(n,irowix,a,iprm,thresh,nzlmx,nzlumx,nzumx,il,lval,iu,uval, \&
nnzl,nnzu,flop,ifail)
Solve
trans $={ }^{\prime} \mathrm{N}^{\prime}$
ifail = 0
Call fllmff(trans,n,iprm,il,lval,iu,uval,nrhs,b,ldb,ifail)
Output results
Write (nout,*)
Flush (nout)
Call x04caf('G',' ',n,nrhs,b,ldb,'Solutions',ifail)

End Program fllmffe

10.2 Program Data

```
F11MFF Example Program Data
    5 2 N, NRHS
1
3
5
7
9
12 ICOLZP(I) I=1,..,N+1
    2. 1
    4. }
    1. 1
-2. 5
    1. }
1. }
```


10.3 Program Results

F11MFF Example Program Results

Solutions

	1	2
1	0.7000	1.4000
2	0.1600	0.3200
3	0.5200	1.0400
4	0.7700	1.5400
5	0.2800	0.5600

